Holt.Blue
Back To Class Notes Menu
The Calculus of Polar Curves

We will now learn how to deal with areas, lengths, and slopes of tangent lines in the polar setting.

































The Area of a Polar Curve

We begin by partitioning up the the angle swept out by a curve into subintervals.


Although the above picture looks different that for curves in rectangular coordinates, the expression for the approximating area really is a Riemann sum. Each sector is the circular equivalent of a rectangle.

The area of a sector of a circle of radius $r$ subtending an angle $\theta$ is given by $$ \frac{\theta}{2\pi}\cdot \pi r^2=\frac{1}{2}r^2 \theta $$ Then the area of the sectors approximating the area in the figure is given by $$ \mbox{Area}\approx\sum_{j=0}^{n-1}\frac{1}{2} r_i^2 \Delta \theta =\sum_{j=0}^{n-1}\frac{1}{2} f(\theta_i)^2 \Delta \theta $$ In the limit we have $$ \mbox{Area}=\lim_{n \rightarrow \infty} \sum_{j=0}^{n-1}\frac{1}{2} f(\theta_i)^2 \Delta \theta=\int_{\alpha}^{\beta}\frac{1}{2} f(\theta)^2 \,d\theta $$


































The Area of a Polar Curve

Suppose $f$ is continuous and nonnegative on the interval $\alpha ≤ \theta ≤ \beta$ with $0 \lt \beta − \alpha ≤ 2\pi.$ The area of the region bounded by the graph of $r = f (\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is $$\frac{1}{2}\int_{\alpha}^{\beta} [f(\theta)]^2 \, d \theta.$$

































The Area of a Polar Curve

Example: Determine and evaluate a definite integral that represents the area of the region in the first quadrant within the cardioid $r=1+\sin \theta.$

We we want to find the area of the cardioid in the first quadrant. This means $\displaystyle 0\leq \theta \leq \frac{\pi}{2}.$

We now sketch the region.

$$ \begin{array}{lll} \displaystyle \frac{1}{2}\int_{\alpha}^{\beta} [f(\theta)]^2 \, d \theta &=\displaystyle \frac{1}{2}\int_{0}^{\pi/2} [1+\sin \theta]^2 \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{0}^{\pi/2} 1+2\sin \theta +\sin^2\theta\, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{0}^{\pi/2} 1+2\sin \theta +\frac{1-\cos(2\theta)}{2}\, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\left[ \theta-2\cos \theta +\frac{\theta}{2}-\frac{\sin(2\theta)}{4}\right]_{0}^{\pi/2}&\mbox{}\\ &=\displaystyle \frac{1}{2}\left[\left(\frac{\pi}{2}-2\cos \frac{\pi}{2} +\frac{\frac{\pi}{2}}{2} -\frac{\sin\left(2\cdot\frac{\pi}{2}\right)}{4}\right)- \left(0-2\cos 0 +\frac{0}{2} -\frac{\sin(2\cdot 0)}{4}\right)\right]&\mbox{}\\ &=\displaystyle \frac{1}{2}\left[\left(\frac{\pi}{2} +\frac{\pi}{4}\right)- \left(-2\right)\right]&\mbox{}\\ &=\displaystyle \frac{1}{2}\left[\frac{3\pi}{4} +2\right]&\mbox{}\\ &=\displaystyle \frac{3\pi}{8} +1&\mbox{}\\ &\approx \displaystyle 2.178097245&\mbox{}\\ \end{array} $$


Example: Determine and evaluate a definite integral that represents the area of the region enclosed by one petal of $r = \cos(3\theta).$

We want to find the area of a single petal. This means $\displaystyle -\frac{\pi}{6}\leq \theta \leq \frac{\pi}{6}.$

Using a few points, we know that at $0$ radians $r=1,$ and since $\cos x$ is $0$ when $x=\frac{\pi}{2},$ we know that at $\theta=\frac{\pi}{6},$ $r=0.$ This is makes the upper half of the petal.

