Holt.Blue
Back To Class Notes Menu
The Calculus of Parametric Equations & Curves

Recall that we can model the trajectory of an package dropped from a plane:

$ \begin{array}{l} x(t)=100t\\ y(t)=100-4.9t^2 \end{array} $
Big Questions: 1) What is the slope of the tangent line? 2) What is the tangential speed at any point? 3) How far did the object travel? (What is the length of its trajectory?)

We'll answer these and other questions!































Slopes of Tangent Lines of a Parametric Curve

Consider the plane curve defined by the parametric equations $x = x(t)$ and $y = y(t).$ Suppose that $x'(t)$ and $y'(t)$ exist and that $x'(t) \neq 0.$ Then $\displaystyle \frac{dy}{dx}$ is given by $$\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{y'(t)}{x'(t)}.$$





























Slopes of Tangent Lines of a Parametric Curve

Example: Find the equation of the tangent line at $t=2.$

$ \begin{array}{l} x(t)=t^2-3\\ y(t)=2t-1 \end{array} $


We first find the slope of the tangent line. The general expression for the derivative is $$ \begin{array}{lll} \displaystyle \frac{dy}{dx} &=\displaystyle \frac{y'(t)}{x'(t)} &\mbox{}\\ &=\displaystyle \frac{2}{2t} &\mbox{}\\ &=\displaystyle \frac{1}{t} &\mbox{}\\ \end{array} $$ Thus, $$ \frac{dy}{dx}\Bigr|_{t=2}=\frac{1}{2} $$ Also, since $x(2)=2^2-3=1$ and $y(2)=2\cdot 2-1=3,$ $(1,3)$ is the ordered pair on the curve corresponding to $t=2.$

We may now find the tangent line. The point slope form of the line is, $$ y-3=\frac{1}{2}(x-1) $$ which in slope intercept form is $$ y=\frac{1}{2}x+\frac{5}{2} $$






























Slopes of Tangent Lines of a Parametric Curve

Example: Consider the trajectory of a package being dropped off by a low-flying airplane.
$ \begin{array}{l} x(t)=100t\\ y(t)=100-4.9t^2 \end{array} $
Find the equation of the line tangent to the trajectory of the package at $t=3$ seconds.

We first find the slope of the tangent line. The general expression for the derivative is $$ \begin{array}{lll} \displaystyle \frac{dy}{dx} &=\displaystyle \frac{y'(t)}{x'(t)} &\mbox{}\\ &=\displaystyle \frac{-9.8t}{100} &\mbox{}\\ &=\displaystyle -0.098t &\mbox{}\\ \end{array} $$ Thus, $$ \frac{dy}{dx}\Bigr|_{t=3}=-0.098\cdot 3=−0.294 $$ Also, since $x(3)=100\cdot 3=300$ and $y(3)=100-4.9\cdot 3^2=55.9,$ $(300,55.9)$ is the ordered pair on the curve corresponding to $t=3.$

We may now find the tangent line. The point slope form of the line is, $$ y-55.9=-0.294(x-300) $$ Then $y-55.9=-0.294x+88.2,$ or $$ y=-0.294x+144.1 $$






























Second Derivatives

Since $\displaystyle \frac{d^2 y}{dx^2}=\frac{d}{dx}\frac{dy}{dx}=\frac{dy'}{dx},$ we may simply apply the the first-derivative rule to the function $\displaystyle \frac{dy'}{dx}.$ That is $$\frac{d^2 y}{dx^2}=\frac{dy'}{dx}=\frac{dy'/dt}{dx/dt}=\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} =\frac{\frac{d}{dt}\left(\frac{y'(t)}{x'(t)}\right)}{x'(t)}.$$





























