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Introduction

0.1 Notes about these notes

Note: A section for the instructor.

This book originated from my class notes for Math 286 at the University of Illinois at
Urbana-Champaign (UIUC) in Fall 2008 and Spring 2009. It is a first course on differential
equations for engineers. Using this book, I also taught Math 285 at UIUC, Math 20D at
University of California, San Diego (UCSD), and Math 4233 at Oklahoma State University
(OSU). Normally these courses are taught with Edwards and Penney, Differential Equations
and Boundary Value Problems: Computing and Modeling [EP], or Boyce and DiPrima’s
Elementary Differential Equations and Boundary Value Problems [BD], and this book aims to
be more or less a drop-in replacement. Other books I used as sources of information
and inspiration are E.L. Ince’s classic (and inexpensive) Ordinary Differential Equations [1],
Stanley Farlow’s Differential Equations and Their Applications [F], now available from Dover,
Berg and McGregor’s Elementary Partial Differential Equations [BM], and William Trench’s
free book Elementary Differential Equations with Boundary Value Problems [T]. See the Further
Reading chapter at the end of the book.

0.1.1 Organization

The organization of this book to some degree requires chapters be done in order. Later
chapters can be dropped. The dependence of the material covered is roughly:

Introduction
4
Appendix A Chapter 1
; v
: Chapter 2
cas
Chapter 3 J/ Chapter 7
Chapter 8 Chapter 4

1 ey
Chapter 5 Chapter 6


https://www.math.uiuc.edu/
https://www.math.uiuc.edu/
https://www.math.ucsd.edu/
https://math.okstate.edu/
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There are a few references in chapters 4 and 5 to chapter 3 (some linear algebra), but
these references are not essential and can be skimmed over, so chapter 3 can safely be
dropped, while still covering chapters 4 and 5. Chapter 6 does not depend on chapter 4
except that the PDE section 6.5 makes a few references to chapter 4, although it could, in
theory, be covered separately. The more in-depth appendix A on linear algebra can replace
the short review § 3.2 for a course that combines linear algebra and ODE.

0.1.2 Typical types of courses

Several typical types of courses can be run with the book. There are the two original
courses at UIUC, both cover ODE as well some PDE. Either, there is the 4 hours-a-week for
a semester (Math 286 at UIUC):

Introduction (0.2), chapter 1 (1.1-1.7), chapter 2, chapter 3, chapter 4 (4.1-4.9), chapter 5 (or
6 or 7 or 8).

Or, the second course at UIUC is at 3 hours-a-week (Math 285 at UTUC):

Introduction (0.2), chapter 1 (1.1-1.7), chapter 2, chapter 4 (4.1-4.9), (and maybe chapter 5,
6,0r7).

A semester-long course at 3 hours a week that doesn’t cover either systems or PDE
will cover, beyond the introduction, chapter 1, chapter 2, chapter 6, and chapter 7, (with
sections skipped as above). On the other hand, a typical course that covers systems will
probably need to skip Laplace and power series and cover chapter 1, chapter 2, chapter 3,
and chapter 8.

If sections need to be skipped in the beginning, a good core of the sections on single
ODEis: 0.2,1.1-1.4,1.6,2.1,2.2,2.4-2.6.

The complete book can be covered at a reasonably fast pace at approximately 76
lectures (without appendix A) or 86 lectures (with appendix A replacing § 3.2). This is
not accounting for exams, review, or time spent in a computer lab. A two-quarter or a
two-semester course can be easily run with the material. For example (with some sections
perhaps strategically skipped):

Semester 1: Introduction, chapter 1, chapter 2, chapter 6, chapter 7.
Semester 2: Chapter 3, chapter 8, chapter 4, chapter 5.

A combined course on ODE with linear algebra can run as:

Introduction, chapter 1 (1.1-1.7), chapter 2, appendix A, chapter 3 (w/o § 3.2), (possibly
chapter 8).

The chapter on the Laplace transform (chapter 6), the chapter on Sturm-Liouville
(chapter 5), the chapter on power series (chapter 7), and the chapter on nonlinear systems
(chapter 8), are more or less interchangeable and can be treated as “topics”. If chapter 8
is covered, it may be best to place it right after chapter 3, and chapter 5 is best covered
right after chapter 4. If time is short, the first two sections of chapter 7 make a reasonable
self-contained unit.
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0.1.3 Computer resources

The book’s website https://www. jirka.org/diffyqs/ contains the following resources:
1. Interactive SAGE demos.

2. Online WeBWorK homeworks (using either your own WeBWorK installation or
Edfinity) for most sections, customized for this book.

3. The PDFs of the figures used in this book.

I taught the UIUC courses using IODE (https://faculty.math.illinois.edu/iode/).
IODE is a free software package that works with Matlab (proprietary) or Octave (free
software). The graphs in the book were made with the Genius software (see https:
//www.jirka.org/genius.html). I use Genius in class to show these (and other) graphs.

The IXTEX source of the book is also available for possible modification and customization
at github (https://github.com/jirilebl/diffyqs).

0.1.4 Acknowledgments

Firstly, I would like to acknowledge Rick Laugesen. I used his handwritten class notes
the first time I taught Math 286. My organization of this book through chapter 5, and
the choice of material covered, is heavily influenced by his notes. Many examples and
computations are taken from his notes. I am also heavily indebted to Rick for all the advice
he has given me, not just on teaching Math 286. For spotting errors and other suggestions,
I would also like to acknowledge (in no particular order): John P. D’Angelo, Sean Raleigh,
Jessica Robinson, Michael Angelini, Leonardo Gomes, Jeff Winegar, lan Simon, Thomas
Wicklund, Eliot Brenner, Sean Robinson, Jannett Susberry, Dana Al-Quadi, Cesar Alvarez,
Cem Bagdatlioglu, Nathan Wong, Alison Shive, Shawn White, Wing Yip Ho, Joanne Shin,
Gladys Cruz, Jonathan Gomez, Janelle Louie, Navid Froutan, Grace Victorine, Paul Pearson,
Jared Teague, Ziad Adwan, Martin Weilandt, Sonmez Sahutoglu, Pete Peterson, Thomas
Gresham, Prentiss Hyde, Jai Welch, Simon Tse, Andrew Browning, James Choi, Dusty
Grundmeier, John Marriott, Jim Kruidenier, Barry Conrad, Wesley Snider, Colton Koop,
Sarah Morse, Erik Boczko, Asif Shakeel, Chris Peterson, Nicholas Hu, Paul Seeburger,
Jonathan McCormick, David Leep, William Meisel, Shishir Agrawal, Tom Wan, Andres
Valloud, Martin Irungu, Justin Corvino, and probably others I have forgotten. Finally, I
would like to acknowledge NSF grants DMS-0900885 and DMS-1362337.
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0.2 Introduction to differential equations

Note: more than 1 lecture, §1.1 in [EP], chapter 1 in [BD]

0.2.1 Differential equations

The laws of physics are generally written down as differential equations. Therefore, all
of science and engineering use differential equations to some degree. Understanding
differential equations is essential to understanding almost anything you will study in your
science and engineering classes. You can think of mathematics as the language of science,
and differential equations are one of the most important parts of this language as far as
science and engineering are concerned. As an analogy, suppose all your classes from now
on were given in Swahili. It would be important to first learn Swahili, or you would have a
very tough time getting a good grade in your classes.

You saw many differential equations already without perhaps knowing about it. And
you even solved simple differential equations when you took calculus. Let us see an
example you may not have seen:

dx
E+x—2cost. (1)

Here x is the dependent variable and t is the independent variable. Equation (1) is a basic
example of a differential equation. It is an example of a first order differential equation, since
it involves only the first derivative of the dependent variable. This equation arises from
Newton’s law of cooling where the ambient temperature oscillates with time.

0.2.2 Solutions of differential equations

Solving the differential equation means finding x in terms of ¢. That is, we want to find a
function of ¢, which we call x, such that when we plug x, t, and ﬁ—’f into (1), the equation
holds; that is, the left hand side equals the right hand side. It is the same idea as it would
be for a normal (algebraic) equation of just x and . We claim that

x =x(t) = cost +sint
is a solution. How do we check? We simply plug x into equation (1)! First we need to
compute ‘fi—’t‘. We find that Z—f = —sint + cost. Now let us compute the left-hand side of (1).

dx . )
I +x = (—sint + cost) + (cost +sint) = 2cost.

dx X
dt

Yay! We got precisely the right-hand side. But there is more! We claim x = cosf +sint +e™*

is also a solution. Let us try,

dx . —t
— = —smt+cost—e .
dt
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We plug into the left-hand side of (1)

dx . .
I +x = (—sint +cost —e ")+ (cost +sint +e7") = 2cost.

dx X
dt

And it works yet again!
So there can be many different solutions. For this equation all solutions can be written

in the form
t

x =cost +sint + Ce ™,
for some constant C. Different constants C will give different solutions, so there are really
infinitely many possible solutions. See Figure 1 for the graph of a few of these solutions.
We will see how we find these solutions a few lectures from now.

Solving differential equations can be
quite hard. There is no general method . ! ! ! ! .
that solves every differential equation. We
will generally focus on how to get exact for- | ,
mulas for solutions of certain differential
equations, but we will also spend a little
bit of time on getting approximate solu-
tions. And we will spend some time on
understanding the equations without solv-
ing them.

Most of this book is dedicated to ordinary

differential equations or ODEs, that is, equa- 0 * 2 3 4 5
tions with only one independent variable, Figure 1: Few solutions of %% + x = 2 cos .

at
where derivatives are only with respect to

this one variable. If there are several independent variables, we get partial differential
equations or PDEs.

Even for ODEs, which are very well understood, it is not a simple question of turning
a crank to get answers. When you can find exact solutions, they are usually preferable
to approximate solutions. It is important to understand how such solutions are found.
Although in real applications you will leave much of the actual calculations to computers,
you need to understand what they are doing. It is often necessary to simplify or transform
your equations into something that a computer can understand and solve. You may even
need to make certain assumptions and changes in your model to achieve this.

To be a successful engineer or scientist, you will be required to solve problems in your
job that you never saw before. It is important to learn problem solving techniques, so that
you may apply those techniques to new problems. A common mistake is to expect to learn
some prescription for solving all the problems you will encounter in your later career. This
course is no exception.
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0.2.3 Differential equations in practice

So how do we use differential equations in Real-world problem

science and engineering? First, we have some

real-world problem we wish to understand. We abstract interpret
make some simplifying assumptions and cre-

ate a mathematical model. That is, we translate  \fathematical solve Mathematical
the real-world situation into a set of differential model solution
equations. Then we apply mathematics to get

some sort of a mathematical solution. There is still something left to do. We have to interpret
the results. We have to figure out what the mathematical solution says about the real-world
problem we started with.

Learning how to formulate the mathematical model and how to interpret the results is
what your physics and engineering classes do. In this course, we will focus mostly on the
mathematical analysis. Sometimes we will work with simple real-world examples so that
we have some intuition and motivation about what we are doing.

Let us look at an example of this process. One of the most basic differential equations is
the standard exponential growth model. Let P denote the population of some bacteria on
a Petri dish. We assume that there is enough food and enough space. Then the rate of
growth of bacteria is proportional to the population—a large population grows quicker.
Let t denote time (say in seconds) and P the population. Our model is

ap
— = kP,
dt

for some positive constant k > 0.

Example 0.2.1: Suppose there are 100 bacteria at time 0 and 200 bacteria 10 seconds later.
How many bacteria will there be 1 minute from time 0 (in 60 seconds)?

First we need to solve the equation. We
claim that a solution is given by

P(t) = Ce,

0 10 20 30 40 50 60
T T T T T

6000

5000 5000

where C is a constant. Let us try:

AP ckekt = kp. a0 -
dt

And it really is a solution.
OK, now what? We do not know C,and = .

we do not know k. But we know something.

We know P(0) = 100, and we know P(10) = ' o 2 0 . 50 eo

200. Let us plug these conditions in and see

what happens.

4000 |

4000

3000

2000 |

2000

1000

Figure 2: Bacteria growth in the first 60 seconds.

100 = P(0) = CeX = C,
200 = P(10) = 100 e*1°.
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Therefore, 2 = ¢1% or 1‘11—02 =k ~ 0.069. So
P(t) — 1006(ln2)t/10 ~ 100 60'069t.

At one minute, t = 60, the population is P(60) = 6400. See Figure 2 on the preceding page.

Let us talk about the interpretation of the results. Does our solution mean that there
must be exactly 6400 bacteria on the plate at 60s? No! We made assumptions that might
not be true exactly, just approximately. If our assumptions are reasonable, then there
will be approximately 6400 bacteria. Also, in real life P is a discrete quantity, not a real
number. However, our model has no problem saying that for example at 61 seconds,
P(61) ~ 6859.35.

Normally, the k in P’ = kP is known, and we want to solve the equation for different
initial conditions. What does that mean? Take k = 1 for simplicity. Suppose we want to
solve the equation ‘fi—lt) = P subject to P(0) = 1000 (the initial condition). Then the solution
turns out to be (exercise)

P(t) = 1000 ¢".

We call P(t) = Ce' the general solution, as every solution of the equation can be written
in this form for some constant C. We need an initial condition to find out what C is, in
order to find the particular solution we are looking for. Generally, when we say “particular
solution,” we just mean some solution.

0.2.4 Four fundamental equations

A few equations appear often and it is useful to just memorize what their solutions are. Let
us call them the four fundamental equations. Their solutions are reasonably easy to guess
by recalling properties of exponentials, sines, and cosines. They are also simple to check,
which is something that you should always do. No need to wonder if you remembered the
solution correctly.

First such equation is

ax

for some constant k > 0. Here y is the dependent and x the independent variable. The
general solution for this equation is

y(x) = Cek™.

We saw above that this function is a solution, although we used different variable names.
Next,
2 = _ky,
dx 4
for some constant k > 0. The general solution for this equation is

y(x) = Ce ™.
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Exercise 0.2.1: Check that the y given is really a solution to the equation.
Next, take the second order differential equation

d?y

dx

for some constant k > 0. The general solution for this equation is

y(x) = Cq cos(kx) + Ca sin(kx).

= —kzy,

Since the equation is a second order differential equation, we have two constants in our
general solution.

Exercise 0.2.2: Check that the y given is really a solution to the equation.
Finally, consider the second order differential equation

d?y

dx?

for some constant k > 0. The general solution for this equation is

y(x) = Cre®™* + Cpe™*x,

= kzy,

or
y(x) = Dj cosh(kx) + Dy sinh(kx).
For those that do not know, cosh and sinh are defined by

eX +e" , e —e™*
R sinhx = >
They are called the hyperbolic cosine and hyperbolic sine. These functions are sometimes
easier to work with than exponentials. They have some nice familiar properties such as

cosh0 =1,sinh0 =0, and % cosh x = sinh x (no that is not a typo) and % sinh x = cosh x.

coshx =

Exercise 0.2.3: Check that both forms of the y given are really solutions to the equation.

Example 0.2.2: In equations of higher order, you get more constants you must solve for

to get a particular solution. The equation % = 0 has the general solution y = C1x + Cy;
simply integrate twice and don't forget about the constant of integration. Consider the
initial conditions y(0) = 2 and y’(0) = 3. We plug in our general solution and solve for the
constants:

2=y(0)=C1'0+C7_=C2, 3=y/(0)=C1.
In other words, y = 3x + 2 is the particular solution we seek.
An interesting note about cosh: The graph of cosh is the exact shape of a hanging chain.
This shape is called a catenary. Contrary to popular belief this is not a parabola. If you
invert the graph of cosh, it is also the ideal arch for supporting its weight. For example, the

gateway arch in Saint Louis is an inverted graph of cosh—if it were just a parabola it might
fall. The formula used in the design is inscribed inside the arch:

y = —127.7 ft - cosh(x/127.7 ft) + 757.7 ft.
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0.2.5 Exercises
Exercise 0.2.4: Show that x = e* is a solution to x””" — 12x” + 48x’ — 64x = 0.

Exercise 0.2.5: Show that x = e! is not a solution to x””" — 12x”" + 48x’ — 64x = 0.
2
Exercise 0.2.6: Is y = sint a solution to (%) =1—y?? Justify.

Exercise 0.2.7: Let y” +2y’ — 8y = 0. Now try a solution of the form y = e’* for some (unknown)
constant r. Is this a solution for some r? If so, find all such r.

Exercise 0.2.8: Verify that x = Ce™% is a solution to x’ = —2x. Find C to solve for the initial
condition x(0) = 100.

Exercise 0.2.9: Verify that x = C1e™" + Cpe?! is a solution to x” — x’ — 2x = 0. Find Cy and C,
to solve for the initial conditions x(0) = 10 and x’(0) = 0.

Exercise 0.2.10: Find a solution to (x')* + x2 = 4 using your knowledge of derivatives of functions
that you know from basic calculus.

Exercise 0.2.11: Solve:
dA dH

@) = =-104, A(0)=5 b) == =3H, H(0)=1
dzy , dzx )
c) W = 4y, y(O) =0, Yy (0) =1 d) d_yZ = —Ox, X(O) =1, «x (O) =0

Exercise 0.2.12: Is there a solution to y’ =y, such that y(0) = y(1)?

Exercise 0.2.13: The population of city X was 100 thousand 20 years ago, and the population of
city X was 120 thousand 10 years ago. Assuming constant growth, you can use the exponential
population model (like for the bacteria). What do you estimate the population is now?

Exercise 0.2.14: Suppose that a football coach gets a salary of one million dollars now, and a raise
of 10% every year (so exponential model, like population of bacteria). Let s be the salary in millions
of dollars, and t is time in years.

a) What is s(0) and s(1). b) Approximately how many years will it take
for the salary to be 10 million.

c) Approximately how many years will it take  d) Approximately how many years will it take
for the salary to be 20 million. for the salary to be 30 million.

Note: Exercises with numbers 101 and higher have solutions in the back of the book.
Exercise 0.2.101: Show that x = e™2! is a solution to x” + 4x’ + 4x = 0.

Exercise 0.2.102: Is y = x? a solution to x?>y” — 2y = 0? Justify.



16 INTRODUCTION

Exercise 0.2.103: Let xy” — y’ = 0. Try a solution of the form y = x". Is this a solution for some
r? If so, find all such r.

Exercise 0.2.104: Verify that x = C1e' + Cy is a solution to x” — x’ = 0. Find Cy and Cy so that
x satisfies x(0) = 10 and x’(0) = 100.

Exercise 0.2.105: Solve ‘;—f =8¢ and ¢(0) = -9.

Exercise 0.2.106: Solve:

dx d*x ,

a) i —4x, x(0)=9 b) a2 - —4x, x(0)=1, x’(0)=2
d 2

c) _p = 3]9’ p(O) =4 d) d—T =4T, T(O) =0, T’(O) =6

dq
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0.3 Classification of differential equations

Note: less than 1 lecture or left as reading, §1.3 in [BD]

There are many types of differential equations, and we classify them into different
categories based on their properties. Let us quickly go over the most basic classification.
We already saw the distinction between ordinary and partial differential equations:

* Ordinary differential equations or (ODE) are equations where the derivatives are taken
with respect to only one variable. That is, there is only one independent variable.

e Partial differential equations or (PDE) are equations that depend on partial derivatives
of several variables. That is, there are several independent variables.

Let us see some examples of ordinary differential equations:

d

d_]i = ky, (Exponential growth)

d

d_z =k(A-v), (Newton’s law of cooling)
d>x  dx . I

mﬁ + c + kx = f(t). (Mechanical vibrations)

And of partial differential equations:

dy  dy :
= + = = 0, (Transport equation)
ou  du :
ey (Heat equation)

2%u 3 d%u N d%u
ot Ix2 Iy’

(Wave equation in 2 dimensions)

If there are several equations working together, we have a so-called system of differential
equations. For example,
y=x, x=y
is a simple system of ordinary differential equations. Maxwell’s equations for electromag-
netics,

V-D=p, V-B=0,
. 9B . oD
VxE=-2, VxH=]+==,
ot AT

are a system of partial differential equations. The divergence operator V- and the curl
operator Vx can be written out in partial derivatives of the functions involved in the x, y,
and z variables.
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The next bit of information is the order of the equation (or system). The order is simply
the order of the largest derivative that appears. If the highest derivative that appears is
the first derivative, the equation is of first order. If the highest derivative that appears is
the second derivative, then the equation is of second order. For example, Newton’s law
of cooling above is a first order equation, while the mechanical vibrations equation is a
second order equation. The equation governing transversal vibrations in a beam,

Wy Py

aF—+—=— =0,
ax*  dt?
is a fourth order partial differential equation. It is fourth order as at least one derivative is
the fourth derivative. It does not matter that the derivative in ¢ is only of second order.
In the first chapter, we will start attacking first order ordinary differential equations,

that is, equations of the form Z—z = f(x,y). In general, lower order equations are easier to
work with and have simpler behavior, which is why we start with them.

We also distinguish how the dependent variables appear in the equation (or system).
In particular, we say an equation is linear if the dependent variable (or variables) and their
derivatives appear linearly, that is only as first powers, they are not multiplied together,
and no other functions of the dependent variables appear. In other words, the equation is
a sum of terms, where each term is some function of the independent variables or some
function of the independent variables multiplied by a dependent variable or its derivative.
Otherwise, the equation is called nonlinear. For example, an ordinary differential equation
is linear if it can be put into the form

ny n-1
an(x)W + an—l(x)

Y dy _
Tttt a1(x) - + ao(x)y = b(x). 2)
The functions ag, a1, . . ., a, are called the coefficients. The equation is allowed to depend
arbitrarily on the independent variable. So
d? d 1
exd_xz + sin(x)% +x%y = o 3)
is still a linear equation as y and its derivatives only appear linearly.
All the equations and systems above as examples are linear. It may not be immediately
obvious for Maxwell’s equations unless you write out the divergence and curl in terms of
partial derivatives. Let us see some nonlinear equations. For example Burger’s equation,

- = y—

) J 92
L y 9 _ 27y )
Jt “odx  Ix?
is a nonlinear second order partial differential equation. It is nonlinear because y and g—z
are multiplied together. The equation
dx 2

sz (4)
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is a nonlinear first order differential equation as there is a second power of the dependent
variable x.

A linear equation may further be called homogeneous if all terms depend on the dependent
variable. That is, if no term is a function of the independent variables alone. Otherwise,
the equation is called nonhomogeneous or inhomogeneous. For example, the exponential
growth equation, the wave equation, or the transport equation above are homogeneous.
The mechanical vibrations equation above is nonhomogeneous as long as f(t) is not the
zero function. Similarly, if the ambient temperature A is nonzero, Newton’s law of cooling
is nonhomogeneous. A homogeneous linear ODE can be put into the form

ny n-1
an(x)W + an—l(x)

d
dxn_y; + et al(x)% + ap(x)y = 0.

Compare to (2) and notice there is no function b(x).
If the coefficients of a linear equation are actually constant functions, then the equation
is said to have constant coefficients. The coefficients are the functions multiplying the

dependent variable(s) or one of its derivatives, not the function b(x) standing alone. A
constant coefficient nonhomogeneous ODE is an equation of the form

dy
_— - + - +a;—— +apy = b(x),
dx" dxn-1 Wy 0¥ ()

where ag, a1, ..., a, are all constants, but b may depend on the independent variable x. The
mechanical vibrations equation above is a constant coefficient nonhomogeneous second
order ODE. The same nomenclature applies to PDEs, so the transport equation, heat
equation and wave equation are all examples of constant coefficient linear PDEs.

Finally, an equation (or system) is called autonomous if the equation does not depend on
the independent variable. For autonomous ordinary differential equations, the independent
variable is then thought of as time. Autonomous equation means an equation that does
not change with time. For example, Newton’s law of cooling is autonomous, so is equation
(4). On the other hand, mechanical vibrations or (3) are not autonomous.

0.3.1 Exercises

Exercise 0.3.1: Classify the following equations. Are they ODE or PDE? Is it an equation or a
system? What is the order? Is it linear or nonlinear, and if it is linear, is it homogeneous, constant
coefficient? If it is an ODE, is it autonomous?

o d?x ’ du _du
a) sm(t)ﬁ + cos(t)x =t b) > +3@ =Xy
2 2
o y'+3y+5x=0, x"+x-y=0 d)g—tz+u%=0
4
e) x” +tx> =t f dx:O

drt
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Exercise 0.3.2: If i = (u1, up, uz) is a vector, we have the divergence V - il = % + %2y % and

dy
= (91/!3 auz 8u1 (9M3 auz 8u1 . . . .
curl VX u = S5 5 T Ox 9 — 5. |- Notice that curl of a vector is still a vector. Write
Y z 7 Jz dx’ Jx dy

out Maxwell’s equations in terms of partial derivatives and classify the system.

