Holt.Blue
Back To Class Notes Menu
Section 7.5: Factoring by Grouping and a General Strategy for Factoring Polynomials

Complete Factorization : a polynomial is factored completely if it can't be broken down any further.

This topic brings together the ideas of this chapter.

Example: $5x^5-5x y^4$

$$ \begin{array}{lll} \displaystyle5x^5-5x y^4 &\displaystyle=5x(x^4-y^4) &\mbox{factor out GCF}\\ \displaystyle &\displaystyle= 5x\left((x^2)^2-(y^2)^2\right)&\mbox{prep for difference of squares}\\ \displaystyle &\displaystyle=5x(x^2+y^2)(x^2-y^2) &\mbox{factor difference of squares}\\ \displaystyle &\displaystyle= 5x(x^2+y^2)(x+y)(x-y)&\mbox{factor difference of squraes again!}\\ \end{array} $$ This cannot be broken down any further, so it is a complete factorization.
























Factoring Strategy

Step 1: Is there a greatest common factor? Step 2: Is the polynomial a binomial, trinomial, or are there more than three terms? Step 3: Check.

























Examples: Factor the following polynomial expressions.

$y^3 +7 y^2 -y - 7$

$$ \begin{array}{lll} \displaystyle y^3 +7 y^2 -y - 7&\displaystyle=y^2(y +7) -(y + 7) &\mbox{factor by grouping}\\ \displaystyle &\displaystyle=(y^2-1)(y+7) &\mbox{pull out common factor}\\ \displaystyle &\displaystyle=(y+1)(y-1)(y+7) &\mbox{factor difference of squares}\\ \end{array} $$


$245 s^3 \alpha-20 s \alpha^3$

$$ \begin{array}{lll} \displaystyle 245 s^3 \alpha-20 s \alpha^3&\displaystyle= 5s\alpha(49s^2-4 \alpha^2) &\mbox{factor out GCF}\\ \displaystyle &\displaystyle=5s\alpha(7s+2 \alpha)(7s-2 \alpha) &\mbox{factor difference of squares}\\ \end{array} $$


$2 z p^2-2 z c^4$

$$ \begin{array}{lll} \displaystyle 2 z p^2-2 z c^4&\displaystyle=2z(p^2-c^4) &\mbox{factor out GCF}\\ \displaystyle &\displaystyle=2z(p+c^2)(p-c^2) &\mbox{factor difference of squares}\\ \end{array} $$


$36t^2-25c^2-40c-16$

$$ \begin{array}{lll} \displaystyle 36t^2-25c^2-40c-16 &\displaystyle=36t^2-(25c^2+40c+16) &\mbox{regroup}\\ \displaystyle &\displaystyle=36t^2-((5c)^2+2(5c)(4)+4^2) &\mbox{factor a perfect square trinomial}\\ \displaystyle &\displaystyle=36t^2-(5c+4)^2 &\mbox{rewrite as square}\\ \displaystyle &\displaystyle=(\color{magenta}{6t})^2-(\color{blue}{5c+4})^2 &\mbox{recognize a difference of squares}\\ \displaystyle &\displaystyle=(\color{magenta}{6t}+(\color{blue}{5c+4}))(\color{magenta}{6t}-(\color{blue}{5c+4})) &\mbox{factor difference of squares}\\ \displaystyle &\displaystyle=(6t+5c+4)(6t-5c-4) &\mbox{rewrite as square to reveal a difference of squares}\\ \end{array} $$


$3mv^4 + 192mv$

$$ \begin{array}{lll} \displaystyle 3mv^4 + 192mv&\displaystyle=3mv(v^3+64) &\mbox{factor out GCF}\\ \displaystyle &\displaystyle=3mv(v^3+(4)^3) &\mbox{spot sum of cubes}\\ \displaystyle &\displaystyle=3mv(v+4)\left((v)^2-(v)(4)+(4)^2\right) &\mbox{factor sum of cubes}\\ \displaystyle &\displaystyle=3mv(v+4)\left(v^2-4v+16\right) &\mbox{simplify}\\ \end{array} $$


$u^2+2u+1+u t+t$

$$ \begin{array}{lll} \displaystyle u^2+2u+1+u t+t&\displaystyle=(u+1)^2+t(u+1) &\mbox{factor perfect square trinomial and by grouping}\\ \displaystyle &\displaystyle=(u+1)(u+1)+t(u+1) &\mbox{optional prep step}\\ \displaystyle &\displaystyle=((u+1)+t)(u+1) &\mbox{factor out common factor}\\ \displaystyle &\displaystyle=(u+1+t)(u+1) &\mbox{lose parentheses}\\ \end{array} $$


$75m^3 + 12m$

$$ \begin{array}{lll} \displaystyle 75m^3 + 12m&\displaystyle=3m(25m^2+4) &\mbox{factor out GCF}\\ \end{array} $$ Why did we stop?