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Abstract

A permutiple is a natural number that is a nontrivial multiple of a permutation of its
digits in some base. Special cases of permutiples include cyclic numbers (multiples
of cyclic permutations of their digits) and palintiple numbers (multiples of their
digit reversals). While cyclic numbers have a fairly straightforward description,
palintiple numbers admit many varieties and cases. A previous paper attempts to
get a better handle on the general case by constructing new examples of permutiples
with the same set of digits, multiplier, and length as a known example. However, the
results are not sufficient for finding all possible examples except when the multiplier
divides the base. Using an approach based on the methods of this previous paper, we
develop a new method which enables us to find all examples under any conditions.

1. Introduction

A permutiple, as the name suggests, is a number which is an integer multiple of some

permutation of its digits in some natural number base, b, greater than one [4]. Well-

studied cases include cyclic numbers [1, 5], that is, numbers which are multiples

of cyclic permutations of their digits. A base-10 example of a cyclic number is

714285 = 5 · 142857. A richer, but much less well-understood, case is palintiple

numbers [2, 3], also known as reverse multiples [6, 7, 8, 9], which are multiples of

their digit reversals. The large variety of palintiple types can be organized using

a graph-theoretical construction by Sloane [7] called Young graphs which are a

modification of the work of Young [8, 9]. The most widely known examples of

palintiples, also in base 10, include 87912 = 4 · 21978 and 98901 = 9 · 10989.
In [4], the author establishes methods for finding new examples of general per-

mutiples from old examples. For instance, using these methods, we are able to find

new examples, such as 79128 = 4 · 19782, from the example with the same digits

mentioned above. Although these methods shed some light on the problem, they are
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not able to account for all the desired examples under more general conditions. In

particular, the results are not sufficient for finding the permutiple 78912 = 4 ·19728
from the known example already mentioned. In this paper, we fill this gap by pro-

viding a simpler, yet more general, method for finding all permutiples with the same

set of digits, multiplier, and length from a single known example.

2. Basic Notation, Definitions, and Results

We shall use (dk, dk−1, . . . , d0)b to denote the natural number
∑k
j=0 djb

j where

0 ≤ dj < b for all 0 ≤ j ≤ k. The following is a definition of permutiple numbers.

Definition 1 ([4]). Let n be a natural number and σ be a permutation on the set

{0, 1, 2, . . . , k}. We say that (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple provided

(dk, dk−1, . . . , d1, d0)b = n(dσ(k), dσ(k−1), . . . , dσ(1), dσ(0))b.

For completeness, we recall a description of single-digit multiplication found in

[4]. Letting pj denote the jth digit of the product, cj the jth carry, and qj the

jth digit of the number being multiplied by n, we may perform single-digit, base-b

multiplication as follows:

c0 = 0,

pj = λ(nqj + cj),

cj+1 = [nqj + cj − λ(nqj + cj)]÷ b,

where λ gives the least non-negative residue modulo b. Letting (pk, pk−1, . . . , p0)b
be the (k + 1)-digit product, we have ck+1 = 0. Now, for a (n, b, σ)-permutiple,

(dk, dk−1, . . . , d0)b, the above requires that qj = dσ(j) and dj = pj = λ(ndσ(j) + cj).

What follows is the first result of [4].

Theorem 1 ([4]). Let (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple and let cj be the

jth carry. Then

bcj+1 − cj = ndσ(j) − dj

for all 0 ≤ j ≤ k.

Another important result from [4], which will apply to our present purpose, is

that the carries of any permutiple are less than the multiplier. We state this result

formally.

Theorem 2 ([4]). Let (dk, dk−1, . . . , d0)b be an (n, b, σ)-permutiple and let cj be the

jth carry. Then cj ≤ n− 1 for all 0 ≤ j ≤ k.
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Letting ψ denote the (k+1)-cycle (0, 1, 2, . . . , k), we may write the above relations

more conveniently in matrix form as

(bPψ − I)c = (nPσ − I)d,

where I is the identity matrix, Pψ and Pσ are permutation matrices, c is a column

vector containing the carries, and d is a column vector containing the digits. We

also note that indexing is from 0 to k rather than from 1 to k. Finally, according

to our description of single-digit multiplication, the first entry, c0, of c is zero by

definition.