Exercise 0.3.3: Suppose F is a linear function, that is, F(x, y) = ax + by for constants a and b.
What is the classification of equations of the form F(y’, y) = 0.

Exercise 0.3.4: Write down an explicit example of a third order, linear, nonconstant coefficient,
nonautonomous, nonhomogeneous system of two ODE such that every derivative that could appear,
does appeat.

Exercise 0.3.101: Classify the following equations. Are they ODE or PDE? Is it an equation or a
system? What is the order? Is it linear or nonlinear, and if it is linear, is it homogeneous, constant
coefficient? If it is an ODE, is it autonomous?

v v . dx )
El) W + 3a_y2 = Sln(X) b) E + COS(t)X =t"+t+1
d7F 14 /
C)W=3F(x) d y”"+8y' =1
” ’ _ ” _ u _ (92u 2
e) x" +tyx"=0, y"+txy=0 ﬂﬁ_ﬁ

Exercise 0.3.102: Write down the general zeroth order linear ordinary differential equation. Write
down the general solution.

Exercise 0.3.103; For which k is ‘Zi—’t‘ + x* = t**2 linear. Hint: there are two answers.



Chapter 1

First order equations

1.1 Integrals as solutions

Note: 1 lecture (or less), §1.2 in [EP], covered in §1.2 and §2.1 in [BD]

A first order ODE is an equation of the form

dy

E - f(x/ y)/
or just

v =flx,y).

In general, there is no simple formula or procedure one can follow to find solutions. In the
next few lectures we will look at special cases where solutions are not difficult to obtain. In
this section, let us assume that f is a function of x alone, that is, the equation is

y' = f(x). (1.1)

We could just integrate (antidifferentiate) both sides with respect to x.

/y’(x)dx:/f(x)dx+C,

y(x) = /f(x)t:lx +C.

This y(x) is actually the general solution. So to solve (1.1), we find some antiderivative of
f(x) and then we add an arbitrary constant to get the general solution.

that is

Now is a good time to discuss a point about calculus notation and terminology.
Calculus textbooks muddy the waters by talking about the integral as primarily the
so-called indefinite integral. The indefinite integral is really the antiderivative (in fact the
whole one-parameter family of antiderivatives). There really exists only one integral and
that is the definite integral. The only reason for the indefinite integral notation is that we
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can always write an antiderivative as a (definite) integral. That is, by the fundamental
theorem of calculus we can always write f f(x)dx + C as

/xxf(t)dt+C.

Hence the terminology to integrate when we may really mean to antidifferentiate. Integration
is just one way to compute the antiderivative (and it is a way that always works, see the
following examples). Integration is defined as the area under the graph, it only happens to
also compute antiderivatives. For sake of consistency, we will keep using the indefinite
integral notation when we want an antiderivative, and you should always think of the
definite integral as a way to write it.

Example 1.1.1: Find the general solution of y’ = 3x2.
Elementary calculus tells us that the general solution must be y = x> + C. Let us check
by differentiating: y’ = 3x2. We got precisely our equation back.

Normally, we also have an initial condition such as y(xg) = yo for some two numbers
xp and Yo (xo is usually 0, but not always). We can then write the solution as a definite
integral in a nice way. Suppose our problem is y” = f(x), y(xo) = yo. Then the solution is

v = [ s s (12)

Let us check! We compute y’ = f(x), via the fundamental theorem of calculus, and
by Jupiter, y is a solution. Is it the one satisfying the initial condition? Well, y(xo) =
/XZO f(x)dx + yo = yo. It is!

Do note that the definite integral and the indefinite integral (antidifferentiation) are
completely different beasts. The definite integral always evaluates to a number. Therefore,
(1.2) is a formula we can plug into the calculator or a computer, and it will be happy to
calculate specific values for us. We will easily be able to plot the solution and work with it
just like with any other function. It is not so crucial to always find a closed form for the
antiderivative.

Example 1.1.2: Solve
y = e, y(0) =1.

By the preceding discussion, the solution must be

X
y(x) :/ e~ ds + 1.
0

Here is a good way to make fun of your friends taking second semester calculus. Tell them
to find the closed form solution. Ha ha ha (bad math joke). It is not possible (in closed
form). There is absolutely nothing wrong with writing the solution as a definite integral.
This particular integral is in fact very important in statistics.
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Using this method, we can also solve equations of the form

y' = f(y).

Let us write the equation in Leibniz notation.

dy
- /W)
Now we use the inverse function theorem from calculus to switch the roles of x and y to

obtain
dx 1

dy  fy)
What we are doing seems like algebra with dx and dy. It is tempting to just do algebra with
dx and dy as if they were numbers. And in this case it does work. Be careful, however, as
this sort of hand-waving calculation can lead to trouble, especially when more than one
independent variable is involved. At this point, we can simply integrate,

1
x(y) = mdy+c.

Finally, we try to solve for y.

Example 1.1.3: Previously, we guessed y’ = ky (for some k > 0) has the solution y = Ce**.
We can now find the solution without guessing. First we note that y = 0 is a solution.
Henceforth, we assume y # 0. We write

dx 1

dy  ky’
We integrate to obtain

1
x(y) =x= %lnlyl + D,
where D is an arbitrary constant. Now we solve for y (actually for |y|).

kx=kD _ ,=kD jkx_

lyl =e

If we replace e ~*P with an arbitrary constant C, we can get rid of the absolute value bars

(which we can do as D was arbitrary). In this way, we also incorporate the solution y = 0.
We get the same general solution as we guessed before, y = Ce**.

Example 1.1.4: Find the general solution of " = y2.
First we note that y = 0 is a solution. We can now assume that y # 0. Write

dx

1
—==.

dy y
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We integrate to get
-1
x=—+C.
Yy

We solve for y = <. So the general solution is

1
V=3 or y=0.

Note the singularities of the solution. If for example C = 1, then the solution “blows up”
as we approach x = 1. See Figure 1.1. Generally, it is hard to tell from just looking at the
equation itself how the solution is going to behave. The equation y’ = y? is very nice and
defined everywhere, but the solution is only defined on some interval (—co, C) or (C, o).
Usually when this happens we only consider one of these the solution. For example if
we impose a condition y(0) = 1, then the solution is y = ﬁ, and we would consider this

solution only for x on the interval (—oo, 1). In the figure, it is the left side of the graph.

1 1 1 1 1
3 3
-3 -2 -1 0 1 2 3

Figure 1.1: Plot of y = 2.

1—x

Classical problems leading to differential equations solvable by integration are problems
dealing with velocity, acceleration and distance. You have surely seen these problems

before in your calculus class.
Example 1.1.5: Suppose a car drives at a speed e!/2 meters per second, where  is time in
seconds. How far did the car get in 2 seconds (starting at t = 0)? How far in 10 seconds?

Let x denote the distance the car traveled. The equation is
¥ = et/2

We just integrate this equation to get that

x(t) = 2¢!% + C.
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We still need to figure out C. We know that when ¢t = 0, then x = 0. Thatis, x(0) = 0. So
0=2x(0)=2e"2+C=2+C.

Thus C = -2 and
x(t) = 2e!/? = 2.

Now we just plug in to get where the car is at 2 and at 10 seconds. We obtain
x(2) = 2022 — 2 ~ 3.44 meters, x(10) = 2010/2 _ 2 ~ 294 meters.

Example 1.1.6: Suppose that the car accelerates at a rate of > m/s2. At time ¢ = 0 the car is
at the 1 meter mark and is traveling at 10 m/s. Where is the car at time ¢ = 10?

Well this is actually a second order problem. If x is the distance traveled, then x’ is the
velocity, and x” is the acceleration. The equation with initial conditions is

x” =12, x(0) =1, x’(0) = 10.
What if we say x” = v. Then we have the problem
v’ =12, v(0) = 10.
Once we solve for v, we can integrate and find x.

Exercise 1.1.1: Solve for v, and then solve for x. Find x(10) to answer the question.

1.1.1 Exercises
Exercise 1.1.2: Solve Z—‘Z = x2 +x for y(1) = 3.
Exercise 1.1.3: Solve % = sin(5x) for y(0) = 2.

. d
Exercise 1.1.4: Solve 7 = L_ for y(0) = 0.

x2-1

Exercise 1.1.5: Solve y’ = y? for y(0) = 1.

Exercise 1.1.6 (little harder): Solve y’ = (y — 1)(y + 1) for y(0) = 3.
Exercise 1.1.7: Solve Z—x = ﬁ for y(0) = 0.

Exercise 1.1.8 (harder): Solve y” = sinx for y(0) =0, y’(0) = 2.

Exercise 1.1.9: A spaceship is traveling at the speed 2t> + 1kmjs (t is time in seconds). It is pointing
directly away from earth and at time t = 0 it is 1000 kilometers from earth. How far from earth is it
at one minute from time t = 0?7

Exercise 1.1.10: Solve % = sin(t?) + t, x(0) = 20. It is OK to leave your answer as a definite
integral.
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Exercise 1.1.11: A dropped ball accelerates downwards at a constant rate 9.8 meters per second
squared. Set up the differential equation for the height above ground h in meters. Then supposing
h(0) = 100 meters, how long does it take for the ball to hit the ground.

Exercise 1.1.12: Find the general solution of y' = e*, and then y’ = eY.
Exercise 1.1.101: Solve Z—Z =e* + x and y(0) = 10.
Exercise 1.1.102: Solve x’ = &, x(1) = 1.
X
Exercise 1.1.103: Solve x’ = ﬁ(x), x(0) = 7.

Exercise 1.1.104: Sid is in a car traveling at speed 10t + 70 miles per hour away from Las Vegas,
where t is in hours. At t = 0, Sid is 10 miles away from Vegas. How far from Vegas is Sid 2 hours
later?

Exercise 1.1.105: Solve y’ = y", y(0) = 1, where n is a positive integer. Hint: You have to consider
different cases.

Exercise 1.1.106: The rate of change of the volume of a snowball that is melting is proportional
to the surface area of the snowball. Suppose the snowball is perfectly spherical. The volume (in
centimeters cubed) of a ball of radius r centimeters is (4/3)rr3. The surface area is 4mtr®. Set up the
differential equation for how the radius r is changing. Then, suppose that at time t = 0 minutes,
the radius is 10 centimeters. After 5 minutes, the radius is 8 centimeters. At what time t will the
snowball be completely melted?

Exercise 1.1.107: Find the general solution to y""”" = 0. How many distinct constants do you need?
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1.2 Slope fields

Note: 1 lecture, §1.3 in [EP], §1.1 in [BD]

As we said, the general first order equation we are studying looks like

y' = f(x,y).

A lot of the time, we cannot simply solve these kinds of equations explicitly. It would
be nice if we could at least figure out the shape and behavior of the solutions, or find
approximate solutions.

1.2.1 Slope fields

The equation y’ = f(x, y) gives you a slope at each point in the (x, y)-plane. And this is
the slope a solution y(x) would have at x if its value was y. In other words, f(x, y) is the
slope of a solution whose graph runs through the point (x, y). At a point (x, y), we plot
a short line with the slope f(x, y). For example, if f(x, y) = xy, then at point (2,1.5) we
draw a short line of slope xy = 2 x 1.5 = 3. So, if y(x) is a solution and y(2) = 1.5, then the
equation mandates that y’(2) = 3. See Figure 1.2.

) 2 Kl 0 1 2 3"

Figure 1.2: The slope vy’ = xy at (2,1.5).

To get an idea of how solutions behave, we draw such lines at lots of points in the plane,
not just the point (2, 1.5). We would ideally want to see the slope at every point, but that is
just not possible. Usually we pick a grid of points fine enough so that it shows the behavior,
but not too fine so that we can still recognize the individual lines. We call this picture the
slope field of the equation. See Figure 1.3 on the following page for the slope field of the
equation y’ = xy. Usually in practice, one does not do this by hand, but has a computer do
the drawing.
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Suppose we are given a specific initial condition y(xp) = yo. A solution, that is, the
graph of the solution, would be a curve that follows the slopes we drew. For a few sample
solutions, see Figure 1.4. It is easy to roughly sketch (or at least imagine) possible solutions
in the slope field, just from looking at the slope field itself. You simply sketch a line that
roughly fits the little line segments and goes through your initial condition.
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Figure 1.3: Slope field of y' = xy. Figure 1.4: Slope field of y' = xy with a graph
of solutions satisfying y(0) = 0.2, y(0) = 0, and
y(0) = -0.2.

By looking at the slope field we get a lot of information about the behavior of solutions
without having to solve the equation. For example, in Figure 1.4 we see what the solutions
do when the initial conditions are y(0) > 0, y(0) = 0 and y(0) < 0. A small change in the
initial condition causes quite different behavior. We see this behavior just from the slope
field and imagining what solutions ought to do.

We see a different behavior for the equation y” = —y. The slope field and a few solutions
is in see Figure 1.5 on the next page. If we think of moving from left to right (perhaps x is
time and time is usually increasing), then we see that no matter what y/(0) is, all solutions
tend to zero as x tends to infinity. Again that behavior is clear from simply looking at the
slope field itself.

1.2.2 Existence and uniqueness
We wish to ask two fundamental questions about the problem
v =@y, ylxo) =y
(i) Does a solution exist?

(ii) Is the solution unique (if it exists)?



1.2. SLOPE FIELDS 29

@

N/ AV PP
S S S S A
| ) S S S s A
1)) 7 sz - -s—-—-A
W,/ 7/ s e
/) S S S s
VAV P PP
s S I
/S S S s
]SS S S s
/S S S S s
/S S S s
/) S S S s
VAV P PP
| oSS S S A
/S S S e A
]SS S S S
WA AR Reteoten
N

If-17
/

SN N NN
N S A\ R
SN N N NN
S N NN
SN N N NN
LY SN 5 S S
SN N N NN N
S N N AR
SN N NN
o BN N

SNV
SN NN NN
SO NN NN
B SN NN N VAN
SO NN NN
SNANE NN NN AR
ANE NN NN AR
SO N NN
SNANE NN NN AN
R TN TN A

-3

©

Figure 1.5: Slope field of y' = —y with a graph of a few solutions.

What do you think is the answer? The answer seems to be yes to both does it not? Well,
pretty much. But there are cases when the answer to either question can be no.

Since generally the equations we encounter in applications come from real life situations,
it seems logical that a solution always exists. It also has to be unique if we believe our
universe is deterministic. If the solution does not exist, or if it is not unique, we have
probably not devised the correct model. Hence, it is good to know when things go wrong
and why.

Example 1.2.1: Attempt to solve:

,_ 1 B
y =7 y(0) = 0.

Integrate to find the general solution y = In |x| + C. The solution does not exist at x = 0.
See Figure 1.6 on the following page. The equation may have been written as the seemingly
harmless xy” = 1.

Example 1.2.2: Solve:
vy =24/lyl, y(0) =0.

See Figure 1.7 on the next page. Note that y = 0 is a solution. But another solution is
the function

x2  if x>0,
y(x) =9

—x< if x <0.

It is hard to tell by staring at the slope field that the solution is not unique. Is there any
hope? Of course there is. We have the following theorem, known as Picard’s theorem®.

*Named after the French mathematician Charles Emile Picard (1856-1941)


https://en.wikipedia.org/wiki/Charles_%C3%89mile_Picard
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Figure 1.6: Slope field of y' = 1/x. Figure 1.7: Slope field of y' = 24/|y| with two

solutions satisfying y(0) = 0.

Theorem 1.2.1 (Picard’s theorem on existence and uniqueness). If f(x, y) is continuous (as a
function of two variables) and % exists and is continuous near some (xo, yo), then a solution to

v =f(x,y), y(x0) = yo,

exists (at least for x in some small interval) and is unique.

Note that the problems v’ = 1/x, y(0) = 0 and y” = 2+/|y|, y(0) = 0 do not satisfy the
hypothesis of the theorem. Even if we can use the theorem, we ought to be careful about
this existence business. It is quite possible that the solution only exists for a short while.

Example 1.2.3: For some constant A, solve:
¥ =y y(0) = A.

We know how to solve this equation. First assume that A # 0, so y is not equal to zero at
least for some x near 0. So x” =1/, sox = -1/y+C,soy = ﬁ If y(0) = A, then C = 1/as0

1

V=

If A =0, then y = 01is a solution.

For example, when A =1 the solution “blows up” at x = 1. Hence, the solution does
not exist for all x even if the equation is nice everywhere. The equation y’ = y? certainly
looks nice.

For most of this course we will be interested in equations where existence and uniqueness
holds, and in fact holds “globally” unlike for the equation i’ = 2.
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1.2.3 Exercises

Exercise 1.2.1: Sketch slope field for y’ = e*~Y. How do the solutions behave as x grows? Can you
guess a particular solution by looking at the slope field?

Exercise 1.2.2: Sketch slope field for y’ = x2.

Exercise 1.2.3: Sketch slope field for y’ = y.

Exercise 1.2.4: Is it possible to solve the equation y’ = Cgsy = for y(0) = 1?7 Justify.

Exercise 1.2.5: Is it possible to solve the equation y’ = y+/|x| for y(0) = 0? Is the solution unique?
Justify.

Exercise 1.2.6: Match equations y’ =1—x,y’ =x =2y, y’ = x(1 — y) to slope fields. Justify.

~———]
N~ — —]
S —
PR

—_——_— — — — — — —

a) t b) t c)

r / ~— — —]
N S \ ]
e e s s e b e e S~ ~]
A N N
NN N NN NN NN N
D B e
———— L | S ——]

e~ T T T T T T T T T ]
e N
LSS S S S S
PP g e

—~~\ | /—————]
e~ \ [/ ——
e —— 0 | e ]
e~ \ /- ——
e\ /o~
— — — — — =\ | S
——

——
——
o
— — —
—
—~~\ | S —————]

Exercise 1.2.7 (challenging): Take y’ = f(x,y), y(0) = 0, where f(x,y) > 1 for all x and y.
If the solution exists for all x, can you say what happens to y(x) as x goes to positive infinity?
Explain.

Exercise 1.2.8 (challenging): Take (y — x)y’ =0, y(0) = 0.

a) Find two distinct solutions.

b) Explain why this does not violate Picard’s theorem.

Exercise 1.2.9: Suppose y' = f(x,y). What will the slope field look like, explain and sketch an
example, if you know the following about f(x,y):

a) f does not depend on y. b) f does not depend on x.
c) f(t,t) =0 for any number t. d) f(x,0)=0and f(x,1) =1 forall x.

Exercise 1.2.10: Find a solution to y’ = |y|, y(0) = 0. Does Picard’s theorem apply?

Exercise 1.2.11: Take an equation y’ = (y — 2x)g(x, y) + 2 for some function g(x,y). Can you
solve the problem for the initial condition y(0) = 0, and if so what is the solution?
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Exercise 1.2.12 (challenging): Suppose y’ = f(x,y) is such that f(x,1) = 0 for every x, f is
continuous and % exists and is continuous for every x and y.

a) Guess a solution given the initial condition y(0) = 1.
b) Can graphs of two solutions of the equation for different initial conditions ever intersect?

c) Given y(0) = 0, what can you say about the solution. In particular, can y(x) > 1 for any x?
Can y(x) =1 for any x? Why or why not?

Exercise 1.2.101: Sketch the slope field of y’ = y>. Can you visually find the solution that satisfies
y(0) =0?

Exercise 1.2.102: Is it possible to solve y" = xy for y(0) = 07 Is the solution unique?
Exercise 1.2.103: Is it possible to solve y’ = —— for y(1) = 07

Exercise 1.2.104: Match equations y’ = sinx, y’ = cosy, y’ = y cos(x) to slope fields. Justify.
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Exercise 1.2.105 (tricky): Suppose
fay=1{0 1¥>0
Y 1 ify<0.

Does y’' = f(y), y(0) = 0 have a continuously differentiable solution? Does Picard apply? Why, or
why not?

Exercise 1.2.106: Consider an equation of the form y' = f(x) for some continuous function f, and
an initial condition y(xo) = yo. Does a solution exist for all x? Why or why not?
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1.3 Separable equations

Note: 1 lecture, §1.4 in [EP], §2.2 in [BD]

When a differential equation is of the form y’ = f(x), we can just integrate: y =
f f(x)dx + C. Unfortunately this method no longer works for the general form of the
equation iy’ = f(x, y). Integrating both sides yields

y:/f(x,y)dx+C.

Notice the dependence on y in the integral.

1.3.1 Separable equations

We say a differential equation is separable if we can write it as

y' = f(0)gy),

for some functions f(x) and g(y). Let us write the equation in the Leibniz notation

d
2 = Fg).

Then we rewrite the equation as

Ay _
gy S

Both sides look like something we can integrate. We obtain

/%:/f(x)dx+c

If we can find closed form expressions for these two integrals, we can, perhaps, solve for y.

Example 1.3.1: Take the equation

vy =xy.
Note that y = 0 is a solution. We will remember that fact and assume y # 0 from now on,
so that we can divide by y. Write the equation as Z—Z = xy. Then

d
/—y=/xdx+C.
Y

We compute the antiderivatives to get

2
mm:%+a
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or
2 2

XZ X
ly| = eTTC = p7eC = De7™,
where D > 0 is some constant. Because y = 0 is also a solution and because of the absolute

value we can write: )
X
5

y=De7,
for any number D (including zero or negative).
We check: , )
y' =Dxe” =x (De%) =xy.
Yay!

We should be a little bit more careful with this method. You may be worried that we
integrated in two different variables. We seemingly did a different operation to each side.
Let us work through this method more rigorously. Take

d
Y _ fgy).

dx
We rewrite the equation as follows. Note that y = y(x) is a function of x and so is Z—Z!
1 dy
— — = f(x).
s ax !

We integrate both sides with respect to x:

We use the change of variables formula (substitution) on the left hand side:

/ﬁdy:/f(x)dx+c.

And we are done.

1.3.2 Implicit solutions
We sometimes get stuck even if we can do the integration. Consider the separable equation

, XY
Y _y2+1'

We separate variables,
y2+1
Yy

dyz(y+§) dy = xdx.
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We integrate to get

2 2
y _*
5 +1Inly| = > + C,

or perhaps the easier looking expression (where D = 2C)
y?+2In|y| = x>+ D.

It is not easy to find the solution explicitly as it is hard to solve for y. We, therefore, leave
the solution in this form and call it an implicit solution. It is still easy to check that an implicit
solution satisfies the differential equation. In this case, we differentiate with respect to x,
and remember that y is a function of x, to get

2
12y + = | = 2x.
/(o)

Multiply both sides by y and divide by 2(y* + 1) and you will get exactly the differential
equation. We leave this computation to the reader.

If you have an implicit solution, and you want to compute values for y, you might
have to be tricky. You might get multiple solutions y for each x, so you have to pick one.
Sometimes you can graph x as a function of y, and then flip your paper. Sometimes you
have to do more.

Computers are also good at some of these tricks. More advanced mathematical software
usually has some way of plotting solutions to implicit equations. For example, for C = 0 if
you plot all the points (x, y) that are solutions to y? + 21n |y| = x2, you find the two curves
in Figure 1.8 on the following page. This is not quite a graph of a function. For each x there
are two choices of y. To find a function you would have to pick one of these two curves.
You pick the one that satisfies your initial condition if you have one. For example, the top
curve satisfies the condition y(1) = 1. So for each C we really got two solutions. As you can
see, computing values from an implicit solution can be somewhat tricky. But sometimes,
an implicit solution is the best we can do.

The equation above also has the solution y = 0. So the general solution is

y*>+2In|y| = x>+ C, and y =0.

These outlying solutions such as y = 0 are sometimes called singular solutions.

1.3.3 [Examples of separable equations

Example 1.3.2: Solve x?y" =1 - x2 + y% — x%y?, y(1) = 0.
Factor the right-hand side

xzy’ =(1-x>(1+ yz).
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50 - ! I ! -1 50

25 - -1 25

0.0 - -1 0.0

-5.0 & 1 | 1 =1 -5.0
-5.0 25 0.0 25 5.0

Figure 1.8: The implicit solution y*> + 21In|y| = x> to y’ = %

Separate variables, integrate, and solve for y:

y  1-x?
T+y2 2/
y _1

arctan(y) = _71—3(+C,
= tan _—1—x+C
y= P .

Solve for the initial condition, 0 = tan(—-2+ C) toget C =2 (or C =2+ m, or C =2 + 27,
etc.). The particular solution we seek is, therefore,

-1
y—tan(?—x+2).

