Holt.Blue
Back To Class Notes Menu
Section 7.3: Combining Operations and Complex Fractions

Arithmetic of Rational Expressions: Rational expressions have their own arithmetic (addition, subtraction, multiplication, and division).

We've added, subtracted, multiplied, and divided rational expressions. Now we're going apply multiple operations at the same time.













Mixing it Up: To perform multiple operations on rational expressions, use the order of operations.

Example: Simplify the following rational expression.

$\displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\displaystyle \frac{ 3 r - 5 }{ 4 r ^2 + 3 r - 10 } \div \displaystyle \frac{ 5 - 3 r } {r + 2 }$

$$ \begin{array}{cll} \displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\frac{ 3 r - 5 }{ 4 r ^2 + 3 r - 10 }\div \frac{ 5 - 3 r } {r + 2 } &= \displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\frac{ 3 r - 5 }{ 4 r ^2 + 3 r - 10 }\cdot \frac{r + 2 }{ 5 - 3 r } &\mbox{invert and multiply}\\ &= \displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\frac{ \color{magenta}{(3 r - 5)}\cdot 1 }{ (4r-5)\color{magenta}{(r+2)} }\cdot \frac{\color{magenta}{(r + 2)}\cdot 1 }{-1\cdot\color{magenta}{(3r-5)}} &\mbox{factor like crazy}\\ &= \displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\frac{ 1 }{ 4r-5 }\cdot \frac{ 1 }{-1} &\mbox{cancel common factors}\\ &= \displaystyle \frac{ 6 r - 6 }{ 4 r - 5}+\frac{ 1 }{ 4r-5 } &\mbox{simplify}\\ &= \displaystyle \frac{ 6 r - 6 + 1 }{ 4r-5 } &\mbox{add over common denom}\\ &= \displaystyle \frac{ 6 r - 5 }{ 4r-5 } &\mbox{simplify}\\ \end{array} $$

















Complex Fractions

A complex fraction is a fraction whose numerator and denominator are...

You guessed it!

Fractions!

Example: $\displaystyle \frac{ \displaystyle \frac{k^2-8k+15}{k^2-10k+25} }{ \displaystyle \frac{k^2-6k+9}{11 k^2-275} }$

$$ \begin{array}{cll} \displaystyle \frac{ \displaystyle \frac{k^2-8k+15}{k^2-10k+25} }{ \displaystyle \frac{k^2-6k+9}{11 k^2-275} } &= \displaystyle \displaystyle \frac{k^2-8k+15}{k^2-10k+25} \div \displaystyle \frac{k^2-6k+9}{11 k^2-275} &\mbox{turn into division problem}\\ &= \displaystyle \frac{k^2-8k+15}{k^2-10k+25} \cdot \displaystyle \frac{11 k^2-275}{k^2-6k+9} &\mbox{invert and multiply}\\ &= \displaystyle \frac{(k-3)(k-5)}{(k-5)(k-5)} \cdot \displaystyle \frac{11(k^2-25)}{(k-3)(k-3)} &\mbox{factor like crazy}\\ &= \displaystyle \frac{\color{magenta}{(k-3)(k-5)}}{\color{magenta}{(k-5)(k-5)}} \cdot \displaystyle \frac{11(k+5)\color{magenta}{(k-5)}}{\color{magenta}{(k-3)}(k-3)} &\mbox{identify } \color{magenta}{\mbox{common}} \mbox{ factors}\\ &= \displaystyle \displaystyle \frac{11(k+5)}{k-3} &\mbox{cancel } \color{magenta}{\mbox{common}} \mbox{ factors}\\ \end{array} $$

























Big Fact: If you can get your expression into the "fraction over a fraction" form, you can simply invert and multiply.























How Handle Complex Fractions

Method 1: Use the tried and true "invert and multiply."

$\displaystyle \frac{ \displaystyle \frac{k^2-8k+15}{k^2-10k+25} }{ \displaystyle \frac{k^2-6k+9}{11 k^2-275} }$

We did this one already!



$\displaystyle \frac{ 6 r - 6 }{ 4 r - 5}-\displaystyle \frac{\displaystyle \frac{ 3 r - 5 }{ 4 r ^2 + 3 r - 10 }}{\displaystyle \frac{ 5 - 3 r } {r + 2 }}$ (this example should look familiar)

We did this one already!



