The problem posed in [4] is the following: if (dk, dk−1, . . . , d0)b is an (n, b, σ)-

permutiple, find all permutations, π, such that (dπ(k), dπ(k−1), . . . , dπ(0))b is also a

permutiple.

To sort through the types of new examples that arise, the notion of permutiple

conjugacy was defined in [4]. Again, for completeness, we state this definition here.

Definition 2 ([4]). Suppose (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple. Then

an (n, b, τ1)-permutiple, (dπ1(k), dπ1(k−1), . . . , dπ1(0))b, and an (n, b, τ2)-permutiple,

(dπ2(k), dπ2(k−1), . . . , dπ2(0))b, are said to be conjugate if π1τ1π
−1
1 = π2τ2π

−1
2 .

Conjugacy defines an equivalence relation on the collection of permutiples having

digits dk, dk−1, . . . , d0. In [4], these equivalence classes are refered to as conjugacy

classes. The common permutation of a conjugacy class, β = π1τ1π
−1
1 = π2τ2π

−1
2 ,

is referred to as its base permutation. The methods of [4] are sufficient for finding

all known examples within a conjugacy class, but fall short when trying to find all

conjugacy classes outside of that which contains the known example.

3. A Method for Finding All Examples

We consider a generic (n, b, σ)-permutiple, (dk, dk−1, . . . , d0)b, with carries ck, ck−1,

. . . , c0, and an (n, b, τ)-permutiple with the same digits, (dπ(k), dπ(k−1), . . . , dπ(0))b,

but not necessarily the same carries, ĉk, ĉk−1, . . . , ĉ0. Then, in the notation estab-

lished above,

(nPτ − I)Pπd = (bPψ − I)ĉ. (1)

Reducing modulo b, we have

(nPτ − I)Pπd ≡ −ĉ (mod b).

Multiplying the above by Pπ−1 and rearranging, we obtain

d+ (b− n)Pπτπ−1d ≡ Pπ−1 ĉ (mod b). (2)

Equation (2) in component form along with Theorem 2 give us our main result.
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Theorem 3. Suppose (dk, dk−1, . . . , d0)b is an (n, b, σ)-permutiple. Then, in order

for the number (dπ(k), dπ(k−1), . . . , dπ(0))b to be an (n, b, τ)-permutiple, it must be

that

λ
(
dj + (b− n)dπτπ−1(j)

)
≤ n− 1

for all 0 ≤ j ≤ k, where λ is the least non-negative residue modulo b.

The above enables us to find all possible base permutations, β = πτπ−1, for each

conjugacy class by imposing necessary conditions on what πτπ−1 can be. A big

advantage of the result is that it does not require any prior knowledge of what the

carry sequence should be. In fact, once we narrow down the possible candidates for

β, we may then determine the values of the candidate set of carries by substituting

in the known digits into Equation (2); the permuted carries are contained in the

column vector v = Pπ−1 ĉ.

With the base permutations in hand, we then rewrite Equation (1) as

(nPτ − I)Pπd = (bPψ − I)Pπv

since ĉ = Pπv. Multiplying both sides by Pπ−1 , we have

(nPπτπ−1 − I)d = (bPπψπ−1 − I)v,

or,

(nPβ − I)d = (bPπψπ−1 − I)v.

Rearranging, we obtain

bPπψπ−1v = (nPβ − I)d+ v. (3)

Now, since d, v, and β = πτπ−1 are known, the only unknown in Equation (3)

is π. This is to say that Equation (3) gives us a list of candidate permutations, π,

for which (dπ(k), dπ(k−1), . . . , dπ(0))b is an (n, b, τ)-permutiple. Moreover, we note

that Equation (3) is equivalent to Equation (1). So, Theorem 3 in [4] guarantees

that every permutation, π, satisfying Equation (3) yields a permutiple so long as

ĉ0 = 0. From there, determining τ itself is a matter of either computing τ = π−1βπ

or dividing (dπ(k), dπ(k−1), . . . , dπ(0))b by n.