Example 1.3.3: Bob made a cup of coffee, and Bob likes to drink coffee only once reaches
60 degrees Celsius and will not burn him. Initially at time ¢ = 0 minutes, Bob measured the
temperature and the coffee was 89 degrees Celsius. One minute later, Bob measured the
coffee again and it had 85 degrees. The temperature of the room (the ambient temperature)
is 22 degrees. When should Bob start drinking?

Let T be the temperature of the coffee in degrees Celsius, and let A be the ambient
(room) temperature, also in degrees Celsius. Newton’s law of cooling states that the rate at
which the temperature of the coffee is changing is proportional to the difference between
the ambient temperature and the temperature of the coffee. That is,

daT
E - k(A - T)/
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for some constant k. For our setup A =22, T(0) = 89, T(1) = 85. We separate variables and
integrate (let C and D denote arbitrary constants):

R
T-A dt ’
In(T - A)=—-kt +C, (note that T — A > 0)
T-A=De*,
T=A+De".

Thatis, T = 22 + D e~*. We plug in the first condition: 89 = T(0) = 22 + D, and hence
D =67.S0T =22+ 67 e ¥ The second condition says 85 =T(1) =22 + 67 e k. Solving for
kwegetk =-1In % ~ 0.0616. Now we solve for the time t that gives us a temperature of
60 degrees. Namely, we solve

60 = 22 + 6700616t

60-22
A

to get t = —4os1e @ 9.21 minutes. So Bob can begin to drink the coffee at just over 9
minutes from the time Bob made it. That is probably about the amount of time it took us
to calculate how long it would take. See Figure 1.9.

80 [~ -1 80

80 |- -1 80

60 |- -1 60

70 |- -1 70

40 - 40

60 60

I I I I 20 | L I L 1 20
0.0 25 5.0 75 10.0 125 0 20 40 60 80

Figure 1.9: Graphs of the coffee temperature function T(t). On the left, horizontal lines are drawn at
temperatures 60, 85, and 89. Vertical lines are drawn at t = 1 and t = 9.21. Notice that the temperature
of the coffee hits 85 at t =1, and 60 at t = 9.21. On the right, the graph is over a longer period of time,
with a horizontal line at the ambient temperature 22.

12
Example 1.3.4: Find the general solution to y’ = % (including singular solutions).
First note that y = 0 is a solution (a singular solution). Now assume that y # 0.

_3 ,
7Y

x2

E:—+C,
Y 2
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36
2Hh+C  x2+2C

y:

So the general solution is,

DYk

1.3.4 Exercises

Exercise 1.3.1: Solve y’ = */y.

Exercise 1.3.2: Solve y’ = x%y.

Exercise 1.3.3: Solve d— = (x2 = 1) ¢, for x(0) =

d
Exercise 1.3.4: Solve d_JtC = x sin(t), for x(0) = 1.

d
Exercise 1.3.5: Solve % = xy + x +y + 1. Hint: Factor the right-hand side.

Exercise 1.3.6: Solve xy’ =y + 2x%y, where y(1) = 1.

d +1
Exercise 1.3.7: Solve dz y for y(0) =1.
x?

d
Exercise 1.3.8: Find an implicit solution for % x 1 for y(0) =1.
y*+

Exercise 1.3.9: Find an explicit solution for y’ = xe™¥, y(0) = 1.
Exercise 1.3.10: Find an explicit solution for xy’ = e™Y, for y(1) = 1.

Exercise 1.3.11: Find an explicit solution for y’ = ye‘xz, y(0) = 1. It is alright to leave a definite
integral in your answer.

Exercise 1.3.12: Suppose a cup of coffee is at 100 degrees Celsius at time t = 0, it is at 70 degrees
at t = 10 minutes, and it is at 50 degrees at t = 20 minutes. Compute the ambient temperature.

Exercise 1.3.101: Solve y’ = 2xy.
Exercise 1.3.102: Solve x” = 3xt> — 3t2, x(0) = 2

Exercise 1.3.103: Find an implicit solution for x’ = x(0) = 1.

T 3« 2+1’
Exercise 1.3.104: Find an explicit solution to xy’ = y2, y(1) = 1.

sin(x)
cos(y)”

Exercise 1.3.105: Find an implicit solution to y’ =
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Exercise 1.3.106: Take Example 1.3.3 with the same numbers: 89 degrees at t = 0, 85 degrees at
t =1, and ambient temperature of 22 degrees. Suppose these temperatures were measured with
precision of £0.5 degrees. Given this imprecision, the time it takes the coffee to cool to (exactly) 60
degrees is also only known in a certain range. Find this range. Hint: Think about what kind of error
makes the cooling time longer and what shorter.

Exercise 1.3.107: A population x of rabbits on an island is modeled by x’ = x — (1/1000)x?, where
the independent variable is time in months. At time t = 0, there are 40 rabbits on the island.
a) Find the solution to the equation with the initial condition.

b) How many rabbits are on the island in 1 month, 5 months, 10 months, 15 months (round to
the nearest integer).
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1.4 Linear equations and the integrating factor

Note: 1 lecture, §1.5 in [EP], §2.1 in [BD]

One of the most important types of equations we will learn how to solve are the so-called
linear equations. In fact, the majority of the course is about linear equations. In this section
we focus on the first order linear equation. A first order equation is linear if we can put it into
the form:

y +p)y = f(x). (1.3)

The word “linear” means linear in y and y’; no higher powers nor functions of y or y’
appear. The dependence on x can be more complicated.

Solutions of linear equations have nice properties. For example, the solution exists
wherever p(x) and f(x) are defined, and has the same regularity (read: it is just as nice).
But most importantly for us right now, there is a method for solving linear first order
equations.

The trick is to rewrite the left-hand side of (1.3) as a derivative of a product of y with
another function. To this end we find a function r(x) such that

ry + Py = [y

This is the left-hand side of (1.3) multiplied by r(x). So if we multiply (1.3) by r(x), we
obtain

%[r(x)y] = r(x)f(x).

Now we integrate both sides. The right-hand side does not depend on y and the left-hand
side is written as a derivative of a function. Afterwards, we solve for y. The function r(x)
is called the integrating factor and the method is called the integrating factor method.

We are looking for a function r(x), such that if we differentiate it, we get the same
function back multiplied by p(x). That seems like a job for the exponential function! Let

r(x) = o) P dx,
We compute:

y +p()y = fx),
efp(x)dxy/ + e/p(x)dxp(x)y — e/p(x)dxf(x),
L
dx

[e [p() dxy] = o/ W f(y),
e/ P dxy - / e PO £y dx + C,

y:e_/p(x)dx (/ ef”(x)dxf(x)dx+C .
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Of course, to get a closed form formula for y, we need to be able to find a closed form
formula for the integrals appearing above.

Example 1.4.1: Solve
Yy +2xy = e, y(0) = -1.

First note that p(x) = 2x and f(x) = e*** The integrating factor is r(x) = e Pdx — o2,
We multiply both sides of the equation by r(x) to get

2 2 a2 2
ey +2xe¥y =" et

£

We integrate

2
e*y=e*+C,

42 42
y=e"" +Ce™".

Next, we solve for the initial condition —1 = y(0) =1 + C, so C = —2. The solution is

2 2
X=X —X
y=e -2t

Note that we do not care which antiderivative we take when computing e/ PO Yoy
can always add a constant of integration, but those constants will not matter in the end.

Exercise 1.4.1: Try it! Add a constant of integration to the integral in the integrating factor and
show that the solution you get in the end is the same as what we got above.

Advice: Do not try to remember the formula itself, that is way too hard. It is easier to
remember the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to know how
to write the solution in definite integral form. A definite integral is something that you can
plug into a computer or a calculator. Suppose we are given

v +p(x)y=f(x),  y(xo) = vo.

Look at the solution and write the integrals as definite integrals.

y(x) = e S PO (/xefxi,p(s)dsf(t)dtw()). | 14

You should be careful to properly use dummy variables here. If you now plug such a
formula into a computer or a calculator, it will be happy to give you numerical answers.

Exercise 1.4.2: Check that y(xo) = yo in formula (1.4).
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Exercise 1.4.3: Write the solution of the following problem as a definite integral, but try to simplify
as far as you can. You will not be able to find the solution in closed form.

y+y= exz_x, y(0) = 10.

Remark 1.4.1: Before we move on, we should note some interesting properties of linear
equations. First, for the linear initial value problem y’ + p(x)y = f(x), y(xo) = yo, there is
always an explicit formula (1.4) for the solution. Second, it follows from the formula (1.4)
that if p(x) and f(x) are continuous on some interval (a, b), then the solution y(x) exists
and is differentiable on (a, b). Compare with the simple nonlinear example we have seen
previously, ¥’ = y?, and compare to Theorem 1.2.1.

Example 1.4.2: Let us discuss a common simple application of linear equations. This type
of problem is used often in real life. For example, linear equations are used in figuring out
the concentration of chemicals in bodies of water (rivers and lakes).

A 100 liter tank contains 10 kilograms of salt dissolved in 60 ﬁ 5L/min, 0.1ks/L
liters of water. Solution of water and salt (brine) with concentration b
of 0.1 kilograms per liter is flowing in at the rate of 5 liters a minute.
The solution in the tank is well stirred and flows out at a rate of 3
liters a minute. How much salt is in the tank when the tank is full? N A_A_J

Let us come up with the equation. Let x denote the kilograms 60L
of salt in the tank, let ¢ denote the time in minutes. For a small 10 kg salt 3
change At in time, the change in x (denoted Ax) is approximately —~__ _~ I\

3 L/ min
Ax =~ (rate in X concentration in)At — (rate out X concentration out)At.

Dividing through by At and taking the limit At — 0, we see that

X . . . .
— = (rate in X concentration in) — (rate out X concentration out).

dt

In our example,

ratein = 5,
concentration in = 0.1,

rate out = 3,
X

X
volume 60+ (5-3)t

concentration out =

Our equation is, therefore,

dx X
a5~ Bx0D- (36O+2t) '
Or in the form (1.3)
dx 3
x =0.5.

60+t
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Let us solve. The integrating factor is

r(t) = exp (/ = i T dt) = exp (g In(60 + 2t)) = (60 +2t)*2.

We multiply both sides of the equation to get

(60 + 2t)3/2 s+ (60 +20)¥2 = 0.5(60 + 2t)*/?,

60 + 2t
” [(60 + 2t)3/2x] = 0.5(60 +2¢)2/2,

(60 +2¢)%/%x = / 0.5(60 + 2t)¥%dt + C,

. 2t)3/2 .
x = (60 +21) 3/2/ Mdt +C(60 +2t)%2,

x = (60 + 2t)‘3/211—0(60 +26)%2 + C(60 + 2t) 7%/,

B 60 + 2t
10

We need to find C. We know that at
t =0,x=10. So ! ! !

10 = x(0) = 60 +C(60)7°/? = 6+ C(60)7%?,

+ C(60 +2t) /2,

or
C = 4(60%?) ~ 1859.03.

We are interested in x when the tank is
full. The tank is full when 60 + 2t = 100, or
when t = 20. So

60 + 40 _ 0 5 10 1‘5 20
x(20) = + C(60 + 40) 3/
10 Figure 1.10: Graph of the solution x kilograms of
~ 10 + 1859.03(100) /% ~ 11.86. salt in the tank at time t.

See Figure 1.10 for the graph of x over ¢.
The concentration when the tank is full is approximately 0.1186 ks/liter, and we started
with 1/6 or 0.167 kg/liter.

1.4.1 Exercises

In the exercises, feel free to leave answer as a definite integral if a closed form solution
cannot be found. If you can find a closed form solution, you should give that.

Exercise 1.4.4: Solve y' + xy = x.
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Exercise 1.4.5: Solve y' + 6y = e*.
Exercise 1.4.6: Solve y’ + 3x%y = sin(x) e with y(0) =1

Exercise 1.4.7: Solve y’ + cos(x)y = cos(x).

1

Exercise 1.4.8: Solve ——

vy’ + xy =3, with y(0) = 0.

Exercise 1.4.9: Suppose there are two lakes located on a stream. Clean water flows into the first
lake, then the water from the first lake flows into the second lake, and then water from the second
lake flows further downstream. The in and out flow from each lake is 500 liters per hour. The first
lake contains 100 thousand liters of water and the second lake contains 200 thousand liters of water.
A truck with 500 kg of toxic substance crashes into the first lake. Assume that the water is being
continually mixed perfectly by the stream.

a) Find the concentration of toxic substance as a function of time in both lakes.
b) When will the concentration in the first lake be below 0.001 kg per liter?

¢) When will the concentration in the second lake be maximal?

Exercise 1.4.10: Newton'’s law of cooling states that ‘;—’t‘ = —k(x — A) where x is the temperature, t
is time, A is the ambient temperature, and k > 0 is a constant. Suppose that A = Ay cos(wt) for
some constants Ag and w. That is, the ambient temperature oscillates (for example night and day
temperatures).

a) Find the general solution.

b) In the long term, will the initial conditions make much of a difference? Why or why not?

Exercise 1.4.11: Initially 5 grams of salt are dissolved in 20 liters of water. Brine with concentration
of salt 2 grams of salt per liter is added at a rate of 3 liters a minute. The tank is mixed well and is
drained at 3 liters a minute. How long does the process have to continue until there are 20 grams of
salt in the tank?

Exercise 1.4.12: Initially a tank contains 10 liters of pure water. Brine of unknown (but constant)
concentration of salt is flowing in at 1 liter per minute. The water is mixed well and drained at 1
liter per minute. In 20 minutes there are 15 grams of salt in the tank. What is the concentration of
salt in the incoming brine?

Exercise 1.4.101: Solve y’ + 3x%y = x2.
Exercise 1.4.102: Solve y’ + 2sin(2x)y = 2sin(2x), y(7/2) = 3.

Exercise 1.4.103: Suppose a water tank is being pumped out at 3 Lmin. The water tank starts at
10 L of clean water. Water with toxic substance is flowing into the tank at 2 Ljmin, with concentration
20t 8k at time t. When the tank is half empty, how many grams of toxic substance are in the tank
(assuming perfect mixing)?
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Exercise 1.4.104: There is bacteria on a plate and a toxic substance is being added that slows down
the rate of growth of the bacteria. That is, suppose that ‘fi—l; =(2-0.1t)P. If P(0) = 1000, find the
population at t = 5.

Exercise 1.4.105: A cylindrical water tank has water flowing in at I cubic meters per second. Let
A be the area of the cross section of the tank in square meters. Suppose water is flowing out from
the bottom of the tank at a rate proportional to the height of the water level. Set up the differential
equation for h, the height of the water, introducing and naming constants that you need. You should
also give the units for your constants.
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1.5 Substitution

Note: 1 lecture, can safely be skipped, §1.6 in [EP], not in [BD]

Just as when solving integrals, one method to try is to change variables to end up with
a simpler equation to solve.

1.5.1 Substitution
The equation
y'=(x-y+1)°
is neither separable nor linear. What can we do? How about trying to change variables, so

that in the new variables the equation is simpler. We use another variable v, which we
treat as a function of x. Let us try

v=x-y+1.

We need to figure out i’ in terms of v’, v and x. We differentiate (in x) to obtain v’ =1 - v/’.
So vy’ =1 -7v". We plug this into the equation to get

1
dov = dx
1-02
So
1, jo+1] v+1| 00 v+1 oy
2lnv_1 =x+C, or sl , v—l_D ,
for some constant D. Note that v = 1 and v = —1 are also solutions.

Now we need to “unsubstitute” to obtain
xX-y+2
x-y
and also the two solutionsx —y+1=1ory =x,andx -y +1=-1ory = x +2. We solve
the first equation for y.

2x
De“*,

x—y+2=(x-y)De%,
x -y +2=Dxe* —yDe?,
~y +yDe* = Dxe* —x -2,
y (=1 + De*) = Dxe* —x -2,
Dxe* —x -2
De?* -1

y:
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Note that D = 0 gives y = x + 2, but no value of D gives the solution y = x.

Substitution in differential equations is applied in much the same way that it is applied
in calculus. You guess. Several different substitutions might work. There are some general
patterns to look for. We summarize a few of these in a table.

When you see  Try substituting

vy v=y>
yZy/ D= y3
(cosy)y’ v =siny
(siny)y’ v =cosy
y'eY v=ceY

Usually you try to substitute in the “most complicated” part of the equation with the
hopes of simplifying it. The table above is just a rule of thumb. You might have to modify
your guesses. If a substitution does not work (it does not make the equation any simpler),
try a different one.

1.5.2 Bernoulli equations

There are some forms of equations where there is a general rule for substitution that always
works. One such example is the so-called Bernoulli equation*:
Yy +py = q)y".

This equation looks a lot like a linear equation except for the y". If n = 0 or n = 1, then the
equation is linear and we can solve it. Otherwise, the substitution v = y1™" transforms the
Bernoulli equation into a linear equation. Note that 7 need not be an integer.

Example 1.5.1: Solve
xy +y(x+1D)+xy°=0, y(l)=1.
The equation is a Bernoulli equation, p(x) = (x + 1)/x and g(x) = —1. We substitute
o=yl =y o' = -4y~
In other words, (-1/4) y°v’ = y’. So

xy' +y(x +1) +xy° =0,
5

4

“There are several things called Bernoulli equations, this is just one of them. The Bernoullis were a

prominent Swiss family of mathematicians. These particular equations are named for Jacob Bernoulli
(1654-1705).

o' +y(x+1)+xy° =0,



https://en.wikipedia.org/wiki/Jacob_Bernoulli
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_—xv’+y_4(x +1)+x=0,

4
_Txv’+v(x+1)+x:0,
and finally
,_4(x+1)v=4.
X

The equation is now linear. We can use the integrating factor method. In particular, we
use formula (1.4). We assume that x > 0 so |x| = x. This assumption is OK, as our initial
condition is at x = 1 > 0. Let us compute the integrating factor. Here p(s) from formula
(1.4) is =2+D

. —.

ol pE)ds _ exp (/x —4(s +1) ds) _ p-dx—dln(x)+d _ ,—dred, 4 _
1 S

e—4x+4
—I

x4
x
e~ h ps)ds _ Ldxtdin(x)—4 _ j4x—4,4

We now plug in to (1.4)

x X
o(x) = e~ hr PO (/ e POdsy gy 4 1)

1

X —4t+d
S A / 4 dt +1].
1 t4

The integral in this expression is not possible to find in closed form. As we said before, it is
perfectly fine to have a definite integral in our solution. Now “unsubstitute”

X ,—dt+d
Yyt = et iyt 4/ at+1],
1t

—x+1

e

y= 14"
x(4f Star+1)

1.5.3 Homogeneous equations

Another type of equations we can solve by substitution are the so-called homogeneous
equations. Suppose that we can write the differential equation as

rr)

Here we try the substitutions

y

v== and therefore vy’ =v+xv'.
X
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We note that the equation is transformed into
v+ xv" = F(v) or xv' =F(v)—v or

Hence an implicit solution is

1
/F(U)_Udv—ln|x|+C.

Example 1.5.2: Solve

xzy’ = y2 +xy, y(1)=1.

49

We put the equation into the form y’ = (v/x)* + v/x. We substitute v = ¥/x to get the

separable equation

xv' =0 +0v—0v =107

which has a solution

1
/—Zdv:1n|x|+C,
v
1

— =In|x|+C,

0

Lo -l
~In|x|+C’

We unsubstitute

y__ -1
x In|x|+C’
. —x
Y|+ C
We want y(1) =1, so
-1 -1
L=v=mmre=¢©

Thus C = -1 and the solution we are looking for is

=
y_lnlxl—l'

1.5.4 Exercises

Hint: Answers need not always be in closed form.
Exercise 1.5.1: Solve y’ + y(x? — 1) + xy® = 0, with y(1) = 1.

Exercise 1.5.2: Solve 2yy’ + 1 = y? + x, with y(0) = 1.
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Exercise 1.5.3: Solve y’ + xy = y*, with y(0) = 1.

Exercise 1.5.4: Solve yy’ + x = /x? + y2.

Exercise 1.5.5: Solve y’' = (x + y — 1),

2

.
o with y(1) = 2.

X

Exercise 1.5.6: Solve y’ =
Exercise 1.5.101: Solve xy’ +y +y> =0, y(1) = 2.
Exercise 1.5.102: Solve xy’ +y +x =0, y(1) = 1.
Exercise 1.5.103: Solve y?y’ = y> - 3x, y(0) = 2.

Exercise 1.5.104: Solve 2yy’ = eV’ 42y,
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1.6 Autonomous equations

Note: 1 lecture, §2.2 in [EP], §2.5 in [BD]

Consider problems of the form
dx

5 = /)

where the derivative of solutions depends only on x (the dependent variable). Such
equations are called autonomous equations. If we think of t as time, the naming comes from
the fact that the equation is independent of time.

We return to the cooling coffee problem (Example 1.3.3). Newton’s law of cooling says

dx
E = k(A — X),
where x is the temperature, ¢ is time, k is some positive constant, and A is the ambient
temperature. See Figure 1.11 for an example with k = 0.3 and A = 5.

Note the solution x = A (in the figure x = 5). We call these constant solutions the
equilibrium solutions. The points on the x-axis where f(x) = 0 are called critical points. The
point x = A is a critical point. In fact, each critical point corresponds to an equilibrium
solution. Note also, by looking at the graph, that the solution x = A is “stable” in that
small perturbations in x do not lead to substantially different solutions as t grows. If we
change the initial condition a little bit, then as t — oo we get x(t) — A. We call such a
critical point stable. In this simple example it turns out that all solutions in fact go to A as
t — oo. If a critical point is not stable, we say it is unstable.
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Figure 1.11: The slope field and some solutions of ~ Figure 1.12: The slope field and some solutions of
x' =035 -x). x'=01x5-x).

Consider now the logistic equation

dx
i kx(M - x),
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for some positive k and M. This equation is commonly used to model population if we
know the limiting population M, that is the maximum sustainable population. The logistic
equation leads to less catastrophic predictions on world population than x” = kx. In the
real world there is no such thing as negative population, but we will still consider negative
x for the purposes of the math.

See Figure 1.12 on the preceding page for an example, x” = 0.1x(5 — x). There are two
critical points, x = 0 and x = 5. The critical point at x = 5 is stable, while the critical point
at x = 0 is unstable.

It is not necessary to find the exact solutions to talk about the long term behavior of the
solutions. From the slope field above of x’ = 0.1x(5 — x), we see that

5 if x(0) >0,
tlim x(t) =10 if x(0)=0,
DNE or —co if x(0) < 0.

Here DNE means “does not exist.” From just looking at the slope field we cannot quite
decide what happens if x(0) < 0. It could be that the solution does not exist for ¢ all the
way to co. Think of the equation x” = x%; we have seen that solutions only exist for some
finite period of time. Same can happen here. In our example equation above it turns out
that the solution does not exist for all time, but to see that we would have to solve the
equation. In any case, the solution does go to —co, but it may get there rather quickly.

If we are interested only in the long term behavior of the solution, we would be doing
unnecessary work if we solved the equation exactly. We could draw the slope field, but it
is easier to just look at the phase diagram or phase portrait, which is a simple way to visualize
the behavior of autonomous equations. In this case there is one dependent variable x.
We draw the x-axis, we mark all the critical points, and then we draw arrows in between.
Since x is the dependent variable we draw the axis vertically, as it appears in the slope
field diagrams above. If f(x) > 0, we draw an up arrow. If f(x) < 0, we draw a down
arrow. To figure this out, we could just plug in some x between the critical points, f(x)
will have the same sign at all x between two critical points as long f(x) is continuous. For
example, f(6) = —0.6 < 0,s0 f(x) < 0 for x > 5, and the arrow above x = 5 is a down arrow.
Next, f(1) =0.4 > 0, so f(x) > 0 whenever 0 < x < 5, and the arrow points up. Finally,
f(=1)=-0.6 < 0so f(x) < 0when x <0, and the arrow points down.

v
+ x=5
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Armed with the phase diagram, it is easy to sketch the solutions approximately: As
time t moves from left to right, the graph of a solution goes up if the arrow is up, and it
goes down if the arrow is down.

Exercise 1.6.1: Try sketching a few solutions simply from looking at the phase diagram. Check
with the preceding graphs if you are getting the same type of curves.

Once we draw the phase diagram, we classify critical points as stable or unstable*.

Since any mathematical model we cook up will only be an approximation to the real
world, unstable points are generally bad news.

Let us think about the logistic equation with harvesting. Suppose an alien race really
likes to eat humans. They keep a planet with humans on it and harvest the humans at a
rate of 1 million humans per year. Suppose x is the number of humans in millions on the
planet and ¢ is time in years. Let M be the limiting population when no harvesting is done.
The number k > 0 is a constant depending on how fast humans multiply. Our equation

becomes

dx
E—kx(M—x)—h.