How Handle Complex Fractions

Method 2: multiply by a "fancy 1" to get rid of denominators.

$\displaystyle \frac{ \displaystyle \frac{1}{n t^2}+\displaystyle \frac{1}{n^2t} }{ \displaystyle \frac{1}{t}+\displaystyle \frac{1}{n} }$

$$ \begin{array}{cll} \displaystyle \frac{ \displaystyle \frac{1}{n t^2}+\displaystyle \frac{1}{n^2t} }{ \displaystyle \frac{1}{t}+\displaystyle \frac{1}{n} } &= \displaystyle \frac{ \displaystyle \frac{1}{n t^2}+\displaystyle \frac{1}{n^2t} }{ \displaystyle \frac{1}{t}+\displaystyle \frac{1}{n} }\cdot \color{magenta}{1} &\mbox{multiply by 1}\\ &= \displaystyle \frac{ \displaystyle \frac{1}{n t^2}+\displaystyle \frac{1}{n^2t} }{ \displaystyle \frac{1}{t}+\displaystyle \frac{1}{n} }\cdot \color{magenta}{\frac{n^2t^2}{n^2t^2}} &\mbox{multiply by fancy 1}\\ &= \displaystyle \frac{ \displaystyle \left(\frac{1}{n t^2}+\displaystyle \frac{1}{n^2t}\right) \cdot \color{magenta}{n^2t^2} }{ \displaystyle \left(\frac{1}{t}+\displaystyle \frac{1}{n}\right)\cdot \color{magenta}{n^2t^2} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle \frac{1}{n t^2}\cdot \color{magenta}{n^2t^2}+\displaystyle \frac{1}{n^2t}\cdot \color{magenta}{n^2t^2} }{ \displaystyle \frac{1}{t}\cdot \color{magenta}{n^2t^2}+\displaystyle \frac{1}{n}\cdot \color{magenta}{n^2t^2} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle n+t }{ \displaystyle n^2t+nt^2 } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle n+t }{ \displaystyle nt(n+t) } &\mbox{factor out GCF in denom}\\ &= \displaystyle \frac{ \displaystyle 1\cdot \color{magenta}{(n+t)}}{ \displaystyle nt\color{magenta}{(n+t)} } &\mbox{identify } \color{magenta}{\mbox{common}} \mbox{ factors}\\ &= \displaystyle \frac{ \displaystyle 1 }{ \displaystyle nt } &\mbox{cancel } \color{magenta}{\mbox{common}} \mbox{ factors}\\ \end{array} $$



$\displaystyle \frac{ v-\displaystyle \frac{1}{x} }{ x-\displaystyle \frac{1}{v} }$

$$ \begin{array}{cll} \displaystyle \frac{ v-\displaystyle \frac{1}{x} }{ x-\displaystyle \frac{1}{v} } &= \displaystyle \frac{ v-\displaystyle \frac{1}{x} }{ x-\displaystyle \frac{1}{v} }\cdot \color{magenta}{1} &\mbox{multiply by 1}\\ &= \displaystyle \frac{ v-\displaystyle \frac{1}{x} }{ x-\displaystyle \frac{1}{v} }\cdot \color{magenta}{\frac{xv}{xv}} &\mbox{multiply by fancy 1}\\ &= \displaystyle \frac{ \displaystyle \left(v-\displaystyle \frac{1}{x}\right) \cdot \color{magenta}{xv} }{ \displaystyle \left(x-\displaystyle \frac{1}{v}\right)\cdot \color{magenta}{xv} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle v\cdot \color{magenta}{xv}-\displaystyle \frac{1}{x}\cdot \color{magenta}{xv} }{ \displaystyle x\cdot \color{magenta}{xv}-\displaystyle \frac{1}{v}\cdot \color{magenta}{xv} } &\mbox{}\\ &= \displaystyle \frac{ xv^2-v}{ x^2v-x } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle v(xv-1) }{x(xv-1)} &\mbox{factor out GCFs}\\ &= \displaystyle \frac{ \displaystyle v\color{magenta}{(xv-1)} }{x\color{magenta}{(xv-1)}} &\mbox{identify } \color{magenta}{\mbox{common}} \mbox{ factors}\\ &= \displaystyle \frac{ \displaystyle v }{ \displaystyle x } &\mbox{cancel } \color{magenta}{\mbox{common}} \mbox{ factors}\\ \end{array} $$































Big Fact Reminder: If you can get your expression into the "fraction over a fraction" form, you can simply invert and multiply.





