Also, since $\cos x$ is even, $f(-\theta)=\cos(3(-\theta))=\cos(3\theta)=f(\theta).$ That is, the curve is symmetrical about the horizontal axis.

We now sketch the region.

$$ \begin{array}{lll} \displaystyle \frac{1}{2}\int_{\alpha}^{\beta} [f(\theta)]^2 \, d \theta &=\displaystyle \frac{1}{2}\int_{-\pi/6}^{\pi/6} [\cos(3\theta)]^2 \, d\theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{-\pi/6}^{\pi/6} \cos^2(3\theta) \, d\theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{-\pi/6}^{\pi/6} \frac{1+\cos(6\theta)}{2} \, d\theta&\mbox{}\\ &=\displaystyle \frac{1}{4}\int_{-\pi/6}^{\pi/6} 1+\cos(6\theta) \, d\theta&\mbox{}\\ &=\displaystyle \frac{1}{4}\left[ \theta+\frac{1}{6}\sin(6\theta) \right]_{-\pi/6}^{\pi/6}&\mbox{}\\ &=\displaystyle \frac{1}{4}\left[ \frac{\pi}{6}+\frac{1}{6}\sin\left(6\cdot \frac{\pi}{6}\right) -\left(-\frac{\pi}{6}+\frac{1}{6}\sin\left(6\cdot \left(-\frac{\pi}{6}\right)\right) \right)\right]&\mbox{}\\ &=\displaystyle \frac{1}{4}\left[ \frac{\pi}{6}+\frac{\pi}{6}\right]&\mbox{}\\ &=\displaystyle \frac{\pi}{12}&\mbox{}\\ \end{array} $$
































The Area Between Polar Curves

Example: Find the area outside the cardioid $r = 2 + 2 \sin \theta$ and inside the circle $r = 6 \sin \theta.$



Letting $f(\theta)=6\sin \theta$ and $g(\theta)=2+2\sin \theta,$ we find the angles where the curves intersect by solving the equation $f(\theta)=g(\theta),$ or $$ 6\sin \theta=2+2\sin \theta $$ Then $$ \begin{array}{lll} &\displaystyle 4\sin \theta=2 &\mbox{}\\ \implies &\displaystyle \sin \theta =\frac{1}{2}&\mbox{}\\ \implies &\displaystyle \theta =\frac{\pi}{6} \mbox{ or } \theta=\frac{5\pi}{6}&\mbox{}\\ \end{array} $$ Summarizing the above in in a figure,

