Holt.Blue
Back To Class Notes Menu
Section 6.4: Special Products of Binomials

FOIL Shortcut for Multiplying Two Binomials

Example: $(-7f^2+3)(-4f^2-5)$

Warning: FOIL applies to binomials ONLY.











Squaring Binomials

To square a binomial, square the first term, add double the product of the two terms, then add the square of the second term.

That is, $(x+y)^2=x^2+2xy+y^2$

The Most Basic Example: $(a+b)^2$

A More Complex Example: $(4x^2-3p)^2$



$$ \begin{array}{lll} \displaystyle (\color{blue}{4x^2}\color{red}{-3p})^2&\displaystyle=\left(\color{blue}{4x^2}\right)^2+2(\color{blue}{4x^2})(\color{red}{-3p})+\left(\color{red}{-3p}\right)^2 &\mbox{}\\ \displaystyle &\displaystyle=16x^4-24x^2p+9p^2 &\mbox{exponent rules}\\ \end{array} $$




























DIRE WARNING:

PLEASE REMEMBER...























































Differences of Squares

Basic Example $(x+y)(x-y)=$

Example: Multiply by inspection. $(4b-7 z^2)(4b+7 z^2)$



$$ \begin{array}{lll} \displaystyle (\color{blue}{4b}-\color{red}{7 z^2})(\color{blue}{4b}+\color{red}{7 z^2})&\displaystyle=(\color{blue}{4b})^2-(\color{red}{7 z^2})^2 &\mbox{}\\ \displaystyle &\displaystyle=16b^2-49z^4 &\mbox{exponent rules}\\ \end{array} $$




























Order of Operations

Fact: The order of operations applies to polynomials too.

Example: $(3v - w)(3v + w) - (3v - w)^2$



$$ \begin{array}{lll} \displaystyle (3v - w)(3v + w) - (3v - w)^2&\displaystyle= (3v)^2-w^2-\left((3v)^2+2(3v)(-w)+(-w)^2\right)&\mbox{}\\ \displaystyle &\displaystyle= 9v^2-w^2-(9v^2-6vw+w^2)&\mbox{}\\ \displaystyle &\displaystyle= 9v^2-w^2-9v^2+6vw-w^2&\mbox{}\\ \displaystyle &\displaystyle=-2w^2+6vw&\mbox{}\\ \end{array} $$