Example: Find $\displaystyle \frac{d^2 y}{dx^2}$ when $t=2.$

$ \begin{array}{l} x(t)=t^2-3\\ y(t)=2t-1 \end{array} $


We shall use the expression derived above to find a general expression for the second derivative. $$ \begin{array}{lll} \displaystyle \frac{d^2 y}{dx^2} &=\displaystyle \frac{\frac{d}{dt}\left(\frac{y'(t)}{x'(t)}\right)}{x'(t)} &\mbox{}\\ &=\displaystyle \frac{\frac{d}{dt}\left(\frac{2}{2t}\right)}{2t} &\mbox{}\\ &=\displaystyle \frac{\frac{d}{dt}\left(\frac{1}{t}\right)}{2t} &\mbox{}\\ &=\displaystyle \frac{-\frac{1}{t^2}}{2t} &\mbox{}\\ &=\displaystyle -\frac{1}{2t^3} &\mbox{}\\ \end{array} $$ Thus $$ \frac{d^2y}{dx^2}\Bigr|_{t=2}=-\frac{1}{2\cdot 2^3}=-\frac{1}{16} $$






























Dire Warning

When you do this $\displaystyle \frac{d^2 y}{dx^2} = \frac{\frac{d^2 y}{dt^2}}{\frac{d^2 x}{dt^2}}=\frac{y''(t)}{x''(t)}\ldots$
YOU MAKE KITTY ANGRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
































Speed of an Object

Suppose an object's location at time $t$ is given by $$ \begin{array}{l} x=x(t)\\ y=y(t) \end{array}. $$ Then the speed of the object, $\displaystyle \frac{ds}{dt},$ is given by $$ \frac{ds}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} $$ Insight: If the moving object were equipped with a speedometer, $\frac{ds}{dt}$ is the speed that it would show.

We could also say the the above gives an object's tangential velocity.





























Speed of an Object

Example: Consider the trajectory of a package being dropped off by a low-flying airplane.
$ \begin{array}{l} x(t)=100t\\ y(t)=100-4.9t^2 \end{array} $
What is the package's speed at $t=3$ seconds?

To find $\displaystyle \frac{ds}{dt},$ we must first find $\displaystyle \frac{dx}{dt}$ and $\displaystyle \frac{dy}{dt}.$ $$ \begin{array}{lll} \displaystyle \frac{dx}{dt} &=\displaystyle \frac{d}{dt}100t&\mbox{}\\ &=\displaystyle 100&\mbox{}\\ \end{array} $$ and $$ \begin{array}{lll} \displaystyle \frac{dy}{dt} &=\displaystyle \frac{d}{dt}\left(100-4.9t^2\right)&\mbox{}\\ &=\displaystyle -9.8t&\mbox{}\\ \end{array} $$ Then the tangential velocity at time $t$ is $$ \frac{ds}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} =\sqrt{100^2+\left(-9.8t\right)^2} =\sqrt{10000+96.04t^2} $$ Thus $$ \frac{ds}{dt}\Bigr|_{t=3} =\sqrt{10000+96.04(3)^2} \approx 104.2322407 $$ That is, the package's speed at $t=3$ seconds is about $104.2$ meters per second.






























Speed of an Object

Example: Suppose an ant has decided to hitch a ride on the outer edge a bicycle. The ant's path will follow a cycloid curve as seen below.

If the wheel has radius $r=0.35$ m (about a $27.5$-inch diameter rim) and is travelling at $2.5$ m/s (about $5.6$ mph), the trajectory of the ant can be described by $$ \begin{array}{l} x(t)=0.35(\frac{2.5}{0.35} t-\sin (\frac{2.5}{0.35} t))\\ y(t)=0.35(1-\cos (\frac{2.5}{0.35} t)) \end{array} $$ Find the ant's speed at $t=1.2$ seconds.