We now illustrate the above method by resolving a case for which the techniques

of [4] were insufficient for recovering all permutiples from a known example.

Example 1. We shall find all 5-digit (4, 10, τ)-permutiples with the same digits

as the base-10 example 87912 = 4 · 21978. In more general notation, we state our

known example as (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10 so that

d =


d0
d1
d2
d3
d4

 =


2
1
9
7
8

 .
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Theorem 3 tells us that for all 0 ≤ j ≤ 4 we must have

λ
(
dj + 6dπτπ−1(j)

)
≤ 3.

That is,
λ
(
2 + 6dπτπ−1(0)

)
≤ 3,

λ
(
1 + 6dπτπ−1(1)

)
≤ 3,

λ
(
9 + 6dπτπ−1(2)

)
≤ 3,

λ
(
7 + 6dπτπ−1(3)

)
≤ 3,

λ
(
8 + 6dπτπ−1(4)

)
≤ 3.

The above inequalities yield the possibilities

πτπ−1 =

(
0 1 2 3 4
4 0 or 3 0, 2, or 3 1 or 2 0, 2, or 3

)
.

We note that πτπ−1(3) = 2 would give us a relation that is not a permutation, so

we are left with

πτπ−1 =

(
0 1 2 3 4
4 0 or 3 0, 2, or 3 1 0, 2, or 3

)
.

Consequently, the following are the possible base permutations:

β1 =

(
0 1 2 3 4
4 3 2 1 0

)
, β2 =

(
0 1 2 3 4
4 0 3 1 2

)
,

β3 =

(
0 1 2 3 4
4 0 2 1 3

)
, β4 =

(
0 1 2 3 4
4 3 0 1 2

)
.

The reader will notice that β1 is the reversal permutation, ρ, and is the base per-

mutation of our known example. Also, β1 = ρ is the digit permutation appearing in

our known example. It is here that we underscore, as in [4], that a base permutation

need not be a digit permutation itself in conjugacy classes outside the one which

contains the known example.

From here, we substitute d and each possible βj = πτπ−1 into Equation (2) to

determine v = Pπ−1 ĉ, which gives a possible set of carries. To these, we then apply

Equation (3) to recover π.

Applying Equation (2) to β1 =

(
0 1 2 3 4
4 3 2 1 0

)
gives

v ≡ Pπ−1 ĉ ≡


2
1
9
7
8

+ 6Pβ1


2
1
9
7
8

 ≡


0
3
3
3
0

 (mod 10).
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Since 0 ≤ ĉj ≤ 3 for each 0 ≤ j ≤ 4, we conclude by Theorem 2 that

v = Pπ−1 ĉ =


0
3
3
3
0

 ,
which is no surprise since these are the carries, cj , of our known example.

Applying Equation (3),

10Pπψπ−1


0
3
3
3
0

 = (4Pβ1 − I)


2
1
9
7
8

+


0
3
3
3
0

 = 10


3
3
3
0
0

 .
The possibilities are then expressed as

πψπ−1 =

(
0 1 2 3 4

1, 2, or 3 1, 2, or 3 1, 2, or 3 0 or 4 0 or 4

)
.

Since the above must be a 5-cycle, our possibilities are reduced to

πψπ−1 =

(
0 1 2 3 4

1 or 2 2 or 3 1 or 3 4 0

)
.

That is, πψπ−1 = (π(0), π(1), π(2), π(3), π(4)) can be either ψ = (0, 1, 2, 3, 4) or

(0, 2, 1, 3, 4) = (1, 2)ψ(1, 2). Thus, π = ε, the identity permutation, and π = (1, 2)

both solve Equation (3). Moreover, since the first carry, ĉ0 = vπ(0), must always

be zero, the application of Equation (3) above gives that π(0) can be either 0 or 4.