We expand the right-hand side and set it to zero.
kx(M —x)—h =—-kx*>+kMx —h =0.
Solving for the critical points, let us call them A and B, we get

kM + +J(kM)? — 4hk kM — J(kM)? = 4hk
A= B= .

- 2k ’ - 2k
Exercise 1.6.2: Sketch a phase diagram for different possibilities. Note that these possibilities are
A > B,or A = B, or A and B both complex (i.e. no real solutions). Hint: Fix some simple k and M
and then vary h.

For example, let M = 8 and k = 0.1. When h = 1, then A and B are distinct and positive.
The slope field we get is in Figure 1.13 on the next page. As long as the population starts
above B, which is approximately 1.55 million, then the population will not die out. It will in
fact tend towards A ~ 6.45 million. If ever some catastrophe happens and the population
drops below B, humans will die out, and the fast food restaurant serving them will go out
of business.

“Unstable points with one of the arrows pointing towards the critical point are sometimes called semistable.
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4. There is only one critical point and it is unstable. When

B

Finally, if we are harvesting at 2 million humans per year, there are no critical points.

The population will always plummet towards zero, no matter how well stocked the planet

starts. See Figure 1.15.

When i = 1.6, then A
the population starts above 4 million, it will tend towards 4 million. However, if it ever

drops below 4 million, perhaps a worse than normal hurricane season one year, then
humans will die out on the planet. This scenario is not one that we (as the human fast food
proprietor) want to be in. A small perturbation of the equilibrium state and we are out of
business. There is no room for error. See Figure 1.14.
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1.6.1 Exercises

Exercise 1.6.3: Consider x’ = x2.

a) Draw the phase diagram, find the critical points, and mark them stable or unstable.
b) Sketch typical solutions of the equation.

¢) Find tlirn x(t) for the solution with the initial condition x(0) = —1.

Exercise 1.6.4: Consider x" = sin x.
a) Draw the phase diagram for —4nt < x < 4m. On this interval mark the critical points stable
or unstable.
b) Sketch typical solutions of the equation.

c¢) Find tlim x(t) for the solution with the initial condition x(0) = 1.

Exercise 1.6.5: Suppose f(x) is positive for 0 < x < 1, it is zero when x = 0 and x =1, and it is
negative for all other x.

a) Draw the phase diagram for x’ = f(x), find the critical points, and mark them stable or
unstable.

b) Sketch typical solutions of the equation.

¢) Find tlim x(t) for the solution with the initial condition x(0) = 0.5.

Exercise 1.6.6: Start with the logistic equation Z—’t‘ = kx(M —x). Suppose we modify our harvesting.

That is we will only harvest an amount proportional to current population. In other words, we

harvest hx per unit of time for some h > O (similar to earlier example with h replaced with hx).
a) Construct the differential equation.

b) Show that if kM > h, then the equation is still logistic.
c) What happens when kM < h?

Exercise 1.6.7: A disease is spreading through the country. Let x be the number of people infected.

Let the constant S be the number of people susceptible to infection. The infection rate ‘;—’; is

proportional to the product of already infected people, x, and the number of susceptible but uninfected
people, S — x.

a) Write down the differential equation.

b) Supposing x(0) > 0, that is, some people are infected at time t = 0, what is tlim x(t).

c) Does the solution to part b) agree with your intuition? Why or why not?
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Exercise 1.6.101: Let x’ = (x — 1)(x — 2)x2.
a) Sketch the phase diagram and find critical points.
b) Classify the critical points.
c) If x(0) = 0.5, then find tlim x(t).

Exercise 1.6.102: Let x" = e™*.

a) Find and classify all critical points. b) Find tlirn x(t) given any initial condition.

Exercise 1.6.103: Assume that a population of fish in a lake satisfies ‘fi—’t‘ = kx(M — x). Now
suppose that fish are continually added at A fish per unit of time.

a) Find the differential equation for x. b) What is the new limiting population?
Exercise 1.6.104: Suppose ”yll—’t‘ = (x — a)(x = B) for two numbers a < p.
a) Find the critical points, and classify them.

Forb), c), d), find tlim x(t) based on the phase diagram.

b) x(0) < a, c) a<x(0)<p, d) B < x(0).
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1.7 Numerical methods: Euler’s method

Note: 1 lecture, can safely be skipped, §2.4 in [EP], §8.1 in [BD]

Unless f(x, y) is of a special form, it is generally very hard if not impossible to get a
nice formula for the solution of the problem

y' =f(x,y),  yxo) = yo.

If the equation can be solved in closed form, we should do that. But what if we have
an equation that cannot be solved in closed form? What if we want to find the value
of the solution at some particular x? Or perhaps we want to produce a graph of the
solution to inspect the behavior. In this section we will learn about the basics of numerical
approximation of solutions.

The simplest method for approximating a solution is Euler’s method*. It works as follows:
Take xp and compute the slope k = f(xo, o). The slope is the change in y per unit change
in x. Follow the line for an interval of length & on the x-axis. Hence if y = y( at xo, then we
say that i1 (the approximate value of y at x; = xo + h) is y1 = yo + hk. Rinse, repeat! Let
k = f(x1,y1), and then compute x; = x1 + /1, and y» = y1 + hk. Now compute x3 and y3
using x; and v, etc. Consider the equation v’ = ¥*/3, y(0) = 1,and k = 1. Then x¢ = 0 and
yo = 1. We compute

X1=xo+th=0+1=1, yl=y0+hf(XQ,y0)=1+1~1/3=4/3%1.333,

4 2
X2 = X1 +h=1+1 =2, Yo =11 +hf(x1,y1) 24/3+1 . % :52/27% 1.926.
We then draw an approximate graph of the solution by connecting the points (xo, yo),
(x1, 1), (x2,y2),. . .. For the first two steps of the method see Figure 1.16 on the following
page.
More abstractly, forany i = 0,1, 2,3, ..., we compute

Xiv1 =Xi+h, yis1 = yi +h f(xi, yi).

The line segments we get are an approximate graph of the solution. Generally it is not
exactly the solution. See Figure 1.17 on the next page for the plot of the real solution and
the approximation.

We continue with the equation y’ = ¥*/3, y(0) = 1. Let us try to approximate y(2) using
Euler’s method. In Figures 1.16 and 1.17 we have graphically approximated y(2) with step
size 1. With step size 1, we have y(2) = 1.926. The real answer is 3. We are approximately
1.074 off. Let us halve the step size. Computing y4 with I = 0.5, we find that y(2) = 2.209,
so an error of about 0.791. Table 1.1 on page 59 gives the values computed for various
parameters.

*Named after the Swiss mathematician Leonhard Paul Euler (1707-1783). The correct pronunciation of
the name sounds more like “oiler.”


https://en.wikipedia.org/wiki/Euler
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Figure 1.17: Two steps of Euler’s method (step size 1) and the exact solution for the equation y’ = %2

with initial conditions y(0) = 1.

Exercise 1.7.1: Solve this equation exactly and show that y(2) = 3.

The difference between the actual solution and the approximate solution is called the
error. We usually talk about just the size of the error and we do not care much about its
sign. The point is, we usually do not know the real solution, so we only have a vague
understanding of the error. If we knew the error exactly ... what is the point of doing the
approximation?

Notice that except for the first few times, every time we halved the interval the error
approximately halved. This halving of the error is a general feature of Euler’s method as it
is a first order method. There exists an improved Euler method, see the exercises, which is
a second order method. A second order method reduces the error to approximately one
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h App roximate y () Error Prev?ora(s)rerror

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681
0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599
0.0625 2.82040 0.17960 0.56184
0.03125 290412 0.09588 0.53385
0.015625 2.95035 0.04965 0.51779
0.0078125 297472 0.02528 0.50913

Table 1.1: Euler’s method approximation of y(2) where of y’ = ¥*/3, y(0) = 1.

quarter every time we halve the interval. The meaning of “second” order is the squaring in
fa=1/2x 12 = (12"

To get the error to be within 0.1 of the answer we had to already do 64 steps. To get
it to within 0.01 we would have to halve another three or four times, meaning doing 512
to 1024 steps. That is quite a bit to do by hand. The improved Euler method from the
exercises should quarter the error every time we halve the interval, so we would have to
approximately do half as many “halvings” to get the same error. This reduction can be a
big deal. With 10 halvings (starting at & = 1) we have 1024 steps, whereas with 5 halvings
we only have to do 32 steps, assuming that the error was comparable to start with. A
computer may not care about this difference for a problem this simple, but suppose each
step would take a second to compute (the function may be substantially more difficult to
compute than ¥*/3). Then the difference is 32 seconds versus about 17 minutes. We are not
being altogether fair, a second order method would probably double the time to do each
step. Even so, it is 1 minute versus 17 minutes. Next, suppose that we have to repeat such
a calculation for different parameters a thousand times. You get the idea.

Note that in practice we do not know how large the error is! How do we know what is
the right step size? Well, essentially we keep halving the interval, and if we are lucky, we
can estimate the error from a few of these calculations and the assumption that the error
goes down by a factor of one half each time (if we are using standard Euler).

Exercise 1.7.2: In the table above, suppose you do not know the error. Take the approximate values
of the function in the last two lines, assume that the error goes down by a factor of 2. Can you
estimate the error in the last time from this? Does it (approximately) agree with the table? Now do
it for the first two rows. Does this agree with the table?

Let us talk a little bit more about the example y’ = ¥°/3, y(0) = 1. Suppose that instead
of the value y(2) we wish to find y(3). The results of this effort are listed in Table 1.2 on the
next page for successive halvings of h. What is going on here? Well, you should solve the
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equation exactly and you will notice that the solution does not exist at x = 3. In fact, the
solution goes to infinity when you approach x = 3.

h  Approximate y(3)

1 3.16232

0.5 4.54329

0.25 6.86079

0.125 10.80321
0.0625 17.59893
0.03125 29.46004
0.015625 50.40121
0.0078125 87.75769

Table 1.2: Attempts to use Euler’s to approximate y(3) where of y’ = v*/3, y(0) = 1.

Another case where things go bad is if the solution oscillates wildly near some point.

The solution may exist at all points, but even a much better numerical method than
Euler would need an insanely small step size to approximate the solution with reasonable

precision. And computers might not be able to easily handle such a small step size.

In real applications we would not use a simple method such as Euler’s. The simplest

method that would probably be used in a real application is the standard Runge-Kutta

method (see exercises). That is a fourth order method, meaning that if we halve the interval,
the error generally goes down by a factor of 16 (it is fourth order as 1/16 = 1/2 X 1/2x 1/2 X 1/2).
Choosing the right method to use and the right step size can be very tricky. There are

several competing factors to consider.

e Computational time: Each step takes computer time. Even if the function f is simple

to compute, we do it many times over. Large step size means faster computation, but
perhaps not the right precision.

Roundoff errors: Computers only compute with a certain number of significant
digits. Errors introduced by rounding numbers off during our computations become
noticeable when the step size becomes too small relative to the quantities we are
working with. So reducing step size may in fact make errors worse. There is a certain
optimum step size such that the precision increases as we approach it, but then starts
getting worse as we make our step size smaller still. Trouble is: this optimum may be
hard to find.

Stability: Certain equations may be numerically unstable. What may happen is that
the numbers never seem to stabilize no matter how many times we halve the interval.
We may need a ridiculously small interval size, which may not be practical due to
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roundoff errors or computational time considerations. Such problems are sometimes
called stiff. In the worst case, the numerical computations might be giving us bogus
numbers that look like a correct answer. Just because the numbers seem to have
stabilized after successive halving, does not mean that we must have the right answer.

We have seen just the beginnings of the challenges that appear in real applications.
Numerical approximation of solutions to differential equations is an active research area
for engineers and mathematicians. For example, the general purpose method used for the
ODE solver in Matlab and Octave (as of this writing) is a method that appeared in the
literature only in the 1980s.

1.7.1 Exercises

d
Exercise 1.7.3: Consider d_JtC = (2t — x)?, x(0) = 2. Use Euler’s method with step size h = 0.5 to

approximate x(1).
. ., dx
Exercise 1.7.4: Consider i t—x,x(0)=1.

a) Use Euler’s method with step sizes h = 1,1/2,1/4,1/8 to approximate x(1).
b) Solve the equation exactly.

c) Describe what happens to the errors for each h you used. That is, find the factor by which the
error changed each time you halved the interval.

Exercise 1.7.5: Approximate the value of e by looking at the initial value problem y' = y with
y(0) = 1 and approximating y(1) using Euler’s method with a step size of 0.2.

Exercise 1.7.6: Example of numerical instability: Take y' = =5y, y(0) = 1. We know that the
solution should decay to zero as x grows. Using Euler’s method, start with h = 1 and compute
Y1, Y2, Y3, Ya to try to approximate y(4). What happened? Now halve the interval. Keep halving
the interval and approximating y(4) until the numbers you are getting start to stabilize (that is,
until they start going towards zero). Note: You might want to use a calculator.

The simplest method used in practice is the Runge—Kutta method. Consider Z—x = f(x,vy),
y(x0) = yo, and a step size h. Everything is the same as in Euler’s method, except the
computation of y;41 and x;41.

ki = f(xi, yi),
ko = f(xi + /2, yi + ki(h/2)), Xis1 =Xi+h,
k1 + 2ko + 2ks + k
ks = f(xi + /2, yi + ka(h/2)), il = yi + — 2 7 STy,

k4 = f(xi + h,yi + kgh).
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d
Exercise 1.7.7: Consider % = yx?, y(0) = 1.

a) Use Runge—Kutta (see above) with step sizes h = 1 and h = 1/2 to approximate y(1).
b) Use Euler’s method with h = 1 and h = 1/2.
c) Solve exactly, find the exact value of y(1), and compare.

Exercise 1.7.101: Let x" = sin(xt), and x(0) = 1. Approximate x(1) using Euler’s method with
step sizes 1, 0.5, 0.25. Use a calculator and compute up to 4 decimal digits.

Exercise 1.7.102: Let x’ = 2t, and x(0) = 0.

a) Approximate x(4) using Euler’s method with step sizes 4, 2, and 1.
b) Solve exactly, and compute the errors.

c) Compute the factor by which the errors changed.
Exercise 1.7.103: Let x’ = xe*'*1, and x(0) = 0.

a) Approximate x(4) using Euler’s method with step sizes 4, 2, and 1.

b) Guess an exact solution based on part a) and compute the errors.

There is a simple way to improve Euler’s method to make it a second order method

by doing just one extra step. Consider Z—x = f(x,y), y(x0) = yo, and a step size h. What
we do is to pretend we compute the next step as in Euler, that is, we start with (x;, v;),
we compute a slope ki = f(x;, yi), and then look at the point (x; + h, y; + k1h). Instead of
letting our new point be (x; + h, y; + k1h), we compute the slope at that point, call it k»,
and then take the average of k1 and k», hoping that the average is going to be closer to the
actual slope on the interval from x; to x; + h. And we are correct, if we halve the step, the
error should go down by a factor of 22 = 4. To summarize, the setup is the same as for
regular Euler, except the computation of y;1 and x;41.

ki = f(xi, i), Xis1 = X;i + h,
k1 + k2

2h.

ko = f(xi+h,yi + kih), Viel = Yi +

d
Exercise 1.7.104: Consider % =x+y,y0) =1

a) Use the improved Euler’s method (see above) with step sizes h = 1/aand h = 1/8 to approximate
y(@).

b) Use Euler’s method with h = 1/4and h = 1/s.

c) Solve exactly, find the exact value of y(1).

d) Compute the errors, and the factors by which the errors changed.
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1.8 Exact equations

Note: 1-2 lectures, can safely be skipped, §1.6 in [EP], §2.6 in [BD]

Another type of equation that comes up quite often in physics and engineering is an exact
equation. Suppose F(x, y) is a function of two variables, which we call the potential function.
The naming should suggest potential energy, or electric potential. Exact equations and
potential functions appear when there is a conservation law at play, such as conservation
of energy. Let us make up a simple example. Let

F(x,y) = x> + y2.

We are interested in the lines of constant
energy, that is lines where the energy is
conserved; we want curves where F(x, y) =
C, for some constant C. In our example, @t 1{s
the curves x> + y> = C are circles. See

Figure 1.18.
We take the total derivative of F: T 1’
oF oF
dF = —dx + —dy. SE 1s
dx dy 4
For convenience, we will make use of the | | 1 | |
notation of F, = ‘3—1; and Fy, = g—ly:. In our | o . ° : B '
example, Figure 1.18: Solutions to F(x,y) = x> + y> = C

for various C.
dF =2xdx + 2y dy.

We apply the total derivative to F(x, y) = C,
to find the differential equation dF = 0. The differential equation we obtain in such a way
has the form p

Mdx+Ndy =0, or M+N%=O.
An equation of this form is called exact if it was obtained as dF = 0 for some potential
function F. In our simple example, we obtain the equation

d
2xdx +2ydy =0, or 2x+2y%:0.

Since we obtained this equation by differentiating x* + y? = C, the equation is exact. We
often wish to solve for y in terms of x. In our example,

y ==+VC% - x2.

An interpretation of the setup is that at each point o = (M, N) is a vector in the plane,
that is, a direction and a magnitude. As M and N are functions of (x, y), we have a
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vector field. The particular vector field 0 that comes from an exact equation is a so-called
conservative vector field, that is, a vector field that comes with a potential function F(x, y),

such that
= _ JF JF
\ox oy’
Let y be a path in the plane starting at (x1, y1) and ending at (x2, y2). If we think of v as
force, then the work required to move along y is

/5(7)-(17:/de+Ndy:P(xz,yz)—F(xl,yl).
V4 V4

That is, the work done only depends on endpoints, that is where we start and where we
end. For example, suppose F is gravitational potential. The derivative of F given by 7 is
the gravitational force. What we are saying is that the work required to move a heavy box
from the ground floor to the roof, only depends on the change in potential energy. That
is, the work done is the same no matter what path we took; if we took the stairs or the
elevator. Although if we took the elevator, the elevator is doing the work for us. The curves
F(x,y) = C are those where no work need be done, such as the heavy box sliding along
without accelerating or breaking on a perfectly flat roof, on a cart with incredibly well oiled
wheels.

An exact equation is a conservative vector field, and the implicit solution of this equation
is the potential function.

1.8.1 Solving exact equations

Now you, the reader, should ask: Where did we solve a differential equation? Well, in
applications we generally know M and N, but we do not know F. That is, we may have

just started with 2x + Zy% = 0, or perhaps even

x+yE:O.

It is up to us to find some potential F that works. Many different F will work; adding
a constant to F does not change the equation. Once we have a potential function F, the
equation F(x, y(x)) = C gives an implicit solution of the ODE.

Example 1.8.1: Let us find the general solution to 2x + Zy% = 0. Forget we knew what F
was.

If we know that this is an exact equation, we start looking for a potential function F.
We have M = 2x and N = 2y. If F exists, it must be such that F,(x, y) = 2x. Integrate in
the x variable to find

F(x,y) = x* + A(y), (1.5)

for some function A(y). The function A is the “constant of integration”, though it is only
constant as far as x is concerned, and may still depend on y. Now differentiate (1.5) in y
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and set it equal to N, which is what F,, is supposed to be:

2y = Fy(x,y) = A'(y).

Integrating, we find A(y) = y%. We could add a constant of integration if we wanted to,
but there is no need. We found F(x, y) = x? + y2. Next for a constant C, we solve

F(x,y(x)) = C.
for y in terms of x. In this case, we obtain y = +VC? — x2 as we did before.

Exercise 1.8.1: Why did we not need to add a constant of integration when integrating A’(y) = 2y?
Add a constant of integration, say 3, and see what F you get. What is the difference from what we
got above, and why does it not matter?

The procedure, once we know that the equation is exact, is:
(i) Integrate Fy = M in x resulting in F(x, y) = something + A(y).

(ii) Differentiate this F in y, and set that equal to N, so that we may find A(y) by
integration.

The procedure can also be done by first integrating in y and then differentiating in x. Pretty
easy huh? Let’s try this again.

Example 1.8.2: Consider now 2x + v + xyg—z = 0.
OK,so M =2x +y and N = xy. We try to proceed as before. Suppose F exists. Then
Fy(x,y) = 2x + y. We integrate:

F(x,y) = x* + xy + A(y)
for some function A(y). Differentiate in y and set equal to N:
N =xy =Fy(x,y) =x+A'(y).
But there is no way to satisfy this requirement! The function xy cannot be written as x

plus a function of y. The equation is not exact; no potential function F exists.

Is there an easier way to check for the existence of F, other than failing in trying to find
it? Turns out there is. Suppose M = Fy and N = F,. Then as long as the second derivatives
are continuous,

OM _ 0*F _ 9*F _ON
dy  Jdydx dxdy Ix

Let us state it as a theorem. Usually this is called the Poincaré Lemma®.

Theorem 1.8.1 (Poincaré). If M and N are continuously differentiable functions of (x,y), and

%—A; = %—IJ\C], then near any point there is a function F(x, y) such that M = 3—5 and N = 3—5.

*Named for the French polymath Jules Henri Poincaré (1854-1912).


https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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The theorem doesn’t give us a global F defined everywhere. In general, we can only
find the potential locally, near some initial point. By this time, we have come to expect this
from differential equations.

Let us return to Example 1.8.2 where M = 2x + y and N = xy. Notice M, = 1 and
Ny = y, which are clearly not equal. The equation is not exact.

Example 1.8.3: Solve
dy —2x-y

- x-1c YO=tL

We write the equation as

(2x+y)+(x—1)6dl—z =0,
soM =2x+yand N = x — 1. Then

M, =1=N,.

The equation is exact. Integrating M in x, we find

F(x,y) = x* + xy + A(y).
Differentiating in v and setting to N, we find

x—-1=x+A(y).

So A’(y) = -1, and A(y) = —y will work. Take F(x,y) = x> + xy — y. We wish to solve
x2+xy—y = C. Firstlet us find C. Asy(0) = 1then F(0,1) = C. Therefore 02+0x1-1=C,
so C = —1. Now we solve x? + xy — y = —1 for y to get

_—x?-1
YT
Example 1.8.4: Solve
Yy
_ dx + dy = O, 1)=2
x2+y2x x2+y2y vy

We leave to the reader to check that M,, = N.

This vector field (M, N) is not conservative if considered as a vector field of the entire
plane minus the origin. The problem is that if the curve y is a circle around the origin, say
starting at (1, 0) and ending at (1, 0) going counterclockwise, then if F existed we would
expect

dx +

dy =2
x2 + y? x2+y =

0=P(1,0)—P(1,0)=/F dx +Fydy = /
14

That is nonsense! We leave the computation of the path integral to the interested reader, or
you can consult your multivariable calculus textbook. So there is no potential function F
defined everywhere outside the origin (0, 0).
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If we think back to the theorem, it does not guarantee such a function anyway. It only
guarantees a potential function locally, that is only in some region near the initial point. As
y(1) = 2 we start at the point (1,2). Considering x > 0 and integrating M in x or N in y,
we find

F(x,y) = arctan(¥/x).

The implicit solution is arctan(y/x) = C. Solving, y = tan(C)x. That is, the solution is
a straight line. Solving y(1) = 2 gives us that tan(C) = 2, and so y = 2x is the desired
solution. See Figure 1.19, and note that the solution only exists for x > 0.

5.0 25 0.0 25 50
10 T T T 10

-10 L L . -10
-5.0 25 0.0 25 5.0

Figure 1.19: Solution to —ﬁyzdx + ﬁyzdy =0, y(1) = 2, with initial point marked.

Example 1.8.5: Solve
dy
2.2 _
x“+y +2y(x+1)dx 0.

The reader should check that this equation is exact. Let M = x? + y? and N = 2y(x + 1).
We follow the procedure for exact equations

F(x,y) = %xe’ + xy2 + A(y),
and
2y(x +1) =2xy + A'(y).

Therefore A’(y) = 2y or A(y) = y*and F(x, y) = 3x%+xy? + y% We try to solve F(x,y) = C.
We easily solve for 42 and then just take the square root:

C — (1/3)x° |C = (1/3)x3
2 = - = —
y = x+1 7 50 y== x+1

When x = —1, the term in front of Z—Z vanishes, and our explicit solution is not valid at x = —1.
The given equation has no solution near x = —1, but the equation (x?+y?) dx+2y(x+1) dy =
0 does have a solution x = —1. In fact, one could solve for x in terms of y for any initial
condition. The solution is messy, so we leave it as 2x3 + xy? + y? = C.