To find $\displaystyle \frac{ds}{dt},$ we must first find $\displaystyle \frac{dx}{dt}$ and $\displaystyle \frac{dy}{dt}.$ $$ \begin{array}{lll} \displaystyle \frac{dx}{dt} &=\displaystyle \frac{d}{dt}\left(0.35\left(\frac{2.5}{0.35} t-\sin \left(\frac{2.5}{0.35} t \right)\right)\right)&\mbox{}\\ &=\displaystyle 2.5-0.35\cos \left(\frac{2.5}{0.35} t\right)\cdot \frac{2.5}{0.35}&\mbox{}\\ &=\displaystyle 2.5-2.5\cos \left(\frac{2.5}{0.35} t\right)&\mbox{}\\ \end{array} $$ and $$ \begin{array}{lll} \displaystyle \frac{dy}{dt} &=\displaystyle \frac{d}{dt}\left(0.35\left(1-\cos \left(\frac{2.5}{0.35} t\right)\right)\right)&\mbox{}\\ &=\displaystyle 0.35\left(\sin \left(\frac{2.5}{0.35} t\right)\cdot\frac{2.5}{0.35}\right)&\mbox{}\\ &=\displaystyle 2.5 \sin \left(\frac{2.5}{0.35} t\right)&\mbox{}\\ \end{array} $$ Then the tangential velocity at time $t$ is $$ \frac{ds}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} =\sqrt{\left(2.5-2.5\cos \left(\frac{2.5}{0.35} t\right)\right)^2+\left(2.5 \sin \left(\frac{2.5}{0.35} t\right)\right)^2} $$ Thus $$ \frac{ds}{dt}\Bigr|_{t=1.2} =\sqrt{\left(2.5-2.5\cos \left(\frac{2.5}{0.35} \cdot 1.2\right)\right)^2+\left(2.5 \sin \left(\frac{2.5}{0.35}\cdot 1.2\right)\right)^2} \approx 4.551734722 $$ That is, the ant's speed at $t=1.2$ seconds is about $4.6$ meters per second.






























The Distance Travelled by an Object

Suppose the location of an object is given by the parametric equations $$ \begin{array}{l} x=x(t)\\ y=y(t) \end{array} $$ Since the rate at which an object's distance is changing is $\frac{ds}{dt},$ the net change theorem says that the distance travelled by the object over the time interval $a \leq t \leq b$ is given by $$ \int_{a}^{b}\frac{ds}{dt}\,dt =\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt. $$ Special Note: This is nothing more than a special case of the Net Change Theorem; an integral of a rate of change of distance gives total change in distance.





























The Distance Travelled by an Object

Example: Suppose an ant has decided to hitch a ride on the outer edge a bicycle wheel. The ant's path will follow a cycloid curve as seen below.

If the wheel has radius $r=0.35$ m (about a $27.5$-inch diameter rim) and is travelling at $2.5$ m/s (about $5.6$ mph), the trajectory of the ant can be described by $$ \begin{array}{l} x(t)=0.35(\frac{2.5}{0.35} t-\sin (\frac{2.5}{0.35} t))\\ y(t)=0.35(1-\cos (\frac{2.5}{0.35} t)) \end{array} $$ since $\theta$ can be given in terms of time as $\theta=\frac{2.5}{0.35}t.$

Find how far the ant travelled over one arch of its cycloid path.