The possibility π(0) = 4 gives us two more permutations: π = ψ4 and π = (1, 2)ψ4.

The entire conjugacy class for β1 = ρ is listed below.

(dπ(4), dπ(3), dπ(2), dπ(1), dπ(0))10 π τ (ĉ4, ĉ3, ĉ2, ĉ1, ĉ0)

(8, 7, 9, 1, 2)10 ε ρ (0, 3, 3, 3, 0)
(8, 7, 1, 9, 2)10 (1, 2) (1, 2)ρ(1, 2) (0, 3, 3, 3, 0)
(7, 9, 1, 2, 8)10 ψ4 ψ−4ρψ4 (3, 3, 3, 0, 0)
(7, 1, 9, 2, 8)10 (1, 2)ψ4 ψ−4(1, 2)ρ(1, 2)ψ4 (3, 3, 3, 0, 0)

Remark 1. The reader will notice that Equation (3) does the same work as Corol-

lary 2 in [4]. In fact, the above analysis is identical in form to that found in Example

3 in [4].

We now find the conjugacy class for β2 =

(
0 1 2 3 4
4 0 3 1 2

)
. Again, by Equa-
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tion (2),

v ≡ Pπ−1 ĉ ≡


2
1
9
7
8

+ 6Pβ2


2
1
9
7
8

 ≡


0
3
1
3
2

 (mod 10).

In similar fashion to the above case, we may argue that

v = Pπ−1 ĉ =


0
3
1
3
2

 .
Using Equation (3), we have

10Pπψπ−1


0
3
1
3
2

 = (4Pβ2 − I)


2
1
9
7
8

+


0
3
1
3
2

 = 10


3
1
2
0
3

 ,
which allows for

πψπ−1 =

(
0 1 2 3 4

1 or 3 2 4 0 3 or 1

)
.

Again, since the above must be a 5-cycle, we are left with a single possibility,

πψπ−1 =

(
0 1 2 3 4
1 2 4 0 3

)
.

It follows that πψπ−1 = (π(0), π(1), π(2), π(3), π(4)) = (0, 1, 2, 4, 3). Since Equation

(3) only allows for π(0) = 0 in this case, the only possible permutation is π = (3, 4).

The conjugacy class for β2, therefore, consists of a single element, namely, the

example (7, 8, 9, 1, 2)10 = 4 · (1, 9, 7, 2, 8)10, a (4, 10, τ)-permutiple with carry vector

ĉ = Pπv =


0
3
1
2
3

 ,

where τ =

(
0 1 2 3 4
3 0 4 2 1

)
= (0, 3, 2, 4, 1) = π−1β2π.

Remark 2. The above conjugacy class consists of the example that the results in

[4] could not account for.
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Considering β3 =

(
0 1 2 3 4
4 0 2 1 3

)
, another use of Equation (2) yields

v ≡ Pπ−1 ĉ ≡


2
1
9
7
8

+ 6Pβ3


2
1
9
7
8

 ≡


0
3
3
3
0

 (mod 10).

Then, using

v =


0
3
3
3
0

 ,
we employ Equation (3) to obtain

10Pπψπ−1


0
3
3
3
0

 = (4Pβ3
− I)


2
1
9
7
8

+


0
3
3
3
0

 = 10


3
1
3
0
2

 .
Since there is no permutation, π, which makes the above statement true, we conclude

that the conjugacy class corresponding to β3 is empty. By a similar calculation,

β4 also yields no new examples. With the above, we have found all (4, 10, τ)-

permutiples with the same digits as our known example.

We further demonstrate the above techniques by presenting a base-13 example

with a repeated digit.

Example 2. We shall consider a known base-13 example,

(9, 1, 12, 12, 3, 11)13 = 7 · (1, 3, 12, 12, 11, 9)13.