68 CHAPTER 1. FIRST ORDER EQUATIONS

1.8.2 Integrating factors

Sometimes an equation M dx +N dy = 01is not exact, but it can be made exact by multiplying
with a function u(x, y). That is, perhaps for some nonzero function u(x, y),

u(x, y)M(x,y)dx +u(x,y)N(x,y)dy =0

is exact. Any solution to this new equation is also a solution to M dx + N dy = 0.
In fact, a linear equation

dy

I +p(x)y = f(x), or (p(x)y — f(x))dx +dy =0

is always such an equation. Let r(x) = e/ P& pe the integrating factor for a linear
equation. Multiply the equation by r(x) and write it in the form of M + N Z_Z = 0.

d
r(x)p(x)y —r(x)f(x) + r(x)% =0.

Then M = r(x)p(x)y —r(x)f(x),so M, = r(x)p(x), while N = r(x), so Ny = r'(x) = r(x)p(x).
In other words, we have an exact equation. Integrating factors for linear functions are just
a special case of integrating factors for exact equations.

But how do we find the integrating factor u? Well, given an equation

Mdx+Ndy =0,

u should be a function such that

0 d
% [uM] = uyM +uM, = o [uN] = uxN + uN.,.
Therefore,

At first it may seem we replaced one differential equation by another. True, but all hope is
not lost.

A strategy that often works is to look for a u that is a function of x alone, or a function
of y alone. If u is a function of x alone, that is u(x), then we write u’(x) instead of u,, and
uy is just zero. Then

M, — N,
N

u=u'.

In particular, M%N" ought to be a function of x alone (not depend on y). If so, then we

have a linear equation

My_Nx
TN

’

u u=0.
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Letting P(x) = My N

u(x) = C e/ P@)dx  The constant in the solution is not relevant, we need any nonzero

, we solve using the standard integrating factor method, to find

solution, so we take C = 1. Then u(x) = e PE)dx jg the integrating factor.
Similarly, we could try a function of the form u(y). Then

4

M, - N
=

M

. M, ~Ny . . .
In particular, —— ought to be a function of y alone. If so, we have a linear equation

M, - N
1//4‘%1{:0.

My_N", we find u(y) = Ce/ QWY We take C = 1. So u(y) = e~/ Qu)dy g

Letting Q(y) =
the integrating factor.

Example 1.8.6: Solve

2+ 2 d
T g =0
x2+y?
Let M = —+ and N = 2y. Compute
2y 2y
My_Nx_x+1_O_x+l'

As this is not zero, the equation is not exact. We notice

My_Nx_ 2y 1_ 1

P(x) = - ~ -
() N x+12y  x+1

is a function of x alone. We compute the integrating factor

o P)dx _ In(x+1) _ 5 4 1
We multiply our given equation by (x + 1) to obtain
dy
2, .2
2 1)— =
x“ 4y +2y(x + )dx 0,

which is an exact equation that we solved in Example 1.8.5. The solution was
— (1/3)x3
y=+ /C —(1/3)x ‘
x+1

dy
2 =
y-+ (xy + Ddx 0.

Example 1.8.7: Solve
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First compute
My —-Ny=2y-y=y.

As this is not zero, the equation is not exact. We observe

My_Nx_y 1

Q(]/):T—?Zy

is a function of y alone. We compute the integrating factor

e~ [QWdy _ p=Iny _ l
y

Therefore we look at the exact equation

xy+1dy_0

y+ydx

The reader should double check that this equation is exact. We follow the procedure for
exact equations

F(x,y) =xy+ A(y),

and
xy +1

Yy
Consequently A’(y) = % or A(y) = Iny. Thus F(x,y) = xy + Iny. It is not possible to solve

=x+ i =x+A'(y). (1.6)

F(x,y) = C for y in terms of elementary functions, so let us be content with the implicit
solution:
xy+Iny =_C.

We are looking for the general solution and we divided by y above. We should check what
happens when y = 0, as the equation itself makes perfect sense in that case. We plug in
y = 0 to find the equation is satisfied. So y = 0 is also a solution.

1.8.3 Exercises
Exercise 1.8.2: Solve the following exact equations, implicit general solutions will suffice:
a) 2xy +x¥)dx+ (x> +y>+1)dy =0 b) x5+y52—z20
c) e¥ +y3+ 3xy22—z =0 d) (x +y)cos(x) + sin(x) + sin(x)y’ = 0

Exercise 1.8.3: Find the integrating factor for the following equations making them into exact
equations:

a) eVdx+LeXdy =0 b) ex;f dx +3xdy =0
) 4(y? +x)dx + 2x42y" dy =0 d) 2sin(y) dx + x cos(y) dy = 0

y
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Exercise 1.8.4: Suppose you have an equation of the form: f(x) + g(y)% =0.

a) Show it is exact.

b) Find the form of the potential function in terms of f and g.
Exercise 1.8.5: Suppose that we have the equation f(x)dx —dy = 0.

a) Is this equation exact?

b) Find the general solution using a definite integral.

Exercise 1.8.6: Find the potential function F(x, y) of the exact equation H% dx+ (Yy+x)dy =0
in two different ways.

a) Integrate M in terms of x and then differentiate in y and set to N.
b) Integrate N in terms of y and then differentiate in x and set to M.

Exercise 1.8.7: A function u(x, y) is said to be a harmonic function if uy, + u,,, = 0.

a) Show if u is harmonic, —u, dx + u, dy = 0 is an exact equation. So there exists (at least
locally) the so-called harmonic conjugate function v(x, y) such that vy = —u, and vy = u,.

Verify that the following u are harmonic and find the corresponding harmonic conjugates v:
b) u=2xy c) u=-e*cosy d) u = x> - 3xy?
Exercise 1.8.101: Solve the following exact equations, implicit general solutions will suffice:
a) cos(x) +ye*Y + xe*Vy’' =0 b) 2x +y)dx +(x —4y)dy =0
c) ex+eyg—z =0 d) (3x2 +3y)dx + (3y? +3x)dy =0

Exercise 1.8.102: Find the integrating factor for the following equations making them into exact
equations:

a) idx+3ydy20 b) dx —e™*Vdy =0
¢) (_Coysgx) +%) dx+%dy -0 d) (2y+y72)dx+(2y+x)dy:()

Exercise 1.8.103:

a) Show that every separable equation vy’ = f(x)g(y) can be written as an exact equation, and
verify that it is indeed exact.

b) Using this rewrite y’ = xy as an exact equation, solve it and verify that the solution is the
same as it was in Example 1.3.1.
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1.9 First order linear PDE

Note: 1 lecture, can safely be skipped

We only considered ODE so far, so let us solve a linear first order PDE. Consider the
equation

a(x, t)uy +b(x, t)us +c(x, t)u = g(x,t), u(x,0) = f(x), —o<x<oo, t>0,

where u(x, t) is a function of x and t. The initial condition u(x,0) = f(x) is now a function
of x rather than just a number. In these problems, it is useful to think of x as position and ¢
as time. The equation describes the evolution of a function of x as time goes on. Below,
the coefficients a, b, c, and the function ¢ are mostly going to be constant or zero. The
method we describe works with nonconstant coefficients, although the computations may
get difficult quickly.

This method we use is the method of characteristics. The idea is that we find lines along
which the equation is an ODE that we solve. We will see this technique again for second
order PDE when we encounter the wave equation in § 4.8.

Example 1.9.1: Consider the equation
ur +auy =0, u(x,0) = f(x).

This particular equation, u; + auy = 0, is called the transport equation.

The data will propagate along curves called characteristics. The idea is to change to the
so-called characteristic coordinates. If we change to these coordinates, the equation simplifies.
The change of variables for this equation is

& =x—at, s =t.
Let’s see what the equation becomes. Remember the chain rule in several variables.
Up = Usgéy + UgSp = —aUg + U,
Uy = UgEx + UsSx = Ug.
The equation in the coordinates £ and s becomes

(—aug +us)+a (ug) =0,
———— S~——
U Uy
or in other words
us = 0.

That is trivial to solve. Treating & as simply a parameter, we have obtained the ODE é—g‘ = (.
The solution is a function that does not depend on s (but it does depend on &). That is,
there is some function A such that

u=A(~E) =A(x — at).
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The initial condition says that:
f(x) = u(x,0) = Alx — a0) = A(x),

so A = f. In other words,
u(x,t) = f(x — at).
Everything is simply moving right at speed a as t increases. The curve given by the
equation
& = constant

is called the characteristic. See Figure 1.20. In this case, the solution does not change along
the characteristic.

In the (x,t) coordinates, the characteristic
curves satisfy t = %(x — &), and are in fact lines. (M E=0
The slope of characteristic lines is 1, and for each
different & we get a different characteristic line.

We see why u; + auy = 0 is called the transport
equation: everything travels at some constant
speed. Sometimes this is called convection. An
example application is material being moved by x
a river where the material does not diffuse and
is simply carried along. In this setup, x is the
position along the river, t is the time, and u(x, t)
the concentration the material at position x and time ¢. See Figure 1.21 for an example.

Figure 1.20: Characteristic curves.

I I | I I I I | I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 1.21: Example of “transport” in u; — uy = 0 (that is, « = 1) where the initial condition f(x)isa
peak at the origin. On the left is a graph of the initial condition u(x,0). On the right is a graph of the
function u(x, 1), that is at time t = 1. Notice it is the same graph shifted one unit to the right.

We use similar idea in the more general case:

auy +bu +cu =g, u(x,0) = f(x).
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We change coordinates to the characteristic coordinates. Let us call these coordinates (&, s).
These are coordinates where au, + bu; becomes differentiation in the s variable.

Along the characteristic curves (where & is constant), we get a new ODE in the s variable.
In the transport equation, we got the simple fi—’; = 0. In general, we get the linear equation

Z—Z +cu=g. (1.7)
We think of everything as a function of £ and s, although we are thinking of £ as a parameter
rather than an independent variable. So the equation is an ODE. It is a linear ODE that we
can solve using the integrating factor.
To find the characteristics, think of a curve given parametrically (x(s), t(s)). We try to
have the curve satisfy
dx at
ds " ds
Why? Because when we think of x and ¢t as functions of s we find, using the chain rule,

b.

d—u+cu— ud—x+uﬂ +cU = auy, +buy +cu =
ds "\ s T ds - ! -8

du
ds

So we get the ODE (1.7), which then describes the value of the solution u of the PDE along
this characteristic curve. It is also convenient to make sure that s = 0 corresponds to t = 0,
that is #(0) = 0. It will be convenient also for x(0) = &. See Figure 1.22.

" ¢ = constant

(x(s), £(5))

/‘S=0

x =& X

Figure 1.22: General characteristic curve.

Example 1.9.2: Consider
Uy + U +U =X, u(x,()):e_x2.

We find the characteristics, that is, the curves given by

dx 1 at

%—, %—1.
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So
X =54y, t =5+,

for some ¢; and ¢;. Ats = 0 we want f = 0, and x should be &. Sowe let c; = £ and ¢; = 0:
x=s+¢&, t =s.
The ODE is ‘;—LS‘ +u =x,and x = s + £. So, the ODE to solve along the characteristic is

du
E+M—S+E.

The general solution of this equation, treating & as a parameter,isu = Ce™ +s + & -1,

P . . . _c2 .
for some constant C. At s = 0, our initial condition is that u is e~¢", since at s = 0 we have

x = &. Given this initial condition, we find C = e~ &+1. So,

u= (6_52—E+1)e_s+s+5—1
—e S (1 -e S +s+E-1.
Substitute £ = x —t and s = f to find u in terms of x and ¢:
u:e_52"5+(1—5)e_5+s+5—1
R 1-x+te "t +x-1.

See Figure 1.23 on the next page for a plot of u(x, t) as a function of two variables.

When the coefficients are not constants, the characteristic curves are not going to be
straight lines anymore.

Example 1.9.3: Consider the following variable coefficient equation:
Xy +ur +2u =0, u(x,0) = cos(x).

We find the characteristics, that is, the curves given by

dx at

%—x, %—1

So
x =cpe’, t =5+ 0.

At s = 0, we wish to get the line t = 0, and x should be &. So
x = &e®, t=s.

OK, the ODE we need to solve is

— +2u =0.
ds+u0
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Figure 1.23: Plot of the solution u(x,t) to uy + u; + u = x, u(x,0) = e

This is for a fixed £. Ats = 0, we should get that u is cos(&), so that is our initial condition.

Consequently,

t

u=e*cos(&) = e cos(xe™).

We make a few closing remarks. One thing to keep in mind is that we would get into
trouble if the coefficient in front of u;, that is the b, is ever zero. Let us consider a quick
example of what can go wrong;:

uy+u=0, u(x,0) = sin(x).

This problem has no solution. If we had a solution, it would imply that u,(x,0) = cos(x),
but u,(x,0) + u(x,0) = cos(x) + sin(x) # 0. The problem is that the characteristic curve is
now the line ¢ = 0, and the solution is already provided on that line!

As long as b is nonzero, it is convenient to ensure that b is positive by multiplying by
—1 if necessary, so that positive s means positive ¢.

Another remark is that if 4 or b in the equation are variable, the computations can
quickly get out of hand, as the expressions for the characteristic coordinates become messy
and then solving the ODE becomes even messier. In the examples above, b was always 1,
meaning we got s = t in the characteristic coordinates. If b is not constant, your expression
for s will be more complicated.

Finding the characteristic coordinates is really a system of ODE in general if 2 depends
on t or if b depends on x. In that case, we would need techniques of systems of ODE to
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solve, see chapter 3 or chapter 8. In general, if 2 and b are not linear functions or constants,
finding closed form expressions for the characteristic coordinates may be impossible.
Finally, the method of characteristics applies to nonlinear first order PDE as well. In the
nonlinear case, the characteristics depend not only on the differential equation, but also on
the initial data. This leads to not only more difficult computations, but also the formation
of singularities where the solution breaks down at a certain point in time. An example
application where first order nonlinear PDE come up is traffic flow theory, and you have
probably experienced the formation of singularities: traffic jams. But we digress.

1.9.1 Exercises

Exercise 1.9.1: Solve

a) uy +9u, =0, u(x,0) =sin(x), b) uy —8u, =0, u(x,0)=sin(x),

c) ur +muy =0, u(x,0)=sin(x), d) uy + muy +u =0, u(x,0) = sin(x).
Exercise 1.9.2: Solve uy + 31, = 1, u(x,0) = x2.
Exercise 1.9.3: Solve u; + 3u, = x, u(x,0) = e*.
Exercise 1.9.4: Solve u, + u; + xu =0, u(x,0) = cos(x).
Exercise 1.9.5:

a) Find the characteristic coordinates for the following equations:
1) uy+ur+u=1, u(x,0) = cos(x), 2) 2uy +2up +2u =2, u(x,0) = cos(x).

b) Solve the two equations using the coordinates.

c) Explain why you got the same solution, although the characteristic coordinates you found
were different.

Exercise 1.9.6: Solve (1 + x?)u; + x?u, +e*u = 0, u(x,0) = 0. Hint: Think a little out of the box.
Exercise 1.9.101: Solve
a) uy =51y =0, u(x,0) = 1, b) u; +2u, =0, u(x,0) = cos(x).

Exercise 1.9.102: Solve u, + u; + tu =0, u(x,0) = cos(x).

Exercise 1.9.103: Solve u, + u; =5, u(x,0) = x.
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Chapter 2

Higher order linear ODEs

2.1 Second order linear ODEs

Note: 1 lecture, reduction of order optional, first part of §3.1 in [EP], parts of §3.1 and §3.2 in [BD]
Let us consider the general second order linear differential equation
A(x)y” + B(x)y" + C(x)y = F(x).

We usually divide through by A(x) to get

Yy +p(x)y’ +q(x)y = f(x), (2.1)

where p(x) = B(x)/A(x), q(x) = C(*)/A(x), and f(x) = F*)/A(x). The word linear means that the
equation contains no powers nor functions of y, y’, and y”.
In the special case when f(x) = 0, we have a so-called homogeneous equation

y"+py +q(x)y =0. (22)
We have already seen some second order linear homogeneous equations.

v +ky =0 Two solutions are: y; = cos(kx), 1y = sin(kx).

vy’ —k*y =0 Two solutions are: y; = e**, 1y, = e™F*.

If we know two solutions of a linear homogeneous equation, we know many more of
them.

Theorem 2.1.1 (Superposition). Suppose y1 and y, are two solutions of the homogeneous equation
(2.2). Then

y(x) = Cry1(x) + Caya(x),

also solves (2.2) for arbitrary constants C1 and Cs.
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That is, we can add solutions together and multiply them by constants to obtain new
and different solutions. We call the expression C1y1 + Coy2 a linear combination of y; and
y2. Let us prove this theorem; the proof is very enlightening and illustrates how linear
equations work.

Proof: Let y = C1y1 + Cay2. Then

v +py' +qy = (Criy1 + Coy2)” + p(Ciyr + Coy2)" + q(Cryr + Caya)
= C1yy + Coyy + Cipy; + Capys, + Cigyr + Caqy2

= C1(yy + py; + qy1) + Ca(yy + pys + qy2)
=C1'0+C2'O:O. O

The proof becomes even simpler to state if we use the operator notation. An operator is
an object that eats functions and spits out functions (kind of like what a function is, but a
function eats numbers and spits out numbers). Define the operator L by

Ly =y" +py +qy.

The differential equation now becomes Ly = 0. The operator (and the equation) L being
linear means that L(C1y1 + C2y2) = C1Ly1 + C2Ly». The proof above becomes

Ly = L(C1]/1 + Czyz) = C1Ly1 + CzLyz = C1 -0+ Cz -0=0.

Two different solutions to the second equation y” — k?y = 0 are y; = cosh(kx) and
y2 = sinh(kx). Let us remind ourselves of the definition, cosh x = % and sinh x = %
Therefore, these are solutions by superposition as they are linear combinations of the two
exponential solutions.

The functions sinh and cosh are sometimes more convenient to use than the exponential.

Let us review some of their properties:

cosh0 =1, sinh0 =0,

d ) arg.

—[coshx] = sinh x, —[smh x] = cosh x,
dx dx

cosh? x —sinh?x = 1.

Exercise 2.1.1: Derive these properties using the definitions of sinh and cosh in terms of exponen-
tials.

Linear equations have nice and simple answers to the existence and uniqueness question.

Theorem 2.1.2 (Existence and uniqueness). Suppose p, q, f are continuous functions on some
interval 1, a is a number in 1, and a, by, by are constants. Then the equation

y'+p)y’ + )y = fx),
has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y(a)=bo,  y'(a) = b1
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For example, the equation y” + k?y = 0 with y(0) = by and y’(0) = b; has the solution

y(x) = bg cos(kx) + %sin(kx).

The equation y” — k?y = 0 with y(0) = bg and y’(0) = by has the solution
y(x) = b cosh(kx) + b—klsinh(kx).

Using cosh and sinh in this solution allows us to solve for the initial conditions in a cleaner
way than if we have used the exponentials.

The initial conditions for a second order ODE consist of two equations. Common sense
tells us that if we have two arbitrary constants and two equations, then we should be able
to solve for the constants and find a solution to the differential equation satisfying the
initial conditions.

Question: Suppose we find two different solutions y; and v, to the homogeneous
equation (2.2). Can every solution be written (using superposition) in the form y =
Ciy1 + Coyn?

Answer is affirmative! Provided that y; and y; are different enough in the following
sense. We say y1 and y» are linearly independent if one is not a constant multiple of the other.

Theorem 2.1.3. Let p, q be continuous functions. Let y1 and y, be two linearly independent
solutions to the homogeneous equation (2.2). Then every other solution is of the form

Y= C1y1 + Czyz.
That is, y = C1y1 + Caya is the general solution.

For example, we found the solutions y; = sinx and y, = cosx for the equation
y” +y = 0. Itis not hard to see that sine and cosine are not constant multiples of each other.
If sin x = A cos x for some constant A, we let x = 0 and this would imply A = 0. But then
sinx = 0 for all x, which is preposterous. So y; and y, are linearly independent. Hence,

y =Crcosx + Cpsinx

is the general solution to y” + y = 0.

For two functions, checking linear independence is rather simple. Let us see another
example. Consider y” —2x72y = 0. Then y; = x? and y, = 1/x are solutions. To see that
they are linearly indepedent, suppose one is a multple of the other: y; = Ay,, we just
have to find out that A cannot be a constant. In this case we have A = v1/y, = x3, this most
decidedly not a constant. So y = C1x? + Cy1/x is the general solution.

If you have one solution to a second order linear homogeneous equation, then you
can find another one. This is the reduction of order method. The idea is that if we somehow
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found y; as a solution of y” + p(x)y’ + q(x)y = 0 we try a second solution of the form
y2(x) = y1(x)v(x). We just need to find v. We plug y» into the equation:

0=yy +p(x)y; +q(x)y2 = yjv +2y10" + y10” + p(x)(y10 + y19°) + q(2)y10
0

= 110" + y; + p()y)o’ + (v + Fa(x)y)v.

In other words, y10” + (2y; + p(x)y1)v” = 0. Using w = v’ we have the first order linear
equation yyw’ + (2y; + p(x)y1)w = 0. After solving this equation for w (integrating factor),
we find v by antidifferentiating w. We then form ]/2 by computing yjv. For example,
suppose we somehow know y; = x is a solution to y” + x‘1 y’ — x72y = 0. The equation
for w is then xw’ + 3w = 0. We find a solution, w = Cx~3, and we find an antiderivative
v =z =5. Hence y, = y10 = f Any C works and so C = —2 makes y, = 1/x. Thus, the
general solution is y = C1x + Cpl/x.

Since we have a formula for the solution to the first order linear equation, we can write

a formula for yy:
o=/ P dx
1) = () /
yl(x)

However, it is much easier to remember that we just need to try y2(x) = y1(x)v(x) and find
v(x) as we did above. Also, the technique works for higher order equations too: you get to
reduce the order for each solution you find. So it is better to remember how to do it rather
than a specific formula.

We will study the solution of nonhomogeneous equations in § 2.5. We will first focus
on finding general solutions to homogeneous equations.

2.1.1 Exercises
Exercise 2.1.2: Show that y = e* and y = e>* are linearly independent.
Exercise 2.1.3: Take y” + 5y = 10x + 5. Find (guess!) a solution.

Exercise 2.1.4: Prove the superposition principle for nonhomogeneous equations. Suppose that vy
is a solution to Lyy = f(x) and ya is a solution to Ly, = g(x) (same linear operator L). Show that

Yy =Yy1+ yasolves Ly = f(x)+ g(x).

Exercise 2.1.5: For the equation x*y” — xy’ = 0, find two solutions, show that they are linearly

independent and find the general solution. Hint: Try y = x".

Equations of the form ax?y” + bxy’ + cy = 0 are called Euler’s equations or Cauchy—Euler

equations. They are solved by trying y = x" and solving for r (assume that x > 0 for
simplicity).
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Exercise 2.1.6: Suppose that (b — a)* — 4ac > 0.

a) Find a formula for the general solution of ax?y”

find a formula for r.
b) What happens when (b — a)? —4ac =0or (b —a)* — 4ac < 0?

+bxy’ +cy =0. Hint: Try y = x" and

We will revisit the case when (b — a)2 —4ac < 0 later.

Exercise 2.1.7: Same equation as in Exercise 2.1.6. Suppose (b — a)2 —4ac = 0. Find a formula
for the general solution of ax?>y” + bxy’ + cy = 0. Hint: Try y = x” In x for the second solution.

Exercise 2.1.8 (reduction of order): Suppose y1 is a solution to y” + p(x)y’ + q(x)y = 0. By
directly plugging into the equation, show that

- [ p(x)dx
ya(x) = y1(x) / 5 dx
yl(x)
is also a solution.

Exercise 2.1.9 (Chebyshev’s equation of order 1): Take (1 — x?)y” — xy’ +y = 0.

a) Show that y = x is a solution.
b) Use reduction of order to find a second linearly independent solution.

c) Write down the general solution.
Exercise 2.1.10 (Hermite’s equation of order 2): Take y” —2xy’ + 4y = 0.

a) Show that y = 1 — 2x? is a solution.

b) Use reduction of order to find a second linearly independent solution. (It's OK to leave a
definite integral in the formula.)

c) Write down the general solution.
Exercise 2.1.101: Are sin(x) and e* linearly independent? Justify.
Exercise 2.1.102: Are e* and e**2 linearly independent? Justify.
Exercise 2.1.103: Guess a solution to y” +y" +y = 5.
Exercise 2.1.104: Find the general solution to xy” + y’ = 0. Hint: It is a first order ODE in y’.

Exercise 2.1.105: Write down an equation (guess) for which we have the solutions e* and e**
Hint: Try an equation of the form y” + Ay’ + By = 0 for constants A and B, plug in both e* and
e?* and solve for A and B.
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2.2 Constant coefficient second order linear ODEs

Note: more than 1 lecture, second part of §3.1 in [EP], §3.1 in [BD]

2.2.1 Solving constant coefficient equations

Consider the problem
y' -6y’ +8y=0, y0)=-2, y(0)=6.