Mixing it Up: Sometimes we need to throw a little bit of both Method 1 and 2 into the mix.

$$\displaystyle \frac{ \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} }{ \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} }$$

$$ \begin{array}{cll} \displaystyle \frac{ \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} }{ \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} } &= \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} \div \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} &\mbox{re-express as division problem}\\ &= \displaystyle \left(\frac{ \displaystyle 1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} \cdot \color{magenta}{1}\right) \div \left(\displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} \cdot \color{magenta}{1}\right) &\mbox{multiply by 1}\\ &= \displaystyle \left(\frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} \cdot \color{magenta}{\frac{x}{x}}\right) \div \left(\displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} \cdot \color{magenta}{\frac{p}{p}}\right) &\mbox{turn into fancy 1s}\\ &= \displaystyle \frac{\left(1+\displaystyle \frac{p}{x}\right)\cdot \color{magenta}{x}}{\left(1-\displaystyle \frac{p}{x}\right)\cdot \color{magenta}{x}} \div \displaystyle \frac{(p+x)\cdot \color{magenta}{p}}{\left(p-\displaystyle \frac{x^2}{p}\right)\cdot \color{magenta}{p}} &\mbox{}\\ &= \displaystyle \frac{1\cdot \color{magenta}{x}+\displaystyle \frac{p}{x}\cdot \color{magenta}{x}}{1\cdot \color{magenta}{x}-\displaystyle \frac{p}{x}\cdot \color{magenta}{x}} \div \displaystyle \frac{p\cdot \color{magenta}{p}+x\cdot \color{magenta}{p}}{p\cdot \color{magenta}{p}-\displaystyle \frac{x^2}{p}\cdot \color{magenta}{p}} &\mbox{}\\ &= \displaystyle \frac{1\cdot \color{magenta}{x}+\displaystyle \frac{p}{x}\cdot \color{magenta}{x}}{1\cdot \color{magenta}{x}-\displaystyle \frac{p}{x}\cdot \color{magenta}{x}} \div \displaystyle \frac{p\cdot \color{magenta}{p}+x\cdot \color{magenta}{p}}{p\cdot \color{magenta}{p}-\displaystyle \frac{x^2}{p}\cdot \color{magenta}{p}} &\mbox{}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \div \displaystyle \frac{p^2+xp}{p^2-x^2} &\mbox{}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \div \displaystyle \frac{p\color{magenta}{(p+x)}}{\color{magenta}{(p+x)}(p-x)} &\mbox{factor}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \div \displaystyle \frac{p}{p-x} &\mbox{cancel common factors}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \cdot \displaystyle \frac{p-x}{p} &\mbox{invert and multiply}\\ &= \displaystyle \displaystyle \frac{x+p}{\color{magenta}{x-p}}\cdot \displaystyle \frac{-(\color{magenta}{x-p})}{p} &\mbox{factor out negative}\\ &= \displaystyle \displaystyle \frac{x+p}{1}\cdot \displaystyle \frac{-1}{p} &\mbox{cross cancel}\\ &= \displaystyle -\frac{x+p}{p} &\mbox{simplify}\\ \end{array} $$ Alternative: You may also leave everything in complex-fraction form and re-express as a division problem near the end of the calculation. $$ \begin{array}{cll} \displaystyle \frac{ \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} }{ \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} } &= \displaystyle \frac{ \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} \cdot \color{magenta}{1} }{ \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} \cdot \color{magenta}{1} } &\mbox{multiply by 1}\\ &= \displaystyle \frac{ \displaystyle \frac{1+\displaystyle \frac{p}{x}}{1-\displaystyle \frac{p}{x}} \cdot \color{magenta}{\frac{x}{x}} }{ \displaystyle \frac{p+x}{p-\displaystyle \frac{x^2}{p}} \cdot \color{magenta}{\frac{p}{p}} } &\mbox{turn into fancy 1s}\\ &= \displaystyle \frac{ \displaystyle \frac{\left(1+\displaystyle \frac{p}{x}\right)\cdot \color{magenta}{x}}{\left(1-\displaystyle \frac{p}{x}\right)\cdot \color{magenta}{x}} }{ \displaystyle \frac{(p+x)\cdot \color{magenta}{p}}{\left(p-\displaystyle \frac{x^2}{p}\right)\cdot \color{magenta}{p}} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle \frac{1\cdot \color{magenta}{x}+\displaystyle \frac{p}{x}\cdot \color{magenta}{x}}{1\cdot \color{magenta}{x}-\displaystyle \frac{p}{x}\cdot \color{magenta}{x}} }{ \displaystyle \frac{p\cdot \color{magenta}{p}+x\cdot \color{magenta}{p}}{p\cdot \color{magenta}{p}-\displaystyle \frac{x^2}{p}\cdot \color{magenta}{p}} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle \frac{1\cdot \color{magenta}{x}+\displaystyle \frac{p}{x}\cdot \color{magenta}{x}}{1\cdot \color{magenta}{x}-\displaystyle \frac{p}{x}\cdot \color{magenta}{x}} }{ \displaystyle \frac{p\cdot \color{magenta}{p}+x\cdot \color{magenta}{p}}{p\cdot \color{magenta}{p}-\displaystyle \frac{x^2}{p}\cdot \color{magenta}{p}} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle \frac{x+p}{x-p} }{ \displaystyle \frac{p^2+xp}{p^2-x^2} } &\mbox{}\\ &= \displaystyle \frac{ \displaystyle \frac{x+p}{x-p} }{ \displaystyle \frac{p\color{magenta}{(p+x)}}{\color{magenta}{(p+x)}(p-x)} } &\mbox{factor}\\ &= \displaystyle \frac{ \displaystyle \frac{x+p}{x-p} }{ \displaystyle \frac{p}{p-x} } &\mbox{cancel common factors}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \div \displaystyle \frac{p}{p-x} &\mbox{re-express as division problem}\\ &= \displaystyle \displaystyle \frac{x+p}{x-p} \cdot \displaystyle \frac{p-x}{p} &\mbox{invert and multiply}\\ &= \displaystyle \displaystyle \frac{x+p}{\color{magenta}{x-p}} \cdot \displaystyle \frac{-(\color{magenta}{x-p})}{p} &\mbox{factor out negative}\\ &= \displaystyle \displaystyle \frac{x+p}{1} \cdot \displaystyle \frac{-1}{p} &\mbox{cross cancel}\\ &= \displaystyle -\frac{x+p}{p} &\mbox{simplify}\\ \end{array} $$