In this case we do not have a unique permutation, σ, due to a repeated digit. We

shall choose the simpler of the two options,

σ =

(
0 1 2 3 4 5
5 0 2 3 1 4

)
,

knowing that π = (2, 3) will appear in the analysis which follows.

Assembling and labeling our digits in a column-vector format,

d =


d0
d1
d2
d3
d4
d5

 =


11
3
12
12
1
9

 ,
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we now invoke Theorem 3. That is, any base permutation, β = πτπ−1, must satisfy

λ
(
11 + 6dπτπ−1(0)

)
≤ 6,

λ
(
3 + 6dπτπ−1(1)

)
≤ 6,

λ
(
12 + 6dπτπ−1(2)

)
≤ 6,

λ
(
12 + 6dπτπ−1(3)

)
≤ 6,

λ
(
1 + 6dπτπ−1(4)

)
≤ 6,

λ
(
9 + 6dπτπ−1(5)

)
≤ 6.

The above gives the following possibilities:

β(0) = πτπ−1(0) = 1, 2, 3, 4, or 5,
β(1) = πτπ−1(1) = 0 or 5,
β(2) = πτπ−1(2) = 0, 1, 2, 3, 4, or 5,
β(3) = πτπ−1(3) = 0, 1, 2, 3, 4, or 5,
β(4) = πτπ−1(4) = 0, 1, or 5,
β(5) = πτπ−1(5) = 1, 2, 3, or 4.

We note here that due to the volume of possibilities presented by this example,

we resorted to writing computer code to determine all possible base permutation

candidates. There were 78 candidates in total, many of which we were able to im-

mediately rule out as none of the entries of the vector v = Pπ−1 ĉ were 0. Moreover,

as seen in the previous example, other candidates did not allow for Equation (3) to

be satisfied as the vectors bPπψπ−1v and (nPβ − I)d+ v did not contain the same

collection of entries. This enabled us to rule out more base permutation candidates.

The following are the six viable base permutations for the original example:

β1 =

(
0 1 2 3 4 5
5 0 2 3 1 4

)
, β2 =

(
0 1 2 3 4 5
5 0 3 2 1 4

)
,

β3 =

(
0 1 2 3 4 5
3 5 2 0 1 4

)
, β4 =

(
0 1 2 3 4 5
3 5 0 2 1 4

)
,

β5 =

(
0 1 2 3 4 5
2 5 3 0 1 4

)
, β6 =

(
0 1 2 3 4 5
2 5 0 3 1 4

)
.

The reader will notice that β1 and β2 are the two choices of permutation we had

for the original example. We will now consider both simultaneously since applying

Equations (2) and (3) results in the same set of equations. That is, for both β = β1
and β = β2, Equation (2) gives

v ≡ Pπ−1 ĉ ≡


11
3
12
12
1
9

+ 6Pβ


11
3
12
12
1
9

 ≡


0
4
6
6
6
2

 (mod 13)
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so that by Theorem 2,

v =


0
4
6
6
6
2

 .

An application of Equation (3) then gives

13Pπψπ−1


0
4
6
6
6
2

 = (7Pβ − I)


11
3
12
12
1
9

+


0
4
6
6
6
2

 = 13


4
6
6
6
2
0

 .

Remark 3. If we consider d2 = 12 and d3 = 12 to be distinct digits, then β1 and

β2 really do represent two distinct conjugacy classes.

We now consider possibilities for πψπ−1. From the above use of Equation (3),

we have that

πψπ−1 =

(
0 1 2 3 4 5
1 2, 3, or 4 2, 3, or 4 2, 3, or 4 5 0

)
.

Since this must be a 6-cycle, (π(0), π(1), π(2), π(3), π(4), π(5)), the possibilities are

pared down to (0, 1, 2, 3, 4, 5) and (0, 1, 3, 2, 4, 5). Also, since ĉ0 = vπ(0) = 0, the

above application of Equation (3) requires that π(0) = 0. It follows that π must be

the identity permutation or the transposition (2, 3).