This is a second order linear homogeneous equation with constant coefficients. Constant
coefficients means that the functions in front of y”, y’, and y are constants, they do not
depend on x.

To guess a solution, think of a function that stays essentially the same when we
differentiate it, so that we can take the function and its derivatives, add some multiples of
these together, and end up with zero. Yes, we are talking about the exponential.

Let us try* a solution of the form y = ¢’*. Then y’ = re’* and y” = r?¢’*. Plug in to get

y'—6y'+8y =0,
r?e™ —6 re’™ +8 ¢ =0,
—— ~—— ~——
y” v Y
12 —6r+8=0 (divide through by e™),
(r=2)(r—-4)=0.
Hence, if r =2 or v = 4, then e’* is a solution. So let y; = e and Yo = edx,

Exercise 2.2.1: Check that y, and y» are solutions.

The functions e?* and e** are linearly independent. If they were not linearly independent,
we could write e** = Ce?* for some constant C, implying that e?* = C for all x, which is
clearly not possible. Hence, we can write the general solution as

y = Cre? + Cpe™™.

We need to solve for C; and C,. To apply the initial conditions, we first find y’ =
2C1e?* +4Ce*. We plug x = 0 into y and y’ and solve.

-2 = y(O) = C1 + Cz,
6= y’(O) =2Cq1 +4C,.

*Making an educated guess with some parameters to solve for is such a central technique in differential
equations, that people sometimes use a fancy name for such a guess: ansatz, German for “initial placement of
a tool at a work piece.” Yes, the Germans have a word for that.
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Either apply some matrix algebra, or just solve these by high school math. For example,
divide the second equation by 2 to obtain 3 = C; + 2C», and subtract the two equations to
get5 = Co. Then C; = -7 as =2 = C1 + 5. Hence, the solution we are looking for is

y = —7¢* + 5e**.

We generalize this example into a method. Suppose that we have an equation
ay” +by +cy =0, (2.3)
where a, b, c are constants. Try the solution y = e" to obtain
ar?e’™ +bre’™ + ce’™ = 0.
Divide by e’* to obtain the so-called characteristic equation of the ODE:
ar® +br +c=0.

Solve for the r by using the quadratic formula:

—b + Vb2 — 4ac
2a '

So e"* and e™" are solutions. There is still a difficulty if r; = ry, but it is not hard to
overcome.

r,r =

Theorem 2.2.1. Suppose that r1 and ry are the roots of the characteristic equation.

(i) If r1 and ry are distinct and real (when b% — 4ac > 0), then (2.3) has the general solution

y= Cre™* + Cpe™*.

(ii) If r1 = r2 (happens when b* — 4ac = 0), then (2.3) has the general solution
y =(C1+ Cax)e™.
Example 2.2.1: Solve
y// _ ka =0.

The characteristic equation is r2 — k? = 0 or (r — k)(r + k) = 0. Consequently, e~** and e**
are the two linearly independent solutions, and the general solution is

y= Cre*™* + Cye ™,

. S =S . S_,—8 . .
Since cosh s = £&— and sinh s = £5'—, we can also write the general solution as

y = Dj cosh(kx) + D; sinh(kx).

Example 2.2.2: Find the general solution of
y" -8y +16y =0.

The characteristic equation is 12 — 87 + 16 = (r — 4)2 = 0. The equation has a double
root r1 = r, = 4. The general solution is, therefore,

y =(C1 + Cax) e = Cre* + Crxe™.
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Exercise 2.2.2: Check that e** and xe** are linearly independent.

That e** solves the equation is clear. If xe** solves the equation, then we know we are
done. Let us compute y’ = e** + 4xe* and y” = 8¢** + 16xe**. Plug in

" — 8y + 16y = 8e* + 16xe® — 8(e* + 4xe) + 16xe** = 0.
y y y

In some sense, a doubled root rarely happens. If coefficients are picked randomly, a
doubled root is unlikely. There are, however, some natural phenomena (such as resonance
as we will see) where a doubled root does happen, so we cannot just dismiss this case.

Let us give a short argument for why the solution xe” works when the root is doubled.
This case is really a limiting case of when the two roots are distinct and very close. Note
that erzrz:filx is a solution when the roots are distinct. When we take the limit as 1 goes to
12, we are really taking the derivative of e’* using r as the variable. Therefore, the limit is
xe”, and hence this is a solution in the doubled root case.

2.2.2 Complex numbers and Euler’s formula

A polynomial may have complex roots. The equation 7% + 1 = 0 has no real roots, but it
does have two complex roots. Here we review some properties of complex numbers.

Complex numbers may seem a strange concept, especially because of the terminology.
There is nothing imaginary or really complicated about complex numbers. A complex
number is simply a pair of real numbers, (a, b). Think of a complex number as a point in the
plane. We add complex numbers in the straightforward way: (a,b) + (c,d) = (a + ¢, b + d).
We define multiplication by

(a,b)x(c,d) def (ac = bd,ad + bc).

It turns out that with this multiplication rule, all the standard properties of arithmetic hold.
Further, and most importantly (0,1) x (0,1) = (-1, 0).

Generally we write (a,b) as a + ib, and we treat 7 as if it were an unknown. When b is
zero, then (a,0) is just the number a. We do arithmetic with complex numbers just as we
would with polynomials. The property we just mentioned becomes i?> = —1. So whenever
we see i2, we replace it by —1. For example,

(2 +3i)(4i) —5i = (2 x4)i + (3 x 4)i*> - 5i = 8i + 12(-1) — 5i = —12 + 3i.

The numbers i and —i are the two roots of r> + 1 = 0. Engineers often use the letter j
instead of i for the square root of —1. We use the mathematicians” convention and use i.

Exercise 2.2.3: Make sure you understand (that you can justify) the following identities:

1

a) i2=-1,3=—i,i*=1, b)?:—i,

c) 3=7i)(-2-9i)=---=-69 —13i, d) (3-21)(3+2i) = 32— (2i)* = 32422 = 13,
1 _ 1 3+42i _ 342i _ 3 2

¢) 33 = 3330 =15 = 13 T 13t
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We also define the exponential e+ of a complex number. We do this by writing down
the Taylor series and plugging in the complex number. Because most properties of the
exponential can be proved by looking at the Taylor series, these properties still hold for the
complex exponential. For example the very important property: e**Y = e*eY. This means
that e?*t = ¢%? Hence if we can compute e’ we can compute e?*ib For e’ we use the
so-called Euler’s formula.

Theorem 2.2.2 (Euler’s formula).

[ ¢! = cos @ +isin 6 and 7% = cos@ — isin 0. ]

In other words, e** = ¢%(cos(b) + i sin(b)) = e? cos(b) + ie” sin(b).
Exercise 2.2.4: Using Euler’s formula, check the identities:
i0 o ,—i6 i0 _ ,—i0
+ —

cos O = % and sin 0 = %
Exercise 2.2.5: Double angle identities: Start with ¢'?%) = (eie)z. Use Euler on each side and
deduce:

cos(20) = cos? 0 — sin’ 6 and sin(20) = 2sin 6 cos 6.

For a complex number a + ib we call a the real part and b the imaginary part of the
number. Often the following notation is used,

Re(a +ib) =a and Im(a + ib) = b.

2.2.3 Complex roots

Suppose the equation ay” + by’ + cy = 0 has the characteristic equation ar? + br + ¢ = 0

—b+Vb%2—4ac
2a

that has complex roots. By the quadratic formula, the roots are . These roots are

complex if b? — 4ac < 0. In this case the roots are

-b  .Vdac - b?

7’1,7’2:511 2

As you can see, we always get a pair of roots of the form a + if. In this case we can still

write the solution as
y = Cle(a+iﬁ)x + Cze(a—iﬁ)x.

However, the exponential is now complex-valued. We need to allow C; and C; to be
complex numbers to obtain a real-valued solution (which is what we are after). While
there is nothing particularly wrong with this approach, it can make calculations harder
and it is generally preferred to find two real-valued solutions.

Here we can use Euler’s formula. Let

Y= e(a+iﬁ)x and Yy = e(a—iﬁ)x.
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Then

y1 = e cos(Bx) + ie®" sin(Bx),
Y2 = e** cos(Bx) — ie®* sin(fx).

Linear combinations of solutions are also solutions. Hence,

+
Y3 = V1 > Y2 — o cos(ﬁx),
Ya = ylz_iyz = e sin(Bx),

are also solutions. Furthermore, they are real-valued. It is not hard to see that they are
linearly independent (not multiples of each other). Therefore, we have the following
theorem.

Theorem 2.2.3. Take the equation
ay” + by +cy =0.
If the characteristic equation has the roots o + i (when b* — 4ac < 0), then the general solution is
y = C1e®* cos(Bx) + Cae™* sin(px).

Example 2.2.3: Find the general solution of y” + k?y = 0, for a constant k > 0.
The characteristic equation is r2 + k2 = 0. Therefore, the roots are r = +ik, and by the
theorem, we have the general solution

y = Cy cos(kx) + Ca sin(kx).

Example 2.2.4: Find the solution of y” — 6y’ + 13y = 0, y(0) = 0, ¥’(0) = 10.

The characteristic equation is > — 6r + 13 = 0. By completing the square we get
(r— 3)2 + 22 = 0 and hence the roots are r = 3 + 2i. By the theorem we have the general
solution

y = C1e> cos(2x) + Coe3* sin(2x).

To find the solution satisfying the initial conditions, we first plug in zero to get
0=y(0) = C1e° cos0 + Cre®sin0 = Cy.
Hence, C; = 0 and y = Cpe%* sin(2x). We differentiate,
y’ = 3Cze" sin(2x) + 2C2e>* cos(2x).

We again plug in the initial condition and obtain 10 = y’(0) = 2Cy, or C = 5. The solution
we are seeking is
y = 5¢3% sin(2x).
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2.2.4 Exercises

Exercise 2.2.6: Find the general solution of 2y” + 2y’ — 4y = 0.

Exercise 2.2.7: Find the general solution of y” + 9y’ — 10y = 0.

Exercise 2.2.8: Solve y” — 8y’ + 16y = 0 for y(0) =2, y’(0) = 0.

Exercise 2.2.9: Solve y” + 9y’ =0 for y(0) =1, y’(0) = 1.

Exercise 2.2.10: Find the general solution of 2y” + 50y = 0.

Exercise 2.2.11: Find the general solution of y” + 6y’ + 13y = 0.

Exercise 2.2.12: Find the general solution of y” = 0 using the methods of this section.

Exercise 2.2.13: The method of this section applies to equations of other orders than two. We will
see higher orders later. Try to solve the first order equation 2y’ + 3y = 0 using the methods of this
section.

Exercise 2.2.14: Let us revisit the Cauchy—Euler equations of Exercise 2.1.6 on page 82. Suppose
now that (b — a)* — 4ac < 0. Find a formula for the general solution of ax®y” + bxy’ + cy = 0.
Hint: Note that x" = e"n*,

Exercise 2.2.15: Find the solution to y” — (2a)y’ + a®y = 0, y(0) = a, y'(0) = b, where a, a, and
b are real numbers.

Exercise 2.2.16: Construct an equation such that y = C1e~>* cos(3x) + Coe~2* sin(3x) is the
general solution.

Exercise 2.2.101: Find the general solution to y” + 4y’ + 2y = 0.

Exercise 2.2.102: Find the general solution to y” — 6y’ + 9y = 0.

Exercise 2.2.103: Find the solution to2y” +y"+y =0, y(0) =1, y’(0) = -2.
Exercise 2.2.104: Find the solution to 2y” + vy’ =3y =0, y(0) = a, y’(0) = b.
Exercise 2.2.105: Find the solution to z"(t) = =2z’(t) — 2z(t), z(0) = 2, z’(0) = 2.

Exercise 2.2.106: Find the solution to y” — (o + )y’ + aBy =0, y(0) = a, y’(0) = b, where o, p,
a, and b are real numbers, and o # .

Exercise 2.2.107: Construct an equation such that y = C1e3* + Cae™2" is the general solution.
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2.3 Higher order linear ODEs

Note: somewhat more than 1 lecture, §3.2 and §3.3 in [EP], §4.1 and §4.2 in [BD]

We briefly study higher order equations. Equations appearing in applications tend to
be second order. Higher order equations do appear from time to time, but generally the
world around us is “second order.”

The basic results about linear ODEs of higher order are essentially the same as for second
order equations, with 2 replaced by n. The important concept of linear independence is
somewhat more complicated when more than two functions are involved. For higher order
constant coefficient ODEs, the methods developed are also somewhat harder to apply, but
we will not dwell on these complications. It is also possible to use the methods for systems
of linear equations from chapter 3 to solve higher order constant coefficient equations.

Let us start with a general homogeneous linear equation

¥y 4+ pu 1 ()Y 4 pr(0)y + po(x)y = 0. (2.4)
Theorem 2.3.1 (Superposition). If y1, Y2, ..., yn are solutions of the homogeneous equation
(2.4), then
y(x) = Ciya(x) + Coya(x) + -+ + Cuyn(x)

also solves (2.4) for arbitrary constants C1,Cp, ..., Cy.

In other words, a linear combination of solutions to (2.4) is also a solution to (2.4). We
also have the existence and uniqueness theorem for nonhomogeneous linear equations.

Theorem 2.3.2 (Existence and uniqueness). Suppose pg through p,_1, and f are continuous
functions on some interval I, a is a number in I, and by, by, ..., b,—1 are constants. Then the
equation

Y+ paaa @)y + -+ pr()y + pox)y = £(x)

has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y(a)=bo, y'(a)=by, ..., y(”_l)(a) =b,_1.

2.3.1 Linear independence

When we had two functions y; and y;, we said they were linearly independent if one was
not a multiple of the other. Same idea holds for n functions, although in this case it is
easier to state as follows. The functions y1, 2, . . ., ¥, are linearly independent if the equation

ciy1+cyp+--+cpy, =0

has only the trivial solution c1 = ¢ = - -- = ¢, = 0, where the equation must hold for all x.
If we can solve the equation with some constants c1, ¢y, . .., ¢, where for example ¢; # 0,
then we can solve for y; as a linear combination of the others. If the functions are not
linearly independent, they are linearly dependent.
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Example 2.3.1: Show that e*, ¢?*, ¢3* are linearly independent.

Let us give several ways to show this fact. Many textbooks (including [EP] and [F])
introduce Wronskians, but it is difficult to see why they work and they are not really
necessary here.

Consider

cre* + cpe? + 03¢ = 0.

2:

We use rules of exponentials and write z = e*. Hence z? = ¢?* and z> = ¢3*. Then we have

c1z + 0222 + 0323 =0.

The left-hand side is a third degree polynomial in z. It is either identically zero, or it has
at most 3 zeros. Therefore, it is identically zero, c; = ¢ = c3 = 0, and the functions are
linearly independent.

Let us try another way. As before we write

cre* + cpe? + e3¢ = 0.
This equation has to hold for all x. We divide through by e3* to get
cre™? + cpe ¥ 4+ ¢3 = 0.

As the equation is true for all x, let x — oco. After taking the limit we see that c3 = 0. Hence
our equation becomes
c1e* + cpe® = 0.

Rinse, repeat!
How about yet another way. We again write

cre* + cpe? + e3¢ = 0.

We can evaluate the equation and its derivatives at different values of x to obtain equations
for c1, c2, and c3. Let us first divide by e* for simplicity.

c1 + cre™ + cz3e?¥ = 0.
We set x = 0 to get the equation c1 + c2 + c3 = 0. Now differentiate both sides
cre* + 2c3e%* = 0.

We set x = 0 to get c2 + 2c3 = 0. We divide by e* again and differentiate to get 2cze* = 0.
It is clear that c3 is zero. Then ¢, must be zero as ¢, = —2c¢3, and ¢; must be zero because
c1+cr+c3=0.

There is no one best way to do it. All of these methods are perfectly valid. The important
thing is to understand why the functions are linearly independent.

Example 2.3.2: On the other hand, the functions e*, e™*, and cosh x are linearly dependent.
Simply apply definition of the hyperbolic cosine:
eX+e™™

coshx = — or 2coshx —e¥ —e™* =0.
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2.3.2 Constant coefficient higher order ODEs

When we have a higher order constant coefficient homogeneous linear equation, the song
and dance is exactly the same as it was for second order. We just need to find more
solutions. If the equation is n'h order, we need to find  linearly independent solutions. It
is best seen by example.

Example 2.3.3: Find the general solution to
ylll _ Sy” _ yl + 3y — O. (2.5)

Try: y = e"™*. We plug in and get

We divide through by e"*. Then
P =312 —r+3=0.

The trick now is to find the roots. There is a formula for the roots of degree 3 and 4
polynomials but it is very complicated. There is no formula for higher degree polynomials.
That does not mean that the roots do not exist. There are always 7 roots for an n'"" degree
polynomial. They may be repeated and they may be complex. Computers are pretty good
at finding roots approximately for reasonable size polynomials.

A good place to start is to plot the polynomial and check where it is zero. We can also
simply try plugging in. We just start plugging in numbers r = -2,-1,0,1, 2, ... and see if
we get a hit (we can also try complex numbers). Even if we do not get a hit, we may get
an indication of where the root is. For example, we plug r = -2 into our polynomial and
get —15; we plug in r = 0 and get 3. That means there is a root between r = -2 and r = 0,
because the sign changed. If we find one root, say r1, then we know (r — r1) is a factor of
our polynomial. Polynomial long division can then be used.

A good strategy is to begin with » = 0, 1, or —1. These are easy to compute. Our
polynomial has two such roots, 1 = —1 and r; = 1. There should be 3 roots and the last
root is reasonably easy to find. The constant term in a monic* polynomial such as this is the
multiple of the negations of all the roots because > —3r2 —r + 3 = (r — r1)(r — r2)(r — 13). So

3 = (=r)(=r2)(=r3) = (D(=1)(=13) = 13.

You should check that 73 = 3 really is a root. Hence e™, e* and e3* are solutions to (2.5).

They are linearly independent as can easily be checked, and there are 3 of them, which
happens to be exactly the number we need. So the general solution is

y=Cie™" 4+ Coe* + Cse3*.

d

*The word monic means that the coefficient of the top degree %, in our case 3, is 1.
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Suppose we were given some initial conditions y(0) = 1, ¥’(0) = 2, and y”(0) = 3. Then

1=y(0)=C1+C2+C3,
2= ]//(0) =-C1+Cr + 3C3,
3= ;I/”(O) =C1+C+9Cs.

It is possible to find the solution by high school algebra, but it would be a pain. The
sensible way to solve a system of equations such as this is to use matrix algebra, see § 3.2
or appendix A. For now we note that the solution is C; = —1/4, C; = 1, and C3 = /4. The
specific solution to the ODE is

y= _Ile"x+ex+ie3x.
Next, suppose that we have real roots, but they are repeated. Let us say we have a root
r repeated k times. In the spirit of the second order solution, and for the same reasons, we
have the solutions

rx rx 2

e’ xe'™, xZe™, ..., xklerx,

We take a linear combination of these solutions to find the general solution.

Example 2.3.4: Solve
) _

y 3ylll+3y//_yl:0.

We note that the characteristic equation is
=33 +3r2 -1 =0.

By inspection we note that r* — 373 + 3r2 — v = r(r —1)°. Hence the roots given with
multiplicity are r = 0,1, 1, 1. Thus the general solution is
Yy = (C1 + Cox + ngz) e’ + Cy

N——
terms coming from r=1 from r=0

The case of complex roots is similar to second order equations. Complex roots always
come in pairs r = a + i5. Suppose we have two such complex roots, each repeated k times.
The corresponding solution is

(Co+ C1x + -+ + CrgxF 1) e cos(Bx) + (Do + Dix +--- + Di_1x*71) ¥ sin(Bx).
where Co, ..., Cix-1, Do, ..., Di_1 are arbitrary constants.

Example 2.3.5: Solve

1444

yW —4y” +8y” — 8y +4y =0.
The characteristic equation is
rr—4r3 + 812 - 8r +4 =0,
(r? = 2r + 2)2 =0,

(r-1)%+1)* =0.
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Hence the roots are 1 + i, both with multiplicity 2. Hence the general solution to the ODE is
y = (C1+ Cax)e* cosx + (Cs + Cyqx) e* sin x.

The way we solved the characteristic equation above is really by guessing or by inspection.
It is not so easy in general. We could also have asked a computer or an advanced calculator
for the roots.

2.3.3 Exercises

Exercise 2.3.1: Find the general solution for y"" —y” + vy’ —y = 0.

Exercise 2.3.2: Find the general solution for y® — 5y” + 6y” = 0.

Exercise 2.3.3: Find the general solution for y"’ +2y"” + 2y’ = 0.

Exercise 2.3.4: Suppose the characteristic equation for an ODE is (r — 1)*(r — 2)* = 0.

a) Find such a differential equation.

b) Find its general solution.
Exercise 2.3.5: Suppose that a fourth order equation has a solution y = 2e**x cos x.

a) Find such an equation.

b) Find the initial conditions that the given solution satisfies.
Exercise 2.3.6: Find the general solution for the equation of Exercise 2.3.5.

Exercise 2.3.7: Let f(x) = e* —cosx, g(x) = e* + cosx, and h(x) = cos x. Are f(x), g(x), and
h(x) linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.8: Let f(x) =0, g(x) = cosx, and h(x) = sinx. Are f(x), g(x), and h(x) linearly
independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.9: Are x, x?, and x* linearly independent? If so, show it, if not, find a linear
combination that works.

Exercise 2.3.10: Are e*, xe*, and x*e* linearly independent? If so, show it, if not, find a linear
combination that works.

Exercise 2.3.11: Find an equation such that y = xe=>* sin(3x) is a solution.

Exercise 2.3.101: Find the general solution of y® — y® = 0.
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Exercise 2.3.102: Suppose that the characteristic equation of a third order differential equation has
roots £2i and 3.

a) What is the characteristic equation?
b) Find the corresponding differential equation.

c) Find the general solution.
Exercise 2.3.103: Solve 1001y + 3.2y” + my’ — V4y = 0, y(0) = 0, y’(0) = 0, y”(0) = 0.

Exercise 2.3.104: Are e*, e**!, ¢2*, sin(x) linearly independent? If so, show it, if not find a linear
combination that works.

Exercise 2.3.105: Are sin(x), x, x sin(x) linearly independent? If so, show it, if not find a linear
combination that works.

Exercise 2.3.106: Find an equation such that y = cos(x), y = sin(x), y = e* are solutions.
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2.4 Mechanical vibrations

Note: 2 lectures, §3.4 in [EP], §3.7 in [BD]

Let us look at some applications of linear second order constant coefficient equations.

24.1 Some examples

Our first example is a mass on a spring. Suppose we have a k F(t)
mass m > 0 (in kilograms) connected by a spring with spring w m —»

constant k > 0 (in newtons per meter) to a fixed wall. There
may be some external force F(t) (in newtons) acting on the
mass. Finally, there is some friction measured by ¢ > 0 (in
newton-seconds per meter) as the mass slides along the floor (or perhaps a damper is
connected).

Let x be the displacement of the mass (x = 0 is the rest position), with x growing to
the right (away from the wall). The force exerted by the spring is proportional to the
compression of the spring by Hooke’s law. Therefore, it is kx in the negative direction.
Similarly the amount of force exerted by friction is proportional to the velocity of the mass.
By Newton’s second law we know that force equals mass times acceleration and hence
mx” = F(t) — cx’ — kx or

damping c

mx” + cx’ + kx = F(t).
This is a linear second order constant coefficient ODE. We say the motion is
(i) forced, if F # O (if F is not identically zero),
(ii) unforced or free, if F = 0 (if F is identically zero),
(iii) damped, if c > 0, and
(iv) undamped, if ¢ = 0.

This system appears in lots of applications even if it does not at first seem like it. Many
real-world scenarios can be simplified to a mass on a spring. For example, a bungee
jump setup is essentially a mass and spring system (you are the mass). It would be good
if someone did the math before you jump off the bridge, right? Let us give two other
examples.

Here is an example for electrical engineers. Consider the pictured
RLC circuit. There is a resistor with a resistance of R ohms, an inductor
with an inductance of L henries, and a capacitor with a capacitance
of C farads. There is also an electric source (such as a battery) giving
a voltage of E(t) volts at time ¢ (measured in seconds). Let Q(t) be the
charge in coulombs on the capacitor and I(¢) be the current in the circuit. The relation

~ 0
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between the two is Q” = I. By elementary principles we find LI’ + RI + Q/c = E. We
differentiate to get

LI"(t) + RI'(t) + %I(t) —E(h).