Application of Complex Fractions

Electrical Resistance: The total resistance $R$ in a parallel circuit with two individual resistors $r_1$ and $r_2$ can be calculated by using the formula $$R=\displaystyle \frac{1}{\displaystyle \frac{1}{r_1}+\displaystyle \frac{1}{r_2}}.$$
Determine the total resistance of the circuit, $R,$ when $r_1=41$ $\Omega$ and $r_2=8$ $\Omega$

$$ \begin{array}{cll} \displaystyle R &= \displaystyle \frac{1}{\displaystyle \frac{1}{r_1}+\displaystyle \frac{1}{r_2}} &\mbox{state general formula}\\ &= \displaystyle \frac{1}{\displaystyle \frac{1}{41}+\displaystyle \frac{1}{8}} &\mbox{substitute in known values}\\ &= \displaystyle \frac{1}{\displaystyle \frac{1}{41}\cdot\color{magenta}{\frac{8}{8}}+\displaystyle \frac{1}{8}\cdot\color{magenta}{\frac{41}{41}}} &\mbox{multiply by fancy ones}\\ &= \displaystyle \frac{1}{\displaystyle \frac{8}{328}+\displaystyle \frac{41}{328}} &\mbox{get common denom}\\ &= \displaystyle \frac{1}{\displaystyle \frac{8+41}{328}} &\mbox{add over common denom}\\ &= \displaystyle \frac{1}{\displaystyle \frac{49}{328}} &\mbox{simplify}\\ &= \displaystyle 1\div \frac{49}{328} &\mbox{re-express as division problem}\\ &= \displaystyle 1 \cdot \frac{328}{49} &\mbox{invert and multiply}\\ &= \displaystyle \frac{328}{49} &\mbox{}\\ &\approx\displaystyle 6.69 &\mbox{approximate as a decimal}\\ \end{array} $$ The total resistance of the circuit is about $6.69$ ohms.