Thus, our original example, (d5, d4, d3, d2, d1, d0)13 = (9, 1, 12, 12, 3, 11)13, is the

only element in the conjugacy class corresponding to β1. If we consider d2 = 12 and

d3 = 12 to be distinct from one another, then

(d5, d4, d2, d3, d1, d0)13 = (9, 1, 12, 12, 3, 11)13

is the solitary element of the conjugacy class corresponding to β2.

Moving on to other base permutations, applying Equation (2) to β3 gives

v =


5
5
6
0
6
2


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so that Equation (3) becomes

13Pπψπ−1


5
5
6
0
6
2

 = (7Pβ3
− I)


11
3
12
12
1
9

+


5
5
6
0
6
2

 = 13


6
5
6
5
2
0

 .

Then

πψπ−1 =

(
0 1 2 3 4 5

2 or 4 0 or 1 2 or 4 0 or 1 5 3

)
,

of which the only 6-cycle is (0, 2, 4, 5, 3, 1). Again, imposing the restriction that

ĉ0 = vπ(0) = 0, the above application of Equation (3) requires that π(0) = 3. Hence,

π =

(
0 1 2 3 4 5
3 1 0 2 4 5

)
. From the above, we obtain a new example,

(9, 1, 12, 11, 3, 12)13 = 7 · (1, 3, 12, 12, 9, 11)13.

We now apply Equation (2) to β4 to obtain

v =


5
5
0
6
6
2

 .

Equation (3) then becomes

13Pπψπ−1


5
5
0
6
6
2

 = (7Pβ4 − I)


11
3
12
12
1
9

+


5
5
0
6
6
2

 = 13


6
5
5
6
2
0

 .

The reader will note that in this case, the permuted carry vector, v, has the same

collection of entries as that in the case of β3. In fact, the above equation yields a

transposition, π = (0, 2), which produces the same numerical example as β3,

(d5, d4, d3, d0, d1, d2)13 = (9, 1, 12, 11, 3, 12)13.

Again, this is a result of the repeated digit. We again emphasize that if we keep

track of which repeated digit is which, treating them as distinct objects, then the

above example would be considered new. Finally, we note that applying Equations

(2) and (3) to β5 and β6 yields the same set of equations as β3 and β4, respectively.

Not distinguishing between repeated digits, we have shown that the single new

example above is the only other one with the same digits as the original.
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4. Summary of Method and Concluding Remarks

To summarize the above method, Theorem 3 provides a list of base permutation

candidates. Trying all of these in Equation (2) gives us possibilities for what the

carries can be by computing the permuted carry vector v = Pπ−1 ĉ. Inserting this

information into Equation (3) then allows us to recover permutations, π, which yield

new permutiples.

While the above method addresses the main question posed in [4], we note that

there are still plenty of questions that remain from the above considerations. Of

particular interest are patterns or restrictions which may exist concerning permuta-

tion type and orders of base permutations, as well as the sizes of their corresponding

conjugacy classes.

Other tractable lines of inquiry with the goal of finding new permutiples from old

include understanding when “derived” permutiples are possible, that is, (n, b, σ)-

permutiples whose truncated carry vector, (ck, ck−1, . . . , c1), is also a base-n per-

mutiple. An example of this phenomenon, mentioned in [4], is the cyclic (6, 12, ψ3)-

permutiple, (10, 3, 5, 1, 8, 6)12 = 6 · (1, 8, 6, 10, 3, 5)12, whose nonzero carries are the

digits of the (2, 6)-palintiple, (4, 3, 5, 1, 2)6 = 2·(2, 1, 5, 3, 4)6. In other words, we ask:

when is it possible to construct, or “derive,” a new permutiple, say (10, 3, 5, 1, 8, 6)12,

from a known permutiple, such as (4, 3, 5, 1, 2)6, by treating it as a carry vector,

(4, 3, 5, 1, 2, 0)? We note that the less general case of derived palintiples is taken up

in [3].

For other questions and results regarding the general permutiple problem, the

reader is directed to [4].
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