The area between curves is then $$ \begin{array}{lll} \displaystyle \mbox{Outer Area}-\mbox{Inner Area} &=\displaystyle \frac{1}{2}\int_{\alpha}^{\beta} [f(\theta)]^2 \, d \theta-\frac{1}{2}\int_{\alpha}^{\beta} [g(\theta)]^2 \, d \theta\\ &=\displaystyle \frac{1}{2}\int_{\pi/6}^{5\pi/6} [6\sin \theta]^2 \, d \theta - \frac{1}{2}\int_{\pi/6}^{5\pi/6} [2+2\sin \theta)]^2 \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{\pi/6}^{5\pi/6} 36\sin^2 \theta \, d \theta - \frac{1}{2}\int_{\pi/6}^{5\pi/6} 4+8\sin \theta +4\sin^2 \theta \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{\pi/6}^{5\pi/6} 36\sin^2 \theta - (4+8\sin \theta +4\sin^2 \theta) \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{\pi/6}^{5\pi/6} 36\sin^2 \theta - 4-8\sin \theta -4\sin^2 \theta \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{\pi/6}^{5\pi/6} 32\sin^2 \theta -8\sin \theta -4\, d \theta&\mbox{}\\ &=\displaystyle \int_{\pi/6}^{5\pi/6} 16\sin^2 \theta -4\sin \theta -2\, d \theta&\mbox{}\\ &=\displaystyle \int_{\pi/6}^{5\pi/6} 16\frac{1-\cos(2\theta)}{2} -4\sin \theta -2\, d \theta&\mbox{}\\ &=\displaystyle \int_{\pi/6}^{5\pi/6} 8(1-\cos(2\theta)) -4\sin \theta -2\, d \theta&\mbox{}\\ &=\displaystyle \int_{\pi/6}^{5\pi/6} 8-8\cos(2\theta) -4\sin \theta -2\, d \theta&\mbox{}\\ &=\displaystyle \int_{\pi/6}^{5\pi/6} 6-8\cos(2\theta) -4\sin \theta \, d \theta&\mbox{}\\ &=\displaystyle \left[ 6\theta-4\sin(2\theta) +4\cos \theta \right]_{\pi/6}^{5\pi/6}&\mbox{}\\ &=\displaystyle \left[ 6\cdot\frac{5\pi}{6}-4\sin\left(2\cdot \frac{5\pi}{6}\right) +4\cos \frac{5\pi}{6} \right]-\left[6\cdot\frac{\pi}{6}-4\sin\left(2\cdot\frac{\pi}{6}\right) +4\cos \frac{\pi}{6} \right]&\mbox{}\\ &=\displaystyle 5\pi-4\sin\left(\frac{5\pi}{3}\right) +4\cos \frac{5\pi}{6}-\frac{\pi}{6}+4\sin\left(\frac{\pi}{3}\right) -4\cos \frac{\pi}{6}&\mbox{}\\ &=\displaystyle 5\pi-4\sin\left(\frac{5\pi}{3}\right) +4\cos \frac{5\pi}{6}-\pi+4\sin\left(\frac{\pi}{3}\right) -4\cos \frac{\pi}{6}&\mbox{}\\ &=\displaystyle 4\pi-4\left(-\frac{\sqrt{3}}{2}\right) +4\left(-\frac{\sqrt{3}}{2}\right)+4\left(\frac{\sqrt{3}}{2}\right) -4\left(\frac{\sqrt{3}}{2}\right)&\mbox{}\\ &=\displaystyle 4\pi+2\sqrt{3} -2\sqrt{3}+2\sqrt{3} -2\sqrt{3}&\mbox{}\\ &=\displaystyle 4\pi&\mbox{}\\ &\approx \displaystyle 12.566370614 &\mbox{}\\ \end{array} $$


































The Area of a Polar Curve

Application: A microphone whose directionality is modelled by the polar curve $r=10+10\sin \theta$ (with $r$ measured in feet) is placed at the front of a stage where a vocal group will be performing. Beyond this polar curve, the mic won't properly record.

What is the area of region the performers can sing and still get a good recording while performing?



Since the region is modelled by $r=10+10\sin \theta,$ the area we're interested in is given by $$ \begin{array}{lll} \displaystyle \frac{1}{2}\int_{\alpha}^{\beta} [f(\theta)]^2 \, d \theta &=\displaystyle \frac{1}{2}\int_{0}^{2\pi} [10+10\sin \theta]^2 \, d \theta&\mbox{}\\ &=\displaystyle \frac{1}{2}\int_{0}^{2\pi} 100[1+\sin \theta]^2 \, d \theta&\mbox{}\\ &=\displaystyle 50\int_{0}^{2\pi} 1+2\sin \theta +\sin^2\theta\, d \theta&\mbox{}\\ &=\displaystyle 50\int_{0}^{2\pi} 1+2\sin \theta +\frac{1-\cos(2\theta)}{2}\, d \theta&\mbox{}\\ &=\displaystyle 50\left[ \theta-2\cos \theta +\frac{\theta}{2}-\frac{\sin(2\theta)}{4}\right]_{0}^{2\pi}&\mbox{}\\ &=\displaystyle 50\left[\left(2\pi-2\cos (2\pi) +\frac{2\pi}{2} -\frac{\sin(2\pi)}{4}\right)- \left(0-2\cos 0 +\frac{0}{2} -\frac{\sin(2\cdot 0)}{4}\right)\right]&\mbox{}\\ &=\displaystyle 50\left[\left(2\pi-2 +\pi \right)- \left(-2 \right)\right]&\mbox{}\\ &=\displaystyle 50\left[3\pi\right]&\mbox{}\\ &\approx \displaystyle 471.238898038&\mbox{}\\ \end{array} $$ That is, the performers have about $471$ square feet of space to freely move and still get a good recording.


