We shall first set up the integral which gives the distance travelled. Our lower limit of integration is $t=0,$ and our upper limit occurs at the first value of $t$ for which $y(t)$ is zero. That is, when $\displaystyle 0.35\left(1-\cos \left(\frac{2.5}{0.35} t\right)\right)=0.$ Then $$ \begin{array}{lll} &\displaystyle \cos \left(\frac{2.5}{0.35} t\right)=1&\mbox{}\\ \implies &\displaystyle \frac{2.5}{0.35} t=2\pi&\mbox{}\\ \implies &\displaystyle t=\frac{0.35}{2.5}\cdot 2\pi&\mbox{}\\ \implies &\displaystyle t=\frac{0.7}{2.5}\pi&\mbox{}\\ \implies &\displaystyle t=\frac{7}{25}\pi&\mbox{}\\ \end{array} $$ Also, from a previous example, we know that $$ \frac{ds}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} =\sqrt{\left(2.5-2.5\cos \left(\frac{2.5}{0.35} t\right)\right)^2+\left(2.5 \sin \left(\frac{2.5}{0.35} t\right)\right)^2} $$ Thus, the distance the ant travelled is. $$ \begin{array}{lll} \displaystyle \int_{a}^{b}\frac{ds}{dt}\,dt &=\displaystyle \int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt&\mbox{}\\ &=\displaystyle \int_{0}^{\frac{7\pi}{25}}\sqrt{\left(2.5-2.5\cos \left(\frac{2.5}{0.35} t\right)\right)^2+\left(2.5 \sin \left(\frac{2.5}{0.35} t\right)\right)^2}\,dt&\mbox{}\\ \end{array} $$ To simplify the notation, we will let $\omega=\frac{2.5}{0.35}$ and $r=2.5,$ and simplify the antiderivative $$ \displaystyle \int\sqrt{\left(r\omega-r\omega\cos \left(\omega t\right)\right)^2+\left(r\omega \sin \left(\omega t\right)\right)^2}\,dt $$ So, $$ \begin{array}{lll} \displaystyle \int\sqrt{\left(r\omega-r\omega\cos \left(\omega t\right)\right)^2+\left(r\omega \sin \left(\omega t\right)\right)^2}\,dt &=\displaystyle \int\sqrt{(r\omega)^2\left(1-\cos \left(\omega t\right)\right)^2+(r\omega)^2\sin^2 \left(\omega t\right)}\,dt&\mbox{}\\ &=\displaystyle \int r\omega\sqrt{\left(1-\cos \left(\omega t\right)\right)^2+\sin^2 \left(\omega t\right)}\,dt&\mbox{}\\ &=\displaystyle r\omega\int \sqrt{1-2\cos \left(\omega t\right)+\cos^2 \left(\omega t\right)+\sin^2 \left(\omega t\right)}\,dt&\mbox{}\\ &=\displaystyle r\omega\int \sqrt{2-2\cos \left(\omega t\right)}\,dt&\mbox{}\\ &=\displaystyle r\omega\int \sqrt{4\left(\frac{1-\cos \left(\omega t\right)}{2}\right)}\,dt&\mbox{}\\ &=\displaystyle r\omega\int \sqrt{4\sin^2\left(\frac{\omega t}{2}\right)}\,dt&\mbox{trig identity}\\ &=\displaystyle r\omega\int 2\left|\sin\left(\frac{\omega t}{2}\right)\right|\,dt&\mbox{}\\ &=\displaystyle 2r\omega\int \left|\sin\left(\frac{\omega t}{2}\right)\right|\,dt&\mbox{}\\ \end{array} $$ Thus, $$ \begin{array}{lll} \displaystyle \int_{a}^{b}\frac{ds}{dt}\,dt &=\displaystyle \int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt&\mbox{}\\ &=\displaystyle \int_{0}^{\frac{7\pi}{25}}\sqrt{\left(2.5-2.5\cos \left(\frac{2.5}{0.35} t\right)\right)^2+\left(2.5 \sin \left(\frac{2.5}{0.35} t\right)\right)^2}\,dt&\mbox{}\\ &=\displaystyle 2\cdot 0.35\cdot \frac{2.5}{0.35}\int_{0}^{\frac{7\pi}{25}}\left|\sin \left(\frac{2.5}{0.7} t\right)\right|\,dt&\mbox{}\\ &=\displaystyle 5\int_{0}^{\frac{7\pi}{25}}\left|\sin \left(\frac{25}{7} t\right)\right|\,dt&\mbox{}\\ \end{array} $$ Now, $\displaystyle 0 \leq \sin\left(\frac{\omega t}{2}\right) \leq 1$ when $0 \leq \displaystyle \frac{\omega t}{2} \leq \pi,$ or $\displaystyle 0 \leq \frac{25}{7}t \leq \pi.$ That is, when $\displaystyle 0 \leq t \leq \frac{7}{25}\pi.$ So, we may now drop the absolute value in the integral since the integrand is positive for all $t$ on the first arch.