This is a nonhomogeneous second order constant coefficient linear equation. As L, R, and
C are all positive, this system behaves just like the mass and spring system. Position of
the mass is replaced by current. Mass is replaced by inductance, damping is replaced by
resistance, and the spring constant is replaced by one over the capacitance. The change in
voltage becomes the forcing function—for constant voltage this is an unforced motion.

Our next example behaves like a mass and spring system
only approximately. Suppose a mass m hangs on a pendulum
of length L. We seek an equation for the angle 0(t) (in radians).
Let g be the force of gravity. Elementary physics mandates that
the equation is

0" + %sin@ =0.

Let us derive this equation using Newton’s second law: force
equals mass times acceleration. The acceleration is LO” and
mass is m. So mLO” has to be equal to the tangential component of the force given by
the gravity, which is mg sin 0 in the opposite direction. So mLO” = —mgsin0. The m
curiously cancels from the equation.

Now we make our approximation. For small 6 we have that approximately sin 0 ~ 0.
This can be seen by looking at the graph. In Figure 2.1 we can see that for approximately
—0.5 < 0 < 0.5 (in radians) the graphs of sin 0 and 0 are almost the same.

Therefore, when the swings are small, 0
is small and we can model the behavior by W = T ) 1.
the simpler linear equation

05

V24 g _
v} +L6_0.

0.0

The errors from this approximation build
up. So after a long time, the state of the
real-world system might be substantially
different from our solution. Also we will see
that in a mass-spring system, the amplitude | "L . L L 1
is independent of the period. This is not ) ) | |
true for a pendulum. Nevertheless, for
reasonably short periods of time and small
swings (that is, only small angles 0), the approximation is reasonably good.

In real-world problems it is often necessary to make these types of simplifications.
We must understand both the mathematics and the physics of the situation to see if the
simplification is valid in the context of the questions we are trying to answer.

-0.5

Figure 2.1: The graphs of sin 0 and 0 (in radians).
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24.2 Free undamped motion

In this section we only consider free or unforced motion, as we do not know yet how to
solve nonhomogeneous equations. Let us start with undamped motion where ¢ = 0. The
equation is

mx"” + kx = 0.

We divide by m and let wg = /k/m to rewrite the equation as
X"+ wix = 0.
The general solution to this equation is
x(t) = A cos(wot) + Bsin(wot).
By a trigonometric identity
A cos(wot) + Bsin(wpt) = C cos(wot — ),

for two different constants C and y. Itis not hard to compute that C = VA2 + B2and tan y =
B/A. Therefore, we let C and y be our arbitrary constants and write x(t) = C cos(wot — ).

Exercise 2.4.1: Justify the identity A cos(wot) + Bsin(wot) = C cos(wot — y) and verify the
equations for C and y. Hint: Start with cos(a — ) = cos(a) cos(B) + sin(a) sin(p) and multiply
by C. Then what should o and p be?

While it is generally easier to use the first form with A and B to solve for the initial
conditions, the second form is much more natural. The constants C and y have nice
physical interpretation. Write the solution as

x(t) = C cos(wot — y).

This is a pure-frequency oscillation (a sine wave). The amplitude is C, wy is the (angular)
frequency, and y is the so-called phase shift. The phase shift just shifts the graph left or right.
We call wg the natural (angular) frequency. This entire setup is called simple harmonic motion.

Let us pause to explain the word angular before the word frequency. The units of wg
are radians per unit time, not cycles per unit time as is the usual measure of frequency.
Because one cycle is 27 radians, the usual frequency is given by 52. It is simply a matter of
where we put the constant 27, and that is a matter of taste.

The period of the motion is one over the frequency (in cycles per unit time) and hence
i—g. That is the amount of time it takes to complete one full cycle.

Example 2.4.1: Suppose that m = 2kg and k = 8 N/m. The whole mass and spring setup
is sitting on a truck that was traveling at 1 m/s. The truck crashes and hence stops. The
mass was held in place 0.5 meters forward from the rest position. During the crash
the mass gets loose. That is, the mass is now moving forward at 1m/s, while the other
end of the spring is held in place. The mass therefore starts oscillating. What is the
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frequency of the resulting oscillation? What is the amplitude? The units are the mks units
(meters-kilograms-seconds).

The setup means that the mass was at half a meter in the positive direction during the
crash and relative to the wall the spring is mounted to, the mass was moving forward (in
the positive direction) at 1 m/s. This gives us the initial conditions.

So the equation with initial conditions is

2x" +8x =0, x(0) = 0.5, x’'(0) = 1.

We directly compute wy = yk/m = V4 = 2. Hence the angular frequency is 2. The usual
frequency in Hertz (cycles per second) is 2/2n = /= =~ 0.318.
The general solution is
x(t) = A cos(2t) + Bsin(2t).
Letting x(0) = 0.5 means A = 0.5. Then x’(t) = —2(0.5) sin(2t) + 2B cos(2t). Letting x’(0) = 1
we get B = 0.5. Therefore, the amplitude is C = VA2 + B2 = v0.25 + 0.25 = V0.5 ~ 0.707.
The solution is

x(t) = 0.5 cos(2t) + 0.5sin(2t).
A plot of x(t) is shown in Figure 2.2.

In general, for free undamped motion, a
solution of the form

0.0 2.5 5.0 7.5 10.0,

x(t) = A cos(wot) + Bsin(wot),

corresponds to the initial conditions x(0) =
A and x’(0) = woB. Therefore, it is easy to
figure out A and B from the initial condi-
tions. The amplitude and the phase shift
can then be computed from A and B. In
the example, we have already found the am-
plitude C. Let us compute the phase shift. 1o b L L L EIp
We know that tany = B/a = 1. We take the ' ' '
arctangent of 1 and get 7/4 or approximately
0.785. We still need to check if this y is in
the correct quadrant (and add = to y if it is not). Since both A and B are positive, then y
should be in the first quadrant, 7/4 radians is in the first quadrant, so y = 7/4.

Note: Many calculators and computer software have not only the atan function for
arctangent, but also what is sometimes called atan2. This function takes two arguments, B
and A, and returns a y in the correct quadrant for you.

Figure 2.2: Simple undamped oscillation.

2.4.3 Free damped motion
Let us now focus on damped motion. Let us rewrite the equation

mx” +cx’+kx =0,
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as
x” +2px’ + wix =0,

wo =+ & - °
TN’ p_2m'

72+2pr+a)S:O.

where

The characteristic equation is

Using the quadratic formula we get that the roots are

r=—pxp? - w.

The form of the solution depends on whether we get complex or real roots. We get real
roots if and only if the following number is nonnegative:

s 9 (C)z_k ¢ — 4km
m 4m?

P90 =g

The sign of p? — w is the same as the sign of ¢? — 4km. Thus we get real roots if and only if
¢? — 4km is nonnegative, or in other words if ¢? > 4km.

Overdamping

When ¢? — 4km > 0, the system is over-
damped. In this case, there are two distinct | | ‘ ‘ ‘
real roots r1 and r,. Both roots are nega-

2
0

tive: As /p? — w; is always less than p, then

Y 3

The solution is

is negative in either case.

x(t) = Cre’t + Coe™,

Since r1, 1 are negative, x(t) — Oast — oo.
Thus the mass will tend towards the rest 0 2 = 7 00
position as time goes to infinity. For a few Figure 2.3: Overdamped motion for several differ-
sample plots for different initial conditions, | et initial conditions.
see Figure 2.3.

No oscillation happens. In fact, the
graph crosses the x-axis at most once. To see why, we try to solve 0 = Cie”tf + Cpe™'.
Therefore, Cre"! = —Cpe”! and using laws of exponents we obtain

-G
C

— e(TZ_rl)t .
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This equation has at most one solution ¢t > 0. For some initial conditions the graph never
crosses the x-axis, as is evident from the sample graphs.

Example 2.4.2: Suppose the mass is released from rest. That is, x(0) = xo and x’(0) = 0.

Then
X0

rn—n

t

x(t) =

It is not hard to see that this satisfies the initial conditions.

(r1e™" = rpe™t).

Critical damping

When ¢? — 4km = 0, the system is critically damped. In this case, there is one root of
multiplicity 2 and this root is —p. Our solution is

x(t) = Cie P! + Cote™Pt,

The behavior of a critically damped system is very similar to an overdamped system. After
all a critically damped system is in some sense a limit of overdamped systems. Since
these equations are really only an approximation to the real world, in reality we are never
critically damped, it is a place we can only reach in theory. We are always a little bit
underdamped or a little bit overdamped. It is better not to dwell on critical damping.

Underdamping

When ¢? — 4km < 0, the system is under-
damped. In this case, the roots are complex.

r:—pi"pz—wg 05 [ + os

= —p £ V-1,Jw? - p2

0.0 - 0.0

=-ptiw,
2 . . 05 - - 05
where w1 = yJw§ — p?. Our solution is
x(t) =e P! (A cos(wit) + Bsin(wit)), 10, ; m s 2 > 0"

Figure 2.4: Underdamped motion with the envelope

or
curves shown.

x(t) = Ce P! cos(wit — y).

An example plot is given in Figure 2.4. Note that we still have that x(t) — 0 as t — co.
The figure also shows the envelope curves Ce P! and —CeP!. The solution is the oscillating

line between the two envelope curves. The envelope curves give the maximum amplitude

of the oscillation at any given point in time. For example, if you are bungee jumping, you

are really interested in computing the envelope curve as not to hit the concrete with your
head.
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The phase shift y shifts the oscillation left or right, but within the envelope curves (the
envelope curves do not change if y changes).

Notice that the angular pseudo-frequency* becomes smaller when the damping ¢ (and
hence p) becomes larger. This makes sense. When we change the damping just a little bit,
we do not expect the behavior of the solution to change dramatically. If we keep making ¢
larger, then at some point the solution should start looking like the solution for critical
damping or overdamping, where no oscillation happens. So if ¢? approaches 4kn, we
want w1 to approach 0.

On the other hand, when c gets smaller, w; approaches wg (w1 is always smaller than
wp), and the solution looks more and more like the steady periodic motion of the undamped
case. The envelope curves become flatter and flatter as ¢ (and hence p) goes to 0.

2.4.4 Exercises

Exercise 2.4.2: Consider a mass and spring system with a mass m = 2, spring constant k = 3, and
damping constant ¢ = 1.

a) Set up and find the general solution of the system.

b) Is the system underdamped, overdamped or critically damped?

c) If the system is not critically damped, find a c that makes the system critically damped.
Exercise 2.4.3: Do Exercise 2.4.2 for m = 3, k = 12, and ¢ = 12.

Exercise 2.4.4: Using the mks units (meters-kilograms-seconds), suppose you have a spring with
spring constant 4 Nm. You want to use it to weigh items. Assume no friction. You place the mass
on the spring and put it in motion.

a) You count and find that the frequency is 0.8 Hz (cycles per second). What is the mass?

b) Find a formula for the mass m given the frequency w in Hz.
Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not
know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup.
You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured
1.1 Hz, for the 2 kg weight you measured 0.8 Hz.

a) Find k (spring constant) and c (damping constant).

b) Find a formula for the mass in terms of the frequency in Hz. Note that there may be more
than one possible mass for a given frequency.

c) For an unknown object you measured 0.2 Hz, what is the mass of the object? Suppose that
you know that the mass of the unknown object is more than a kilogram.

*We do not call w; a frequency since the solution is not really a periodic function.
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Exercise 2.4.6: Suppose you wish to measure the friction a mass of 0.1 kg experiences as it slides
along a floor (you wish to find c). You have a spring with spring constant k = 5N/m. You take the
spring, you attach it to the mass and fix it to a wall. Then you pull on the spring and let the mass
go. You find that the mass oscillates with frequency 1 Hz. What is the friction?

Exercise 2.4.101: A mass of 2 kilograms is on a spring with spring constant k newtons per meter
with no damping. Suppose the system is at rest and at time t = O the mass is kicked and starts
traveling at 2 meters per second. How large does k have to be to so that the mass does not go further
than 3 meters from the rest position?

Exercise 2.4.102: Suppose we have an RLC circuit with a resistor of 100 milliohms (0.1 ohms),
inductor of inductance of 50 millihenries (0.05 henries), and a capacitor of 5 farads, with constant
voltage.

a) Set up the ODE equation for the current I.

b) Find the general solution.

c) Solve for I(0) = 10 and I'(0) = 0.
Exercise 2.4.103: A 5000 kg railcar hits a bumper (a spring) at 1%, and the spring compresses by
0.1 m. Assume no damping.

a) Find k.

b) How far does the spring compress when a 10000 kg railcar hits the spring at the same speed?

c) If the spring would break if it compresses further than 0.3 m, what is the maximum mass of a
railcar that can hit it at 1m/s?

d) What is the maximum mass of a railcar that can hit the spring without breaking at 2 m/s?
Exercise 2.4.104: A mass of m kg is on a spring with k = 3N/m and ¢ = 2Ns/m. Find the mass

myq for which there is critical damping. If m < my, does the system oscillate or not, that is, is it
underdamped or overdamped?
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2.5 Nonhomogeneous equations

Note: 2 lectures, §3.5 in [EP], §3.5 and §3.6 in [BD]

2.5.1 Solving nonhomogeneous equations

We have solved linear constant coefficient homogeneous equations. What about nonhomo-
geneous linear ODEs? For example, the equations for forced mechanical vibrations. That
is, suppose we have an equation such as

Yy’ +5y +6y=2x+1. (2.6)

We will write Ly = 2x + 1 when the exact form of the operator is not important. We
solve (2.6) in the following manner. First, we find the general solution y. to the associated

homogeneous equation
y”" +5y" +6y =0. (2.7)

We call y. the complementary solution. Next, we find a single particular solution y, to (2.6) in
some way. Then
Y=Yet¥p

is the general solution to (2.6). We have Ly. = 0 and Ly, = 2x + 1. As L is a linear operator
we verify that y is a solution, Ly = L(y. + yp) = Ly + Ly, = 0+ (2x + 1). Let us see why
we obtain the general solution.

Let y, and 7, be two different particular solutions to (2.6). Write the difference as
w = Yp — ¥p. Then plug w into the left-hand side of the equation to get

w” + 5w’ + 6w = (y, + 5y, + 6yp) — (7, + 5§, +6§,) = (2x+1) - (2x +1) = 0.

Using the operator notation the calculation becomes simpler. As L is a linear operator we

write
Lw=L(y, - §p) =Ly, —Ljp = 2x +1) = (2x +1) = 0.

So w =y, — ¥p is a solution to (2.7), that is Lw = 0. Any two solutions of (2.6) differ by a
solution to the homogeneous equation (2.7). The solution y = y. + y, includes all solutions
to (2.6), since y. is the general solution to the associated homogeneous equation.

Theorem 2.5.1. Let Ly = f(x) be a linear ODE (not necessarily constant coefficient). Let y. be
the complementary solution (the general solution to the associated homogeneous equation Ly = 0)
and let y, be any particular solution to Ly = f(x). Then the general solution to Ly = f(x) is

Y=Yt Yp-

The moral of the story is that we can find the particular solution in any old way. If we
find a different particular solution (by a different method, or simply by guessing), then we
still get the same general solution. The formula may look different, and the constants we
have to choose to satisfy the initial conditions may be different, but it is the same solution.
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2.5.2 Undetermined coefficients

The trick is to somehow, in a smart way, guess one particular solution to (2.6). Note that
2x + 11is a polynomial, and the left-hand side of the equation will be a polynomial if we let
y be a polynomial of the same degree. Let us try

yp = Ax + B.
We plug y, into the left hand side to obtain

Yy, + 5y, +6yp = (Ax + B)” + 5(Ax + B)' + 6(Ax + B)
=0+5A+6Ax + 6B =6Ax + (5A + 6B).

So6Ax+(5A+6B) = 2x+1. Therefore, A = 1/3and B = -1/9. That means y, = % X —% = 3"9‘1.
Solving the complementary problem (exercise!) we get

Ye = C1€_2x + C2€_3x.

Hence the general solution to (2.6) is

3x -1

y=Cre ™ + Cre™> + 5

Now suppose we are further given some initial conditions. For example, y(0) = 0 and
y’(0) = 1/3. First find y’ = —2C1e™2¥ — 3Ce7>* + 1/3. Then

0=y(0)=C1+Cz—%, %=y’(0):—2C1—3C2+%.

We solve to get C1 = 1/3 and C, = —2/9. The particular solution we want is

2 4 3x—-1 3¢ -2e3%4+3x-1
+ = .

_ 1 -2x _
yx) =3¢ - ge 9 9

Exercise 2.5.1: Check that y really solves the equation (2.6) and the given initial conditions.

Note: A common mistake is to solve for constants using the initial conditions with y.
and only add the particular solution y, after that. That will not work. You need to first
compute y = y. + y, and only then solve for the constants using the initial conditions.

A right-hand side consisting of exponentials, sines, and cosines can be handled similarly.
For example,
y” +2y +2y = cos(2x).

Let us find some y,. We start by guessing the solution includes some multiple of cos(2x).
We may have to also add a multiple of sin(2x) to our guess since derivatives of cosine are
sines. We try

yp = Acos(2x) + Bsin(2x).
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We plug y, into the equation and we get

—4A cos(2x) — 4B sin(2x) +2 (—2A sin(2x) + 2B cos(2x))

Yy Yp
+ 2 (A cos(2x) + 2B sin(2x)) = cos(2x),

Yp
or
(—4A + 4B +2A) cos(2x) + (—4B — 4A + 2B) sin(2x) = cos(2x).

The left-hand side must equal to right-hand side. Namely, —4A + 4B + 2A = 1 and
—4B -4A +2B =0. So -2A +4B =1 and 2A + B = 0 and hence A = -1/10 and B = 1/5. So

— cos(2x) + 2sin(2x)
10 '

Similarly, if the right-hand side contains exponentials we try exponentials. If

yp = Acos(2x) + Bsin(2x) =

Ly — €3x,
we try y = Ae®* as our guess and try to solve for A.

When the right-hand side is a multiple of sines, cosines, exponentials, and polynomials,
we can use the product rule for differentiation to come up with a guess. We need to guess
a form for y, such that Ly, is of the same form, and has all the terms needed to for the
right-hand side. For example,

Ly = (1 +3x%) e~ cos(nx).
For this equation, we guess
yp = (A+Bx + Cx?) e~ cos(nix) + (D + Ex + Fx?) e~ sin(mtx).

We plug in and then hopefully get equations that we can solve for A, B, C, D, E, and F. As
you can see this can make for a very long and tedious calculation very quickly. C’est la vie!

There is one hiccup in all this. It could be that our guess actually solves the associated
homogeneous equation. That is, suppose we have
y// -9 y= e3x.

We would love to guess y = Ae3*, but if we plug this into the left-hand side of the equation
we get

y” —9y = 9Ae3 —9Ae3 =0 # 3.
There is no way we can choose A to make the left-hand side be ¢3*. The trick in this case is
to multiply our guess by x to get rid of duplication with the complementary solution. That
is first we compute y, (solution to Ly = 0)

Ye = C1€_3x + C2€3x,
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and we note that the 3 term is a duplicate with our desired guess. We modify our guess
to y = Axe>* so that there is no duplication anymore. Let us try: y’ = Ae3* + 3Axe3* and
y” = 6Ae3* +9Axe%, so

" _ 9y = 6Ae> +9Axe> —9Axe3 = 6Ae3 .
y y

Thus 6Ae>" is supposed to equal e3*. Hence, 6A = 1 and so A = 1/6. We can now write the
general solution as
1
Y =ye+yp=Cre +Coe®™ + gxe?’x.
It is possible that multiplying by x does not get rid of all duplication. For example,
y// _ 6y/ + 9y — e3x.

The complementary solution is ., = C1e3* + Coxe>*. Guessing y = Axe>* would not get us
anywhere. In this case we want to guess y, = Ax?e>*. Basically, we want to multiply our
guess by x until all duplication is gone. But no more! Multiplying too many times will not
work.

Finally, what if the right-hand side has several terms, such as
Ly = e* + cos x.

In this case we find u that solves Lu = ¢2* and v that solves Lv = cos x (that is, do each
term separately). Then note that if y = u + v, then Ly = e2* + cos x. This is because L is
linear; we have Ly = L(u + v) = Lu + Lv = e?* + cos x.

2.5.3 Variation of parameters

The method of undetermined coefficients works for many basic problems that crop up.
But it does not work all the time. It only works when the right-hand side of the equation
Ly = f(x) has finitely many linearly independent derivatives, so that we can write a guess
that consists of them all. Some equations are a bit tougher. Consider

Yy’ +y=tanx.

Each new derivative of tan x looks completely different and cannot be written as a linear
combination of the previous derivatives. If we start differentiating tan x, we get:

sec? x, 2 sec? x tan x, 4 sec? x tan® x + 2 sect X,

8sec? x tan® x + 16sec* x tan x, 16 sec? x tan* x + 88 sec* x tan® x + 16 sec® X,
This equation calls for a different method. We present the method of variation of

parameters, which handles any equation of the form Ly = f(x), provided we can solve
certain integrals. For simplicity, we restrict ourselves to second order constant coefficient
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equations, but the method works for higher order equations just as well (the computations
become more tedious). The method also works for equations with nonconstant coefficients,
provided we can solve the associated homogeneous equation.

Perhaps it is best to explain this method by example. Let us try to solve the equation

Ly =y” +y =tanx.

First we find the complementary solution (solution to Ly, = 0). We get y. = C1y1 + Cay,
where y; = cosx and y, = sinx. To find a particular solution to the nonhomogeneous
equation we try

Yp =Y = 1y1 + u2y2,

where u1 and uy are functions and not constants. We are trying to satisfy Ly = tan x. That
gives us one condition on the functions u; and u;. Compute (note the product rule!)

y' = (uiyr + upy2) + (1y] + uays).

We can still impose one more condition at our discretion to simplify computations (we
have two unknown functions, so we should be allowed two conditions). We require that
(ujy1 + uzy2) = 0. This makes computing the second derivative easier.

y' =y +u2yy,

y" = (ugyy + ) + iy + 2yy).
Since y1 and y; are solutions to y” +y = 0, we find y;" = —y1 and y; = —y,. (If the equation
was a more general y” + p(x)y’ + q(x)y = 0, we would have y? = —p(x)y; — q(x)yi.) So

4

y' = (”1]/{ + uéyﬁ) — (u1y1 + u2y2).

We have (11y1 + u2y2) = y and so

’

y” =y +uyys) -y,

and hence

Yy’ +y =Ly =ujy; +uyy,.

For y to satisfy Ly = f(x) we must have f(x) = ujy; + ujy;.
What we need to solve are the two equations (conditions) we imposed on u1 and uj:

uyy1 +upy2 =0,
ury; + uzyy = f(x).

We solve for u] and u;, in terms of f(x), y1 and y>. We always get these formulas for any

Ly = f(x), where Ly = y” + p(x)y’ + q(x)y. There is a general formula for the solution we
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could just plug into, but instead of memorizing that, it is better, and easier, to just repeat
what we do below. In our case the two equations are

uj cos(x) + usin(x) = 0,
—uj sin(x) + u7 cos(x) = tan(x).
Hence
uj cos(x) sin(x) + u; sin?(x) = 0,
—u] sin(x) cos(x) + u, cos?(x) = tan(x) cos(x) = sin(x).
And thus
u}(sin?(x) + cos®(x)) = sin(x),
uy, = sin(x),
uj = %(ZJSC) = — tan(x) sin(x).
We integrate u; and u, to get u1 and u;.
sin(x) — 1

s
sin(x) + 1 sin(x),

uy = / ujdx = / — tan(x) sin(x) dx = %ln
Uy = / uy dx = / sin(x) dx = — cos(x).

So our particular solution is

Yp = Uyl + uglys = %cos(x)ln % + cos(x) sin(x) — cos(x) sin(x) =
1 sin(x) — 1
== In|————|.
2 cos(x)In sin(x) + 1
The general solution to y” + y = tan x is, therefore,
3 . 1 sin(x) — 1
y = Cqcos(x) + Casin(x) + 5 cos(x) In sinG + 1|

2.5.4 Exercises

Exercise 2.5.2: Find a particular solution of y” — y’ — 6y = e**.
Exercise 2.5.3: Find a particular solution of y” — 4y’ + 4y = e?*.
Exercise 2.5.4: Solve the initial value problem y” +9y = cos(3x) +sin(3x) for y(0) = 2, y’(0) = 1.

Exercise 2.5.5: Set up the form of the particular solution but do not solve for the coefficients for
y(4) _ 2ym + y// = e¥.

