Holt.Blue
Back To Class Notes Menu
Section 7.3: Factoring Trinomials of the Form $ax^2+bx+c$

Recall: One way factor, say, $x^2+3x+2$, is to write $$x^2+3x+2=(x+\mbox{___})(x+\mbox{___})$$ and fill in the numbers by trial and error.























We can do something similar for trinomials of the form $ax^2+bx+c$.

Example: $15r^2-28r+12$

We write our factorization as $$\color{magenta}{15}r^2-28r\color{blue}{+12}=(\color{magenta}{\mbox{___}}r+\color{blue}{\mbox{___}})(\color{magenta}{\mbox{___}}r+\color{blue}{\mbox{___}})$$ The values on the left must multiply to $\color{magenta}{15}$ and the values on the right must multiply to $\color{blue}{12}.$

When we multiply it all out, the middle term should simplify to $-28r.$

We're going to try different combinations of numbers that work and check the result until we get it. $$ \begin{array}{lll} \displaystyle (\color{magenta}{\mbox{3}}r\color{blue}{-\mbox{3}})(\color{magenta}{\mbox{5}}r\color{blue}{-\mbox{4}})&\displaystyle= \color{magenta}{15}r^2-27r\color{blue}{+12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{3}}r\color{blue}{-\mbox{4}})(\color{magenta}{\mbox{5}}r\color{blue}{-\mbox{3}})&\displaystyle= \color{magenta}{15}r^2-29r\color{blue}{+12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{3}}r\color{blue}{-\mbox{2}})(\color{magenta}{\mbox{5}}r\color{blue}{-\mbox{6}})&\displaystyle= \color{magenta}{15}r^2-28r\color{blue}{+12} &\mbox{Yes!}\\ \end{array} $$ It took three guesses and checks to find the right factorization $$ 15r^2-28r+12=(3r-2)(5r-6) $$



















Other Examples: Factor the following expressions.

$10t^2−19t−12$

$$ \begin{array}{lll} \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{-\mbox{3}})(\color{magenta}{\mbox{5}}t\color{blue}{+\mbox{4}})&\displaystyle= \color{magenta}{10}t^2-7t\color{blue}{-12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{-\mbox{4}})(\color{magenta}{\mbox{5}}t\color{blue}{+\mbox{3}})&\displaystyle= \color{magenta}{10}t^2-14t\color{blue}{-12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{-\mbox{2}})(\color{magenta}{\mbox{5}}t\color{blue}{+\mbox{6}})&\displaystyle= \color{magenta}{10}t^2+2t\color{blue}{-12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{-\mbox{6}})(\color{magenta}{\mbox{5}}t\color{blue}{+\mbox{2}})&\displaystyle= \color{magenta}{10}t^2-26t\color{blue}{-12} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{-\mbox{1}})(\color{magenta}{\mbox{5}}t\color{blue}{+\mbox{12}})&\displaystyle= \color{magenta}{10}t^2+19t\color{blue}{-12} &\mbox{Almost!}\\ \displaystyle (\color{magenta}{\mbox{2}}t\color{blue}{+\mbox{1}})(\color{magenta}{\mbox{5}}t\color{blue}{-\mbox{12}})&\displaystyle= \color{magenta}{10}t^2-19t\color{blue}{-12} &\mbox{Yes! (switched signs)}\\ \end{array} $$ So, $$ 10t^2−19t−12=(2t+1)(5t-12) $$


$-24q^2+38q-15$

We first factor out a negative, $$-24q^2+38q-15=-(24q^2-38q+15)$$ and focus on the expression $24q^2-38q+15.$ $$ \begin{array}{lll} \displaystyle (\color{magenta}{\mbox{3}}q\color{blue}{-\mbox{3}})(\color{magenta}{\mbox{8}}q\color{blue}{-\mbox{5}})&\displaystyle= \color{magenta}{24}q^2-39q\color{blue}{+15} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{3}}q\color{blue}{-\mbox{5}})(\color{magenta}{\mbox{8}}q\color{blue}{-\mbox{3}})&\displaystyle= \color{magenta}{24}q^2-49q\color{blue}{+15} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{4}}q\color{blue}{-\mbox{5}})(\color{magenta}{\mbox{6}}q\color{blue}{-\mbox{3}})&\displaystyle= \color{magenta}{24}q^2-42q\color{blue}{+15} &\mbox{nope}\\ \displaystyle (\color{magenta}{\mbox{6}}q\color{blue}{-\mbox{5}})(\color{magenta}{\mbox{4}}q\color{blue}{-\mbox{3}})&\displaystyle= \color{magenta}{24}q^2-18q\color{blue}{+15} &\mbox{Yes!}\\ \end{array} $$ So, $$ \begin{array}{lll} \displaystyle -24q^2+38q-15&\displaystyle=-(24q^2-38q+15) &\mbox{}\\ \displaystyle &\displaystyle=-(6q-5)(4q-3) &\mbox{}\\ \end{array} $$