The Arc Length of a Polar Curve

Let $f$ be a function whose derivative is continuous on an interval $\alpha ≤ \theta ≤ \beta.$ The length of the graph of $r = f (\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is $$\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2+[f'(\theta)]^2} \, d \theta.$$

































The Arc Length of a Polar Curve

Example: Find the length of the curve $r = e^{3\theta}$ on the interval $\displaystyle 0 \leq \theta \leq 2.$

The length of the curve is given by $$ \begin{array}{lll} \displaystyle \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2+[f'(\theta)]^2} \, d \theta &=\displaystyle \int_{0}^{2} \sqrt{[e^{3\theta}]^2+[3e^{3\theta}]^2} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2} \sqrt{e^{6\theta}+9e^{6\theta}} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2} \sqrt{10e^{6\theta}} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2} \sqrt{10}\sqrt{e^{6\theta}} \, d \theta&\mbox{}\\ &=\displaystyle \sqrt{10}\int_{0}^{2} e^{3\theta} \, d \theta&\mbox{}\\ &=\displaystyle \sqrt{10}\left[ \frac{1}{3}e^{3\theta}\right]_{0}^{2}&\mbox{}\\ &=\displaystyle \sqrt{10}\left[ \frac{1}{3}e^{6}-\frac{1}{3}\right]&\mbox{}\\ &=\displaystyle \frac{\sqrt{10}}{3}\left[e^{6}-1\right]&\mbox{}\\ &\approx\displaystyle 424.1971945&\mbox{}\\ \end{array} $$ The length of the curve is about $424.2$ units.


Example: Find and evaluate a definite integral that represents the arc length of $r = 1+ \sin \theta$ on the interval $\displaystyle 0 \leq \theta \leq 2\pi.$

The length of the curve is given by $$ \begin{array}{lll} \displaystyle \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2+[f'(\theta)]^2} \, d \theta &=\displaystyle \int_{0}^{2\pi} \sqrt{[1+ \sin \theta]^2+[\cos \theta]^2} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{1+ 2\sin \theta+\sin^2 \theta+\cos^2 \theta} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{1+ 2\sin \theta+1} \, d \theta&\mbox{Pythagorean Identity!}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{2+ 2\sin \theta} \, d \theta&\mbox{}\\ \end{array} $$ We now need to do some shenanigans. We recall the identity $\displaystyle \cos^2 x=\frac{1+\cos(2x)}{2}$ and rewrite it as $$ \cos^2 \left(\frac{x}{2}\right)=\frac{1+\cos(x)}{2} $$ Then, multiplying the above by $4$ we have $$ 4\cos^2\left(\frac{x}{2}\right)=2+2\cos(x) $$ We may now proceed with our arc-length calculation. $$ \begin{array}{lll} \displaystyle \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2+[f'(\theta)]^2} \, d \theta &=\displaystyle \int_{0}^{2\pi} \sqrt{2+ 2\sin \theta} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{2+ 2\cos\left(\frac{\pi}{2}- \theta\right)} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{4\cos^2\left(\frac{\frac{\pi}{2}- \theta}{2}\right)} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} \sqrt{4\cos^2\left(\frac{\pi}{4}- \frac{\theta}{2}\right)} \, d \theta&\mbox{}\\ &=\displaystyle \int_{0}^{2\pi} 2\left|\cos\left(\frac{\pi}{4}- \frac{\theta}{2}\right)\right| \, d \theta&\mbox{}\\ &=\displaystyle 2\int_{0}^{2\pi} \left|\cos\left(\frac{\pi}{4}- \frac{\theta}{2}\right)\right| \, d \theta&\mbox{}\\ &=\displaystyle 2\int_{0}^{2\pi} \left|\cos\left(\frac{\pi}{4}- \frac{\theta}{2}\right)\right| \, d \theta&\mbox{}\\ \end{array} $$ We now perform a $u$ substitution. Let $\displaystyle u=\frac{\pi}{4}- \frac{\theta}{2}$ so that $\displaystyle -2\,du=d\theta.$

