Holt.Blue
Back To Class Notes Menu
Section 6.6: Dividing Polynomials

Dividing by Monomials

Warm Up #1: $\displaystyle \frac{24x^5}{8x^2}$

Warm Up #2: Quotient and remainder for the division problem $3\overline{)137}$

Quotient: $\color{blue}{45}$

Remainder: $\color{red}{2}$

This means that $$137=3\cdot \color{blue}{45}+\color{red}{2}$$ or, that from $137,$ we can make $\color{blue}{45}$ groups of $3$ with $\color{red}{2}$ left over.

Equivalently, we may also write $$ \frac{137}{3}=\color{blue}{45}+\frac{\color{red}{2}}{3}=45\frac{2}{3} $$






















Example: $\displaystyle \frac{24m^4 - 18m^3 + 36m^2 - 6m}{3m}$



$$ \begin{array}{lll} \displaystyle \frac{24m^4 - 18m^3 + 36m^2 - 6m}{3m}&\displaystyle=\frac{1}{3m}\left(24m^4 - 18m^3 + 36m^2 - 6m\right) &\mbox{multiply by reciprocal}\\ \displaystyle &\displaystyle=\frac{24m^4}{3m} - \frac{18m^3}{3m} + \frac{36m^2}{3m} -\frac{6m}{3m} &\mbox{distribute (some might skip previous step)}\\ \displaystyle &\displaystyle=8m^3 - 6m^2 + 12m -2 &\mbox{simplify each fraction}\\ \end{array} $$




















General Polynomial Division













Examples

Perform polynomial long division to get the quotient and remainder. $$2x+7 \,\, \overline{)\,\,\,8x^3+22x^2-23x-11\,\,\,\,\,}$$

Quotient: $\color{blue}{4x^2-3x-1}$

Remainder: $\color{red}{-4}$

This means that $$8x^3+22x^2-23x-11=(2x+7)(\color{blue}{4x^2-3x-1})+\color{red}{(-4)}$$ Or equivalently, $$ \frac{8x^3+22x^2-23x-11}{2x+7}=\color{blue}{4x^2-3x-1}+\frac{\color{red}{-4}}{2x+7} $$

One of the big reasons polynomial long division is useful is that in many cases, the version on the right is easier to work with than the one on the left. This is why we learn it.

$$-8x^2+9x+4 \,\, \overline{)\,\,\,32x^3+36x^2-97x-30\,\,\,\,\,}$$

Quotient: $-4x-9$

Remainder: $6$

$$2x^2-x-3 \,\, \overline{)\,\,\,-8x^3+16x^2-3x-17\,\,\,\,\,}$$

Quotient: $-4x+6$

Remainder: $-9x+1$

$$2x-6 \,\, \overline{)\,\,\,-18x^2+66x-28\,\,\,\,\,}$$

Quotient: $-9x+6$

Remainder: $8$