$24n^2-38n x+15x^2$

$$ \begin{array}{lll} \displaystyle (\color{magenta}{\mbox{6}}n\color{blue}{-\mbox{5}}x)(\color{magenta}{\mbox{4}}n\color{blue}{-\mbox{3}}x)&\displaystyle= \color{magenta}{24}n^2-38nx\color{blue}{+15}x^2 &\mbox{Yes!}\\ \end{array} $$ So, $$24n^2-38n x+15x^2=(6n-5x)(4n-3x)$$
























If you don't like the Guess 'n' Check method, you might like the following, more systematic, method.























A More Systematic Method: The $ac$ Method

To factor $ax^2+bx+c$, find two numbers whose sum is $b$ and whose product is $ac$.

Example: Factor $8z^2+37z-15$

A good first step is to make a table of factors. $$ \begin{array}{c|c} ac=8(-15)=-120 & \mbox{sum}\\ \hline -1 \cdot 120 & 119\\ -2 \cdot 60 & 58\\ -3 \cdot 40 & 37 \, \checkmark \\ \end{array} $$ Once we get our factors, we break up the middle term of our trinomial having these numbers as coefficients and factor by grouping. That is, $$ \begin{array}{lll} \displaystyle 8z^2+37z-15 &\displaystyle=8z^2+40z-3z-15 &\mbox{break up middle term in to factors from table}\\ \displaystyle &\displaystyle= 8z(z+5)-3(z+5)&\mbox{factor by grouping}\\ \displaystyle &\displaystyle= (8z-3)(z+5)&\mbox{pretty slick, eh?}\\ \end{array} $$

























More Examples

$15x^2+2x-8$

$$ \begin{array}{c|c} ac=15(-8)=-120 & \mbox{sum}\\ \hline -1 \cdot 120 & 119\\ -2 \cdot 60 & 58\\ -3 \cdot 40 & 37 \\ -4 \cdot 30 & 26 \\ -5 \cdot 24 & 19 \\ -6 \cdot 20 & 14 \\ -8 \cdot 15 & 7 \\ -10 \cdot 12 & 2 \, \checkmark \\ \end{array} $$ $$ \begin{array}{lll} \displaystyle 15x^2+2x-8 &\displaystyle=15x^2-10x+12x-8&\mbox{break up middle term in to factors from table}\\ \displaystyle &\displaystyle= 5x(3x-2)+4(3x-2)&\mbox{factor by grouping}\\ \displaystyle &\displaystyle= (5x+4)(3x-2)&\mbox{}\\ \end{array} $$


$12x^2+8x u-15u^2$

$$ \begin{array}{c|c} ac=12(-15)=-180 & \mbox{sum}\\ \hline -1 \cdot 180 & 179\\ -2 \cdot 90 & 88\\ -3 \cdot 60 & 57 \\ -4 \cdot 30 & 26 \\ -5 \cdot 36 & 31 \\ -6 \cdot 30 & 24 \\ -9 \cdot 20 & 11 \\ -10 \cdot 18 & 8 \, \checkmark \\ \end{array} $$ $$ \begin{array}{lll} \displaystyle 12x^2+8x u-15u^2 &\displaystyle= 12x^2-10xu+18x u-15u^2&\mbox{}\\ \displaystyle &\displaystyle=2x(6x-5u)+3u(6x-5u) &\mbox{}\\ \displaystyle &\displaystyle=(2x+3u)(6x-5u) &\mbox{}\\ \end{array} $$


$3q^2-25q+12$

$$ \begin{array}{c|c} ac=3(12)=36 & \mbox{sum}\\ \hline (-1)(-36) & -37\\ (-2)(-18) & -20\\ (-3)(-12) & -15\\ (-4)(-9) & -13\\ (-6)(-6) & -12\\ \end{array} $$ If we were to keep going, we would simply start recycling factors.

So, we're out of possibilities.

When this happens, we can say that the polynomial is not factorable.