The lower limit of integration is $u=\frac{\pi}{4},$ and the upper limit is $u=-\frac{3\pi}{4}.$ Continuing the above calculation, $$ \begin{array}{lll} \displaystyle \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2+[f'(\theta)]^2} \, d \theta &=\displaystyle 2\int_{0}^{2\pi} \left|\cos\left(\frac{\pi}{4}- \frac{\theta}{2}\right)\right| \, d \theta&\mbox{}\\ &=\displaystyle 2\int_{\pi/4}^{-3\pi/4} \left|\cos\left(u\right)\right| (-2\, du)&\mbox{}\\ &=\displaystyle -4\int_{\pi/4}^{-3\pi/4} \left|\cos\left(u\right)\right| \, du&\mbox{}\\ &=\displaystyle 4\int_{-3\pi/4}^{\pi/4} \left|\cos\left(u\right)\right| \, du&\mbox{}\\ &=\displaystyle 4\left(\left|\int_{-3\pi/4}^{-\pi/2} \cos\left(u\right) \, du\right|+\int_{-\pi/2}^{\pi/4} \cos\left(u\right) \, du\right)&\mbox{see figure below}\\ &=\displaystyle 4\left(\left|\left[\sin\left(u\right)\right]_{-3\pi/4}^{-\pi/2}\right|+\left[ \sin\left(u\right) \right]_{-\pi/2}^{\pi/4}\right)&\mbox{}\\ &=\displaystyle 4\left(\left|\sin\left(-\frac{\pi}{2}\right)-\sin\left(-\frac{3\pi}{4}\right)\right|+\left[\sin\left(\frac{\pi}{4}\right) - \sin\left(-\frac{\pi}{2}\right) \right]\right)&\mbox{}\\ &=\displaystyle 4\left(\left|-1-\left(-\frac{\sqrt{2}}{2}\right)\right|+\left[\frac{\sqrt{2}}{2} - \left(-1\right) \right]\right)&\mbox{}\\ &=\displaystyle 4\left(\left|-1+\frac{\sqrt{2}}{2}\right|+\frac{\sqrt{2}}{2}+1\right)&\mbox{}\\ &=\displaystyle 4\left(1-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}+1\right)&\mbox{}\\ &=\displaystyle 4\left(2\right)&\mbox{}\\ &=\displaystyle 8&\mbox{}\\ \end{array} $$ Thus, the length of the polar curve $r = 1+ \sin \theta$ on the interval $\displaystyle 0 \leq \theta \leq 2\pi$ is $8.$

For the above integral, $\displaystyle \int_{-3\pi/4}^{\pi/4} \left|\cos\left(u\right)\right| \, du,$ it helps to keep the graph of $y=|\cos(u)|$ in mind.

































Slopes of Tangent Lines of Polar Curves: For the curve $r=3(1+\cos \theta)$ at the point $\displaystyle \left(3+3\frac{\sqrt{2}}{2},\frac{5\pi}{4}\right),$ find the slope of a tangent line.

Big Hint: For a general polar curve $r = f (\theta),$ let $x = r \cos \theta = f (\theta)\cos \theta$ and $y = r \sin \theta = f (\theta)\sin \theta,$ so the polar equation $r = f (\theta)$ is now written in parametric form where $\theta$ is the parameter. Then use $\displaystyle \frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta}$ to find the slope.

