Holt.Blue
Back To Class Notes Menu
The Ratio and Root Tests

We consider two powerful tests of convergence with many advantages.



























The Ratio Test

Let $\displaystyle \sum_{n=1}^{\infty} a_n$ be a series with nonzero terms and let $$\rho=\lim_{n\rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|.$$ If $0 \leq \rho \lt 1,$ the series converges absolutely.

If $\rho \gt 1$ or $\rho=\infty,$ the series diverges.

If $\rho=1,$ the test is inconclusive.























Examples: Ratio Test

$\displaystyle \sum_{n=0}^{\infty} \frac{2^n+5}{3^n}$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \left|\frac{a_{n+1}}{a_n}\right|&=\displaystyle \lim_{n \rightarrow \infty} \left|\frac{\frac{2^{n+1}+5}{3^{n+1}}}{\frac{2^n+5}{3^n}}\right| &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{2^{n+1}+5}{3^{n+1}}\cdot\frac{3^n}{2^n+5} &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{2^{n+1}+5}{2^n+5}\cdot\frac{3^n}{3^{n+1}} &\mbox{}\\ &=\displaystyle \frac{2}{1}\cdot\frac{1}{3} &\mbox{}\\ &=\displaystyle \frac{2}{3} &\mbox{}\\ &\lt \displaystyle 1 &\mbox{}\\ \end{array} $$ Thus, by the Ratio Test, the series converges absolutely.


$\displaystyle \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \left|\frac{a_{n+1}}{a_n}\right|&=\displaystyle \lim_{n \rightarrow \infty} \left|\frac{\frac{(2(n+1))!}{((n+1)!)^2}}{\frac{(2n)!}{(n!)^2}}\right| &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{(2(n+1))!}{((n+1)!)^2}\cdot \frac{(n!)^2}{(2n)!} &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{(2n+2)!}{(n!(n+1))^2} \cdot \frac{(n!)^2}{(2n)!} &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{(2n)!(2n+1)(2n+2)}{(n!)^2(n+1)^2} \cdot \frac{(n!)^2}{(2n)!} &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{(2n+1)(2n+2)}{(n+1)^2} \cdot \frac{1}{1} &\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{4n^2+6n+2}{n^2+2n+1} &\mbox{}\\ &=4&\\ &\gt 1\\ \end{array} $$ Thus, by the Ratio Test, the series diverges.


$\displaystyle \sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \left|\frac{a_{n+1}}{a_n}\right|&=\displaystyle \lim_{n \rightarrow \infty} \left|\frac{\frac{\ln(n+1)}{(n+1)^2}}{\frac{\ln(n)}{n^2}}\right|&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{\ln(n+1)}{\ln(n)}\cdot \frac{n^2}{(n+1)^2}&\mbox{}\\ &=\displaystyle 1&\mbox{}\\ \end{array} $$ Thus, the Ratio Test is inconclusive.

Special Note: Recall from last time that the Comparison Tests also didn't work well with this series.

We showed that the series converges using the Integral Test.
























Pearl of Wisdom #1

The Ratio Test is often used for series involving factorials or exponentials.























Dire Warning #1

If $\displaystyle \sum_{n=1}^{\infty} a_n$ is a series of nonzero terms and $$\rho=\lim_{n\rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|.$$

The sum of the series $\displaystyle \sum_{n=1}^{\infty} a_n$ is NOT $\rho.$

























The Root Test

Let $\displaystyle \sum_{n=1}^{\infty} a_n$ be a series with nonzero terms and let $$\rho=\lim_{n\rightarrow \infty}\sqrt[n]{|a_n|}.$$ If $0 \leq \rho \lt 1,$ the series converges absolutely.

If $\rho \gt 1$ or $\rho=\infty,$ the series diverges.

If $\rho=1,$ the test is inconclusive.























Examples: Root Test

$\displaystyle \sum_{n=1}^{\infty} \frac{n^2}{2^n}$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|a_n\right|}&=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|\frac{n^2}{2^n}\right|}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\frac{n^2}{2^n}}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{(n^{1/n})^2}{2}&\mbox{}\\ &=\displaystyle \frac{1^2}{2}&\mbox{}\\ &=\displaystyle \frac{1}{2}&\mbox{}\\ &\lt 1&\mbox{}\\ \end{array} $$ Thus, by the Root Test, the series converges absolutely.


$\displaystyle \sum_{n=1}^{\infty} \frac{2^n}{n^3}$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|a_n\right|}&=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|\frac{2^n}{n^3}\right|}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\frac{2^n}{n^3}}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{\sqrt[n]{2^n}}{\sqrt[n]{n^3}}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{2}{(n^{1/n})^3}&\mbox{}\\ &=\displaystyle \frac{2}{1^3}&\mbox{}\\ &=\displaystyle 2&\mbox{}\\ &\gt \displaystyle 1&\mbox{}\\ \end{array} $$ Thus, by the Root Test, the series diverges.


