Holt.Blue
Back To Class Notes Menu
Section 11.2: Inverse Functions Worksheet 11.2

The Big Idea: Inverse functions "undo" what another function does.

Example: If $f$ sends $-2$ to $3$ (i.e., $f(-2)=3$), then the inverse function, $f^{-1},$ sends $3$ back to $-2$, (i.e., $f^{-1}(3)=-2$).













Another Example: Consider the function $f$ and its inverse $f^{-1}$ below.

$\begin{array}{c|c}x & y=f(x) \\ \hline y & \blacklozenge \\ d & -\pi \\ \blacklozenge & \flat \\ -\pi & \lozenge \\ \end{array} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \begin{array}{c|c}x & y=f^{-1}(x) \\ \hline \blacklozenge & y \\ -\pi & d \\ \flat & \blacklozenge \\ \lozenge & -\pi \\ \end{array}$


Recall: a function is just a collection of ordered pairs. Notice that the table of ordered pairs for $f^{-1}$ is simply the reverse of those of $f$.













Notation: The function $$\begin{array}{c|c}x & y=f(x) \\ \hline y & \blacklozenge \\ d & -\pi \\ \blacklozenge & \flat \\ -\pi & \lozenge \\ \end{array}$$ may also be written explicitly as a collection of ordered pairs: $$f=\{(y, \blacklozenge), (d,-\pi), (\blacklozenge, \flat), (-\pi, \lozenge) \}.$$













Warning: The inverse relation of a function is not always a function.

Example: Consider the function below. Its inverse relation IS NOT a function. $$\begin{array}{c|c}x & y=f(x) \\ \hline x & x \\ e & e \\ \pi & x \\ y & e \\ \end{array}$$















Another Example

Consider the function $f(x)=2x+3$.

Verbally, this function "multiplies by 2, and then adds 3."

To "undo" what this function does, "subtract 3, and then divide by 2."

That is, the inverse function is $f^{-1}(x)=\frac{x-3}{2}.$

Notice: for example $f(3)=2\cdot 3+3=9$, and $f^{-1}(9)=\frac{9-3}{2}=3.$













Process to algebraically find the inverse of a function:

1) Swap $x$ and $y$

2) Solve for $y$

Example: Algebraically find the inverse of the function $$y=f(x)=\sqrt[3]{x-3}+2$$











Graphs of Inverse Functions: An example. $$f(x)=\sqrt[3]{x-3}+2 \,\,\,\,\ \mbox{ (blue)}\,\,\,\,\,\,\,\,\,\,\,\,\, f^{-1}(x)=(x-2)^3+3 \,\,\,\,\ \mbox{ (green)}$$
Fact: a function's inverse is the reflection about the line $y=x.$ We simply reversed all the ordered pairs on the blue curve to get the green curve.













Big Question: How do I know if a function has an inverse?

Big Answer: If it's one-to-one.















Definition: a function is one-to-one is every $x$ maps to one and only one $y.$

Example : The function on the left is one-to-one, but the function on the right is not one-to-one. $$ \begin{array}{c|c}x & y=f(x) \\ \hline \blacktriangle & \lozenge \\ \clubsuit & \flat \\ \lozenge & e \\ \flat & \pi \\ \end{array} \,\,\,\,\,\,\,\,\,\, \begin{array}{c|c}x & y=f(x) \\ \hline x & x \\ e & e \\ \pi & x \\ y & e \\ \end{array} $$













Big Question: Do can we tell if a function is one-to-one from its graph?

Big Answer: If it passes the "horizontal line test."















Graphs of One-to-One Functions

Example: The graphs of all the following functions are one-to-one since they pass the horizontal line test. Therefore, their inverse relations are also functions.













Graphs which ARE NOT One-to-One Functions

Example: The graphs of all the following functions ARE NOT one-to-one since they fail the horizontal line test. Therefore, their inverse relations ARE NOT functions.













Example: The exponential function below is one-to-one. Graph its inverse on the same set of axes.