The above becomes $$ \begin{array}{lll} \displaystyle \int_{a}^{b}\frac{ds}{dt}\,dt &=\displaystyle \int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt&\mbox{}\\ &=\displaystyle 5\int_{0}^{\frac{7\pi}{25}}\left|\sin \left(\frac{25}{7} t\right)\right|\,dt&\mbox{}\\ &=\displaystyle 5 \int_{0}^{\frac{7\pi}{25}}\sin \left(\frac{25}{7} t\right)\,dt&\mbox{}\\ &=\displaystyle 5\left[-\frac{7}{25}\cos \left(\frac{25}{7} t\right)\right]_{0}^{\frac{7\pi}{25}}&\mbox{}\\ &=\displaystyle 5\cdot \frac{7}{25}\left[-\cos \left(\frac{25}{7} t\right)\right]_{0}^{\frac{7\pi}{25}}&\mbox{}\\ &=\displaystyle 1.4\left[-\cos \left(\frac{25}{7} \cdot \frac{7\pi}{25}\right)+\cos(0)\right]&\mbox{}\\ %&=\displaystyle 1.4\left[-\cos \left(\pi\right)+1\right]&\mbox{}\\ &=\displaystyle 1.4\left[-\left(-1\right)+1\right]&\mbox{}\\ &=\displaystyle 2.8&\mbox{}\\ \end{array} $$ That is, the ant travelled $2.8$ meters along one arch of its cycloid path.

$\star$$\star$$\star$ Special Note $\star$$\star$$\star$

Generally, for a wheel of any radius $r$ at angular velocity $\omega,$ one arch of the cycloid occurs over the interval $0 \leq t \leq \frac{2\pi}{\omega}$ so that that the distance $s$ travelled is $$ \begin{array}{lll} s &=\displaystyle\int_{0}^{2\pi/\omega}\frac{ds}{dt}\,dt\\ &=\displaystyle\int_{0}^{2\pi/\omega}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt\\ &=\displaystyle \int_{0}^{2\pi/\omega}\sqrt{\left(r\omega-r\omega\cos \left(\omega t\right)\right)^2+\left(r\omega \sin \left(\omega t\right)\right)^2}\,dt\\ &=\displaystyle 2r\omega\int_{0}^{2\pi/\omega} \left|\sin\left(\frac{\omega t}{2}\right)\right|\,dt&\mbox{}\\ &=\displaystyle 2r\omega\int_{0}^{2\pi/\omega} \sin\left(\frac{\omega t}{2}\right)\,dt&\mbox{since $0 \leq \sin\left(\frac{\omega t}{2}\right)\leq 1$ when $0 \leq t \leq \frac{2\pi}{\omega}$}\\ &=\displaystyle 2r\omega\left[-\frac{2}{\omega}\cos\left(\frac{\omega t}{2}\right)\right]_{0}^{2\pi/\omega}&\mbox{}\\ &=\displaystyle 2r\omega\cdot \frac{2}{\omega}\left[-\cos\left(\frac{\omega t}{2}\right)\right]_{0}^{2\pi/\omega}&\mbox{}\\ &=\displaystyle 4r\left[-\frac{2}{\omega}\cos\left(\frac{\omega t}{2}\right)\right]_{0}^{2\pi/\omega}&\mbox{}\\ &=\displaystyle 4r\cdot 2&\mbox{}\\ &=\displaystyle 8r&\mbox{}\\ \end{array} $$ Thus, a point on the edge of a wheel of radius $r$ travels a distance of $8r$ along one arch of its cycloid trajectory.



































If a parametric curve does not describe the position of an object, then we simply interpret $$\displaystyle \int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt$$ as arc length.

Stating this more formally...





























Arc Length of a Parametric Curve

The length of a parametric curve $$ \begin{array}{l} x=x(t)\\ y=y(t) \end{array} $$ when $a \leq t\leq b$ is given by $$ \int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt. $$



























Special Note

To calculate how far the ant travelled in our previous example, we could have simply used the parameterization of the cycloid which does not depend on time $t$ but on the angle $\theta.$

That is, we could have calculated the arc length of the cycloid curve $$ \begin{array}{l} x(\theta)=r(\theta-\sin \theta)\\ y(\theta)=r(1-\cos \theta) \end{array} $$ over $0 \leq \theta \leq 2\pi$ as $$ \int_{0}^{2\pi}\sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2}\,d\theta=8r. $$

























Arc Length

Example: State the arc length of the curve below as an integral.