$\displaystyle \sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

$$ \begin{array}{lll} \displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|a_n\right|}&=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{1}{1+n}\right)^n\right|}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left(\frac{1}{1+n}\right)^n}&\mbox{}\\ &=\displaystyle \lim_{n \rightarrow \infty} \frac{1}{1+n}&\mbox{}\\ &=\displaystyle 0&\mbox{}\\ &\lt \displaystyle 1&\mbox{}\\ \end{array} $$ Thus, by the Root Test, the series converges absolutely.
























Pearl of Wisdom #2

The Root Test is often used for series where $|a_n|=b_n^n.$























Dire Warning #2

If $\displaystyle \sum_{n=1}^{\infty} a_n$ is a series of nonzero terms an $$\rho=\lim_{n\rightarrow \infty}\sqrt[n]{|a_n|}.$$

The sum of the series $\displaystyle \sum_{n=1}^{\infty} a_n$ is NOT $\rho.$

























Bonus Example

Let $\displaystyle a_n=\begin{cases} \displaystyle \frac{n}{2^n} & \mbox{ if $n$ is odd} \\ \displaystyle \frac{1}{2^n} & \mbox{ if $n$ is even} \\\end{cases}$

Does the series $\displaystyle \sum_{n=1}^{\infty} a_n$ converge?

We shall attempt to apply the Ratio Test.

Case 1: Suppose $n$ is odd. Then $n+1$ is even so that $$ \begin{array}{lll} \displaystyle \left|\frac{a_{n+1}}{a_n}\right|&=\displaystyle \left|\frac{\frac{1}{2^{n+1}}}{\frac{n}{2^n}}\right|&\mbox{}\\ &=\displaystyle \left|\frac{\frac{1}{2^{n+1}}}{\frac{n}{2^n}}\right|&\mbox{}\\ &=\displaystyle \frac{\frac{1}{2^{n+1}}}{\frac{n}{2^n}}&\mbox{}\\ &=\displaystyle \frac{1}{2^{n+1}}\cdot\frac{2^n}{n}&\mbox{}\\ &=\displaystyle \frac{1}{n}\cdot\frac{2^n}{2^{n+1}}&\mbox{}\\ &=\displaystyle \frac{1}{n}\cdot\frac{1}{2}&\mbox{}\\ &=\displaystyle \frac{1}{2n}&\mbox{}\\ \end{array} $$ Thus, the subsequence of ratios where $n$ is odd approaches $0$ as $n \rightarrow \infty.$

Case 2: Suppose $n$ is even. Then $n+1$ is odd so that $$ \begin{array}{lll} \displaystyle \left|\frac{a_{n+1}}{a_n}\right|&=\displaystyle \left|\frac{\frac{n+1}{2^{n+1}}}{\frac{1}{2^n}}\right|&\mbox{}\\ &=\displaystyle \frac{\frac{n+1}{2^{n+1}}}{\frac{1}{2^n}}&\mbox{}\\ &=\displaystyle \frac{n+1}{2^{n+1}}\cdot\frac{2^n}{1}&\mbox{}\\ &=\displaystyle \frac{n+1}{2}&\mbox{}\\ \end{array} $$ Thus, the subsequence of ratios where $n$ is even approaches $\infty$ as $n \rightarrow \infty.$

We conclude that $\displaystyle \lim_{n \rightarrow \infty} \left|\frac{a_{n+1}}{a_n}\right|$ does not exist.

Therefore, the Ratio Test does not apply.

We shall now attempt the Root Test using the same strategy as above.

Case 1: Suppose $n$ is odd. Then $$ \begin{array}{lll} \displaystyle \sqrt[n]{\left|a_n\right|}&=\displaystyle \sqrt[n]{\left|\frac{n}{2^n}\right|}&\mbox{}\\ &=\displaystyle \sqrt[n]{\frac{n}{2^n}}&\mbox{}\\ &=\displaystyle \frac{\sqrt[n]{n}}{\sqrt[n]{2^n}}&\mbox{}\\ &=\displaystyle \frac{n^{1/n}}{2}&\mbox{}\\ \end{array} $$ Thus, the subsequence of $n$th roots where $n$ is odd approaches $\displaystyle \frac{1}{2}$ as $n \rightarrow \infty.$

Case 2: Suppose $n$ is even. Then $$ \begin{array}{lll} \displaystyle \sqrt[n]{\left|a_n\right|}&=\displaystyle \sqrt[n]{\left|\frac{1}{2^n}\right|}&\mbox{}\\ &=\displaystyle \sqrt[n]{\frac{1}{2^n}}&\mbox{}\\ &=\displaystyle \frac{1}{2}&\mbox{}\\ \end{array} $$ Thus, the subsequence of $n$th roots where $n$ is even also approaches $\displaystyle \frac{1}{2}$ as $n \rightarrow \infty.$

Since both subsequences converge to $\displaystyle \frac{1}{2},$ we have that $\displaystyle \lim_{n \rightarrow \infty} \sqrt[n]{\left|a_n\right|}=\frac{1}{2}\lt 1.$

By the Root Test, the series converges absolutely.