We write the parametric representation of $r=3(1+\cos \theta)$ as $$ \begin{array}{l} x=3(1+\cos \theta)\cos \theta\\ y=3(1+\cos \theta)\sin \theta \end{array} $$ Then $$ \begin{array}{lll} \displaystyle \frac{dy}{dx} &=\displaystyle \frac{y'(\theta)}{x'(\theta)}&\mbox{}\\ &=\displaystyle \frac{[3(1+\cos \theta)\sin \theta]'}{[3(1+\cos \theta)\cos \theta]'}&\mbox{}\\ &=\displaystyle \frac{[(1+\cos \theta)\sin \theta]'}{[(1+\cos \theta)\cos \theta]'}&\mbox{}\\ &=\displaystyle \frac{(1+\cos \theta)'(\sin \theta)+(1+\cos \theta)(\sin \theta)'}{(1+\cos \theta)'(\cos \theta)+(1+\cos \theta)(\cos \theta)'}&\mbox{}\\ &=\displaystyle \frac{-\sin \theta \sin \theta +(1+\cos \theta)\cos \theta}{-\sin \theta \cos \theta+(1+\cos \theta)(-\sin \theta)}&\mbox{}\\ &=\displaystyle \frac{-\sin^2 \theta +\cos \theta+\cos^2 \theta}{-\sin \theta \cos \theta-\sin \theta-\sin \theta \cos \theta}&\mbox{}\\ &=\displaystyle \frac{\cos \theta-\sin^2 \theta +\cos^2 \theta}{-\sin \theta-2\sin \theta \cos \theta}&\mbox{}\\ \end{array} $$ From the figure, we see that the point $\displaystyle \left(3+3\frac{\sqrt{2}}{2},\frac{5\pi}{4}\right)$ corresponds to the angle $\displaystyle \theta=-\frac{\pi}{4}.$ Then $$ \begin{array}{lll} \displaystyle \frac{dy}{dx}\Bigr|_{\theta=-\frac{\pi}{4}} &=\displaystyle \frac{y'\left(-\frac{\pi}{4}\right)}{x'\left(-\frac{\pi}{4}\right)}&\mbox{}\\ &=\displaystyle \frac{\cos \left(-\frac{\pi}{4}\right)-\sin^2 \left(-\frac{\pi}{4}\right) +\cos^2 \left(-\frac{\pi}{4}\right)}{-\sin \left(-\frac{\pi}{4}\right)-2\sin \left(-\frac{\pi}{4}\right) \cos \left(-\frac{\pi}{4}\right)}&\mbox{}\\ &=\displaystyle \frac{\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{2}}{2}\right)^2 +\left(\frac{\sqrt{2}}{2}\right)^2}{-\left(-\frac{\sqrt{2}}{2}\right)-2\left(-\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{2}}{2}\right)}&\mbox{}\\ &=\displaystyle \frac{\frac{\sqrt{2}}{2}-\frac{1}{2} +\frac{1}{2}}{\frac{\sqrt{2}}{2}+2\cdot \frac{1}{2}}&\mbox{}\\ &=\displaystyle \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}+1}&\mbox{}\\ &=\displaystyle \frac{\sqrt{2}}{\sqrt{2}+2}&\mbox{}\\ &=\displaystyle \frac{\sqrt{2}}{\sqrt{2}+2}\cdot \frac{\sqrt{2}-2}{\sqrt{2}-2}&\mbox{}\\ &=\displaystyle \frac{2-2\sqrt{2}}{2-4}&\mbox{}\\ &=\displaystyle \frac{2-2\sqrt{2}}{-2}&\mbox{}\\ &=\displaystyle \sqrt{2}-1&\mbox{}\\ &\approx \displaystyle 0.414213562&\mbox{}\\ \end{array} $$ The slope of the tangent line is $\sqrt{2}-1,$ which is about $0.4142.$