The interval of integration is $-2 \leq t \leq 3,$ $x'(t)=2t,$ and $y'(t)=2.$ The arc length of the above curve is then given by $$ \int_{-2}^{3}\sqrt{\left(2t\right)^2+\left(2\right)^2}\,dt=\int_{-2}^{3}\sqrt{4t^2+4}\,dt=2\int_{-2}^{3}\sqrt{t^2+1}\,dt $$


































Areas Under Parametric Curves

The area under a parametric curve $$ \begin{array}{l} x=x(t)\\ y=y(t) \end{array} $$ when $a \leq t\leq b$ is given by $$ \int_{a}^{b}y(t)x'(t)dt. $$





























Areas Under Parametric Curves: A Justification

If $y$ is a function of $x,$ then perhaps it's no surprise that the area under the curve of this function from $c$ to $d$ is given by $$ \int_{c}^{d}y\, dx. $$ But since $y$ and $x$ both depend on $t,$ that is $x=x(t)$ and $y=y(t).$ Thus, by the method of substitution $dx=x'(t) \,dt$ so that $$ \int_{c}^{d}y \, dx=\int_{a}^{b} y(t) x'(t)\, dt $$ where $c \leq x \leq d$ and $a \leq t \leq b.$





























Area Under a Parametric Curve

Example: Suppose an ant has decided to hitch a ride on the outer edge a bicycle wheel. The ant's path will follow a cycloid curve as seen below.

If the wheel has radius $r=0.35$ m (about a $27.5$-inch diameter rim) and is travelling at $2.5$ m/s (about $5.6$ mph), the trajectory of the ant can be described by $$ \begin{array}{l} x(t)=0.35(\frac{2.5}{0.35} t-\sin (\frac{2.5}{0.35} t))\\ y(t)=0.35(1-\cos (\frac{2.5}{0.35} t)) \end{array} $$ Find the area under the curve swept out by the ant over one arch of its cycloid path.

Taking previous examples as a hint, we shall find the area under one arch of a general cycloid curve for a wheel of radius $r$ $$ \begin{array}{l} x(\theta)=r(\theta-\sin \theta)\\ y(\theta)=r(1-\cos \theta) \end{array} $$ and apply the general result to our particular situation. We note that $x'(\theta)=r(1-\cos \theta)$ so that the area under one arch of the cycloid curve is given by $$ \begin{array}{lll} \displaystyle \int_{0}^{2\pi} y(\theta) x'(\theta)\, d\theta &=\displaystyle \int_{0}^{2\pi} r(1-\cos \theta)\cdot r(1-\cos \theta)\, d\theta&\mbox{}\\ &=\displaystyle r^2\int_{0}^{2\pi} (1-\cos\theta)^2 \, d\theta&\mbox{}\\ &=\displaystyle r^2\int_{0}^{2\pi} 1-2\cos\theta+\cos^2 \theta \, d\theta&\mbox{}\\ &=\displaystyle r^2\int_{0}^{2\pi} 1-2\cos\theta+\frac{1+\cos(2\theta)}{2} \, d\theta&\mbox{}\\ &=\displaystyle r^2 \left[\theta-2\sin\theta+\frac{\theta}{2}+\frac{\sin(2\theta)}{4}\right]_{0}^{2\pi}&\mbox{}\\ &=\displaystyle r^2 \left[2\pi+\pi\right]&\mbox{}\\ &=\displaystyle 3\pi r^2&\mbox{}\\ \end{array} $$ Thus, for the ant riding along a wheel of radius $r=0.35$ meters, the area under the path swept out by the ant is $$ 3\pi r^2=3\pi (0.35)^2\approx 1.15 \mbox{ square meters} $$