Exercise 2.5.6: Set up the form of the particular solution but do not solve for the coefficients for
y@ — 2y +y” = e* + x +sinx.
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Exercise 2.5.7:

a) Using variation of parameters find a particular solution of y” — 2y’ +y = e*.
b) Find a particular solution using undetermined coefficients.
c) Are the two solutions you found the same? See also Exercise 2.5.10.

Exercise 2.5.8: Find a particular solution of y” — 2y’ + y = sin(x?). It is OK to leave the answer
as a definite integral.

Exercise 2.5.9: For an arbitrary constant c find a particular solution to y” — y = e“*. Hint: Make
sure to handle every possible real c.

Exercise 2.5.10:

a) Using variation of parameters find a particular solution of y” — y = e*.
b) Find a particular solution using undetermined coefficients.

c) Are the two solutions you found the same? What is going on?
Exercise 2.5.11: Find a polynomial P(x), so that y = 2x? + 3x + 4 solves y” + 5y’ + y = P(x).
Exercise 2.5.101: Find a particular solution to y” —y’ + y = 2sin(3x).
Exercise 2.5.102:

a) Find a particular solution to y” + 2y = e* + x°.

b) Find the general solution.
Exercise 2.5.103: Solve y” + 2y’ +y = x2, y(0) = 1, y’(0) = 2.

Exercise 2.5.104: Use variation of parameters to find a particular solution of y” —y = #

Exercise 2.5.105: For an arbitrary constant c find the general solution to y” — 2y = sin(x + ¢).

Exercise 2.5.106: Undetermined coefficients can sometimes be used to guess a particular solution
to other equations than constant coefficients. Find a polynomial y(x) that solves y’ + xy =
x3 +2x% 4+ 5x + 2.

Note: Not every right hand side will allow a polynomial solution, for example, y' + xy = 1 does
not, but a technique based on undetermined coefficients does work, see chapter 7.
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2.6 Forced oscillations and resonance
Note: 2 lectures, §3.6 in [EP], §3.8 in [BD]

Let us return back to the example of a mass on a spring. k E(t)
We examine the case of forced oscillations, which we did not w m —»

yet handle. That is, we consider the equation

mx” + cx’ + kx = F(t), damping ¢

for some nonzero F(t). The setup is again: m is mass, c is friction, k is the spring constant,
and F(t) is an external force acting on the mass.

We are interested in periodic forcing, such as noncentered rotating parts, or perhaps loud
sounds, or other sources of periodic force. Once we learn about Fourier series in chapter 4,
we will see that we cover all periodic functions by simply considering F(t) = Fy cos(wt) (or
sine instead of cosine, the calculations are essentially the same).

2.6.1 Undamped forced motion and resonance

First, let us consider undamped (c = 0) motion. We have the equation
mx" + kx = Fo cos(wt).

This equation has the complementary solution (solution to the associated homogeneous
equation)
x. = Cqcos(wot) + Cy sin(wot),

where wg = \/k/_m is the natural frequency (angular). It is the frequency at which the system
“wants to oscillate” without external interference.

Suppose that wg # @. We try the solution x, = A cos(wt) and solve for A. We do not
need a sine in our trial solution as after plugging in we only have cosines. If you include a
sine, it is fine; you will find that its coefficient is zero (I could not find a second rhyme).

We solve using the method of undetermined coefficients. We find that
F

Xp = > 0 cos(wt).

m(wy — w?)

We leave it as an exercise to do the algebra required.
The general solution is

x = Cq1 cos(wopt) + Cp sin(wopt) + cos(wt).

0
m(wé - w?)

Written another way

x = Ccos(wot —y) + cos(wt).

m(w% - w?)

The solution is a superposition of two cosine waves at different frequencies.
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Example 2.6.1: Take
0.5x" + 8x = 10 cos(mt), x(0) =0, x'(0) =

Let us compute. First we read off the parameters: w = 7, wo = /8/05 = 4, Fy = 10,
m = 0.5. The general solution is

20
x = Cqcos(4t) + Cysin(4t) + ——— cos(7tt).
16 — 72

Solve for C; and C; using the initial

conditions: Cq = 16202 and C, = 0. Hence f0 w : : 0

20
X = ——|(cos(mt) — cos(4t)). s
—— (cos(nt) — cos(4))
Do notice the “beating” behavior in Fig-
ure 2.5. To see it, use the trigonometric °

identity

A—-B A+ B
2sin( > )sin( —2|- ):cosB—cosA

to get 0 ‘ : ‘ 0

20 ( . (4 ; T ) sin (4 + T(t)) . Figure 2.5: Graph of 162—0112 (cos(mt) — cos(4t)).

&

X = >

The function x is a high frequency wave modulated by a low frequency wave.

Now suppose wg = w. Obviously, we cannot try the solution A cos(wt) and then use
the method of undetermined coefficients. We notice that cos(wt) solves the associated
homogeneous equation. Therefore, we try x, = At cos(wt) + Bt sin(wt). This time we need
the sine term, since the second derivative of t cos(wt) contains sines. We write the equation

x" + w’x = o cos(wt).
m
Plugging x, into the left-hand side we get
F
2Bw cos(wt) — 2Aw sin(wt) = —0 cos(wt).

Hence A =0and B = 2
1s

L. Our particular solution is 2 — t sin(wt) and our general solution

F
x = Cq cos(wt) + Ca sin(wt) + —— t sin(wt).
2mw

The important term is the last one (the particular solution we found). This term grows

without bound as t — oo. In fact it oscillates between ZF ot and 2_:125 The first two terms

only oscillate between =+, /C% + C%, which becomes smaller and smaller in proportion to

the oscillations of the last term as t gets larger. In Figure 2.6 on the facing page we see the
graphwithC1 =C,=0,Fp=2,m=1, w =T.
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By forcing the system in just the right fre-
quency we produce very wild oscillations.
This kind of behavior is called resonance or
perhaps pure resonance. Sometimes reso-
nance is desired. For example, remember
when as a kid you could start swinging by
just moving back and forth on the swing
seat in the “correct frequency”? You were
trying to achieve resonance. The force of
each one of your moves was small, but after
a while it produced large swings. E ‘ ‘ ‘

On the other hand resonance can be de-
structive. In an earthquake some buildings Figure 2.6: Graph of 1t sin(rtt).
collapse while others may be relatively un-
damaged. This is due to different buildings having different resonance frequencies. So
tiguring out the resonance frequency can be very important.

A common (but wrong) example of destructive force of resonance is the Tacoma Narrows
bridge failure. It turns out there was a different phenomenon at play*.

2.6.2 Damped forced motion and practical resonance

In real life things are not as simple as they were above. There is, of course, some damping.
Our equation becomes
mx" + cx” + kx = Fy cos(wt), (2.8)

for some c > 0. We solved the homogeneous problem before. We let

c k

P=5. @Wo =4[

We replace equation (2.8) with
F
x” +2px" + a)gx = ZO cos(wt).

The roots of the characteristic equation of the associated homogeneous problem are

r,r2=—p +4[p% - cué. The form of the general solution of the associated homogeneous

equation depends on the sign of p? — a)é, or equivalently on the sign of ¢ — 4km, as before:
Cie"t 4+ Cpe't if c2 > 4km,
X =4 Cie Pt + Cote Pt if c?2=4km,

e Pt (C1 cos(wit) + Cosin(wit)) if ¢? < 4km,

where w1 = 4 /a)(z) — p?. In any case, we see that x.(t) — 0 as t — co.

*K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,
American Journal of Physics, 59(2), 1991, 118-124, http: //www.ketchum.org/billah/Billah-Scanlan.pdf
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Let us find a particular solution. There can be no conflicts when trying to solve for the
undetermined coefficients by trying x, = A cos(wt) + Bsin(wt). Let us plug in and solve
for A and B. We get (the tedious details are left to reader)

((w§ — @*)B = 2wpA) sin(wt) + ((w§ — ©*)A + 2wpB) cos(wt) = % cos(wt).

We solve for A and B:

A (wf — w*)Fy
mQwp)* + m(w? - w2)’

2wpF
B= ©P7o

mQwp)? +m(w? - 0?)
We also compute C = VA? + B2 to be
Fo

C= .
m\/(pr)2 + (a)g - w2)2

Thus our particular solution is

w? — w?)F
Xy = (@ o > cos(wt) +
mQ2wp)* + m(w? — w?)

2a)pFo

> sin(wt).
mQ2wp)* + m(w? — w?)

Or in the alternative notation we have amplitude C and phase shift y where (if ® # wy)

; _ B 2wp
an')/—z—w(z)_w2.

Hence,

-
i ap)? + (@f - )’

If w=wythenA=0,B=C= Fo and y = /2.

2mwp’

X

cos(wt —y).

For reasons we will explain in a moment, we call x. the transient solution and denote
it by x;,. We call the x, from above the steady periodic solution and denote it by xs,. The
general solution is

X =Xc+Xp = Xir + Xgp.

The transient solution x. = x4, goes to zero as t — oo, as all the terms involve an
exponential with a negative exponent. So for large t, the effect of x;, is negligible and we
see essentially only xs,. Hence the name transient. Notice that x;, involves no arbitrary
constants, and the initial conditions only affect x;,. Thus, the effect of the initial conditions
is negligible after some period of time. We might as well focus on the steady periodic
solution and ignore the transient solution. See Figure 2.7 on the next page for a graph
given several different initial conditions.
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The speed at which x;, goes to zero de-
pends on p (and hence c). The bigger p is
(the bigger c is), the “faster” x;, becomes
negligible. So the smaller the damping, the
longer the “transient region.” This is consis-
tent with the observation that when ¢ = 0,
the initial conditions affect the behavior for
all time (i.e. an infinite “transient region”).

Let us describe what we mean by res-
onance when damping is present. Since
there were no conflicts when solving with
undetermined coefficient, there is no term
that goes to infinity. We look instead at
the maximum value of the amplitude of
the steady periodic solution. Let C be the
amplitude of xp. If we plot C as a function
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Figure 2.7: Solutions with different initial con-
ditions for parameters k =1, m =1, Fp = 1,
c=0.7and w =1.1.

of w (with all other parameters fixed), we can find its maximum. We call the w that
achieves this maximum the practical resonance frequency. We call the maximal amplitude
C(w) the practical resonance amplitude. Thus when damping is present we talk of practical
resonance rather than pure resonance. A sample plot for three different values of c is given
in Figure 2.8. As you can see the practical resonance amplitude grows as damping gets
smaller, and practical resonance can disappear altogether when damping is large.

0.0 0.5 1.0

2.0 2.5 3.0

1 L 4 0.0

25

Figure 2.8: Graph of C(w) showing practical resonance with parameters k =1, m =1, Fy = 1. The top
line is with ¢ = 0.4, the middle line with ¢ = 0.8, and the bottom line with ¢ = 1.6.

To find the maximum we need to find the derivative C’'(w). Computation shows

C'(w) =

—2w(2p? + w* — w})Fy

m(Qwp)? + (@2 - w2)’)

3/2°
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This is zero either when @ = 0 or when 2p? + w? — w? = 0. In other words, C’'(w) = 0 when

‘ W = yJw5—2p%> or w=0. ’

If a)(z) — 2p? is positive, then , /wg — 2p? is the practical resonance frequency (that is the

point where C(w) is maximal). This follows by the first derivative test for example as then
C’(w) > 0 for small w in this case. If on the other hand a)(zJ — 2p? is not positive, then C(w)
achieves its maximum at w = 0, and there is no practical resonance since we assume w > 0
in our system. In this case the amplitude gets larger as the forcing frequency gets smaller.

If practical resonance occurs, the frequency is smaller than wg. As the damping c (and
hence p) becomes smaller, the practical resonance frequency goes to wg. So when damping
is very small, wy is a good estimate of the practical resonance frequency. This behavior
agrees with the observation that when ¢ = 0, then wy is the resonance frequency.

Another interesting observation to make is that when w — oo, then C — 0. This means
that if the forcing frequency gets too high it does not manage to get the mass moving in
the mass-spring system. This is quite reasonable intuitively. If we wiggle back and forth
really fast while sitting on a swing, we will not get it moving at all, no matter how forceful.
Fast vibrations just cancel each other out before the mass has any chance of responding by
moving one way or the other.

The behavior is more complicated if the forcing function is not an exact cosine wave,
but for example a square wave. A general periodic function will be the sum (superposition)
of many cosine waves of different frequencies. The reader is encouraged to come back to
this section once we have learned about the Fourier series.

2.6.3 Exercises

Exercise 2.6.1: Derive a formula for xs, if the equation is mx” + cx’ + kx = Fosin(wt). Assume
c>0.

Exercise 2.6.2: Derive a formula for xs, if the equation is mx” + cx" + kx = Focos(wt) +
Fi cos(3wt). Assume c > 0.

Exercise 2.6.3: Take mx” + cx’ + kx = Fgcos(wt). Fixm > 0, k > 0, and Fy > 0. Consider
the function C(w). For what values of ¢ (solve in terms of m, k, and Fy) will there be no practical
resonance (that is, for what values of c is there no maximum of C(w) for w > 0)?

Exercise 2.6.4: Take mx"” + cx’ + kx = Fycos(wt). Fix c > 0, k > 0, and Fy > 0. Consider the
function C(w). For what values of m (solve in terms of c, k, and Fo) will there be no practical
resonance (that is, for what values of m is there no maximum of C(w) for w > 0)?
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Exercise 2.6.5: A water tower in an earthquake acts as a mass-spring system. Assume that the
container on top is full and the water does not move around. The container then acts as the mass
and the support acts as the spring, where the induced vibrations are horizontal. The container with
water has a mass of m = 10,000 kg. It takes a force of 1000 newtons to displace the container 1
meter. For simplicity assume no friction. When the earthquake hits the water tower is at rest (it is
not moving). The earthquake induces an external force F(t) = mAw? cos(wt).

a) What is the natural frequency of the water tower?

b) If w is not the natural frequency, find a formula for the maximal amplitude of the resulting
oscillations of the water container (the maximal deviation from the rest position). The motion
will be a high frequency wave modulated by a low frequency wave, so simply find the constant
in front of the sines.

c) Suppose A =1 and an earthquake with frequency 0.5 cycles per second comes. What is the
amplitude of the oscillations? Suppose that if the water tower moves more than 1.5 meter
from the rest position, the tower collapses. Will the tower collapse?

Exercise 2.6.101: A mass of 4kg on a spring with k = 4N/m and a damping constant ¢ = 1Ns/m.
Suppose that Fy = 2N. Using forcing function Fycos(wt), find the w that causes practical
resonance and find the amplitude.

Exercise 2.6.102: Derive a formula for xsp, for mx” + cx’ + kx = Focos(wt) + A, where A is some
constant. Assume c > 0.

Exercise 2.6.103: Suppose there is no damping in a mass and spring system with m =5, k = 20,
and Fo = 5. Suppose w is chosen to be precisely the resonance frequency.

a) Find w.
b) Find the amplitude of the oscillations at time t = 100, given the system is at rest at t = 0.
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Chapter 3

Systems of ODEs

3.1 Introduction to systems of ODEs

Note: 1 to 1.5 lectures, §4.1 in [EP], §7.1 in [BD]

3.1.1 Systems

Often we do not have just one dependent variable and one equation. And as we will see,
we may end up with systems of several equations and several dependent variables even if
we start with a single equation.

If we have several dependent variables, suppose y1, ¥2, ..., ¥u, then we can have
a differential equation involving all of them and their derivatives with respect to one
independent variable x. For example, y;' = f (yi, Y5, Y1, Y2, x). Usually, when we have two
dependent variables we have two equations such as

yil = fl(yil ]/ér Y1,Y2, x)/
vy = (Y1, vy v1, Y2, ),

for some functions f; and f,. We call the above a system of differential equations. More
precisely, the above is a second order system of ODEs as second order derivatives appear.
The system

x1 = 81(x1,x2,x3, ),
x5 = g2(x1, x2, X3, ),
x5 = g3(x1, x2,x3,1),

is a first order system, where x1, x2, x3 are the dependent variables, and t is the independent
variable.
The terminology for systems is essentially the same as for single equations. For the



120 CHAPTER 3. SYSTEMS OF ODES

system above, a solution is a set of three functions x1(t), x2(t), x3(t), such that

x1(t) = g1(xa(t), x2(t), x3(t), t),
xé(t) =32 (xl(t)/ Xz(t), X3(t), t)/
xé(t) =483 (xl(t)l xZ(t)l X3(t), t) .

We usually also have an initial condition. Just like for single equations we specify x1, x2,
and x3 for some fixed t. For example, x1(0) = a1, x2(0) = a2, x3(0) = a3. For some constants
a1, az, and az. For the second order system we would also specify the first derivatives at a
point. And if we find a solution with constants in it, where by solving for the constants we
find a solution for any initial condition, we call this solution the general solution. Best to
look at a simple example.

Example 3.1.1: Sometimes a system is easy to solve by solving for one variable and then
for the second variable. Take the first order system

Y1 =1,
Yo = Y1 - Y2,

with y1, y2 as the dependent variables and x as the independent variable. And consider
initial conditions y1(0) = 1, y2(0) = 2.

We note that y; = Cie* is the general solution of the first equation. We then plug this 11
into the second equation and get the equation y;, = C1e* — y, which is a linear first order
equation that is easily solved for y,. By the method of integrating factor we get

ety = %ez’“ +Cy,

or yp = %ex + Cpe™*. The general solution to the system is, therefore,

Y1 = Cqie?, Yo = %ex + Cre ™.
We solve for C; and C; given the initial conditions. We substitute x = 0 and find that

C1 =1and C; = 3/2. Thus the solution is y1 = e*, and yp = (1/2)e™ + (3/2)e™*.

Generally, we will not be so lucky to be able to solve for each variable separately as in
the example above, and we will have to solve for all variables at once. While we won'’t
generally be able to solve for one variable and then the next, we will try to salvage as much
as possible from this technique. It will turn out that in a certain sense we will still (try to)
solve a bunch of single equations and put their solutions together. Let’s not worry right
now about how to solve systems yet.

We will mostly consider the linear systems. The example above is a so-called linear first
order system. It is linear as none of the dependent variables or their derivatives appear
in nonlinear functions or with powers higher than one (x, y, x" and y’, constants, and
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functions of t can appear, but not xy or (y’)2 or x%). Another, more complicated, example
of a linear system is

y! = e'y) + t2y1 + 5y + sin(t),
vy = tyi — Y5 + 2y1 + cos(t).

3.1.2 Applications

Let us consider some simple applications of systems and how to set up the equations.

Example 3.1.2: First, we consider salt and brine tanks, but this time water flows from one
to the other and back. We again consider that the tanks are evenly mixed.

N D

M M
X1 X2
Vol.=V = —1_Vol.=V

Figure 3.1: A closed system of two brine tanks.

Suppose we have two tanks, each containing volume V liters of salt brine. The amount
of salt in the first tank is x1 grams, and the amount of salt in the second tank is x, grams.
The liquid is perfectly mixed and flows at the rate  liters per second out of each tank into
the other. See Figure 3.1.

The rate of change of x1, that is x7, is the rate of salt coming in minus the rate going out.
The rate coming in is the density of the salt in tank 2, that is 72, times the rate r. The rate
coming out is the density of the salt in tank 1, that is %, times the rate r. In other words it is

X' = 2r - ﬂr = sz - Lxl = L(xz - x1).
v v %4 |14 %4
Similarly we find the rate x}, where the roles of x; and x; are reversed. All in all, the
system of ODEs for this problem is

, T

X = V(xz - x1),
r

Xy = V(xl — X2).

In this system we cannot solve for x1 or x, separately. We must solve for both x; and x; at
once, which is intuitively clear since the amount of salt in one tank affects the amount in
the other. We can’t know x; before we know x», and vice versa.
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We don't yet know how to find all the solutions, but intuitively we can at least find
some solutions. Suppose we know that initially the tanks have the same amount of salt.
That is, we have an initial condition such as x1(0) = x2(0) = C. Then clearly the amount
of salt coming and out of each tank is the same, so the amounts are not changing. In
other words, x; = C and x; = C (the constant functions) is a solution: x] = x, = 0, and
x2 — x1 = x1 — x2 = 0, so the equations are satisfied.

Let us think about the setup a little bit more without solving it. Suppose the initial
conditions are x1(0) = A and x»(0) = B, for two different constants A and B. Since no salt is
coming in or out of this closed system, the total amount of salt is constant. That is, x1 + x2
is constant, and so it equals A + B. Intuitively if A is bigger than B, then more salt will flow
out of tank one than into it. Eventually, after a long time we would then expect the amount
of salt in each tank to equalize. In other words, the solutions of both x; and x; should tend
towards 422, Once you know how to solve systems you will find out that this really is so.

Example 3.1.3: Let us look at a second order example. We return to the mass and spring
setup, but this time we consider two masses.

Consider one spring with constant k and two masses 1, k
and m;. Think of the masses as carts that ride along a straight
track with no friction. Let x1 be the displacement of the first
cart and x; be the displacement of the second cart. That is, we x}lﬁ x}?

put the two carts somewhere with no tension on the spring,

and we mark the position of the first and second cart and call those the zero positions.
Then x1 measures how far the first cart is from its zero position, and x, measures how far
the second cart is from its zero position. The force exerted by the spring on the first cart
is k(xp — x1), since x, — x1 is how far the string is stretched (or compressed) from the rest
position. The force exerted on the second cart is the opposite, thus the same thing with a
negative sign. Newton's second law states that force equals mass times acceleration. So the
system of equations is

mixy = k(x2 — x1),

moxy = —k(xz — x1).
Again, we cannot solve for the x; or x; variable separately. That we must solve for both

x1 and x, at once is intuitively clear, since where the first cart goes depends on exactly
where the second cart goes and vice versa.

3.1.3 Changing to first order

Before we talk about how to handle systems, let us note that in some sense we need only
consider first order systems. Let us take an n'h order differential equation

y(n) — F(y(n_l), ey y,; Y, x)'
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We define new variables u1, uy, ..., u, and write the system

Uy =Uuy,
/
U, = us,
' _
Uy = Un,

uy = F(un, Un-1,...,u2,u1, ).
We solve this system for u1, uy, ..., u,. Once we have solved for the u, we can discard u,
through u,, and let y = u;. This y solves the original equation.

Example 3.1.4: Take x”” = 2x” + 8x" + x + t. Letting u1 = x, up = x’, u3 = x”, we find the
system:
ujp =y, uy = us, uj =2uz + 8uy + uy +t.

A similar process can be followed for a system of higher order differential equations.
For example, a system of k differential equations in k unknowns, all of order 7, can be
transformed into a first order system of n X k equations and n X k unknowns.

Example 3.1.5: Consider the system from the carts example,
mix] = k(xz — x1), moxy = —k(xz — x1).

Let uy = x1, up = x7, uz = x2, ug = x;,. The second order system becomes the first order
system

up =, myuy = k(us —uy), uj =y, mouy = —k(uz — uy).
Example 3.1.6: The idea works in reverse as well. Consider the system
x'=2y—x, Yy =x,

where the independent variable is t. We wish to solve for the initial conditions x(0) = 1,
y(0) = 0.

If we differentiate the second equation, we get y” = x’. We know what x’ is in terms of
x and y, and we know that x = y’. So,

y'=x'=2y-x=2y-y'.
We now have the equation y” + v’ — 2y = 0. We know how to solve this equation and we
find that y = C1e™% + Cae’. Once we have y, we use the equation y’ = x to get x.

x=y' = —2C1e7 % + Cyet.

We solve for the initial conditions 1 = x(0) = —2C; + C2 and 0 = y(0) = C; + Co. Hence,
Cy1 =-Cyand 1 =3C;. So C; = -1/3and C, = 1/3. Our solution is

202t 4+ ot —e 2t 4 ot

A S A
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Exercise 3.1.1: Plug in and check that this really is the solution.

It is useful to go back and forth between systems and higher order equations for other
reasons. For example, software for solving ODE numerically (approximation) is generally
for first order systems. To use it, you take whatever ODE you want to solve and convert
it to a first order system. It is not very hard to adapt computer code for the Euler or
Runge-Kutta method for first order equations to handle first order systems. We simply
treat the dependent variable not as a number but as a vector. In many mathematical
computer languages there is almost no distinction in syntax.

3.14 Autonomous systems and vector fields

A system where the equations do not depend on the independent variable is called an
autonomous system. For example the system y’ = 2y — x, y’ = x is autonomous as t is the
independent variable but does not appear in the equations.

For autonomous systems we can draw the so-called direction field or vector field, a plot
similar to a slope field, but instead of giving a slope at each point, we give a direction (and
a magnitude). The previous example, x’ = 2y — x, y’ = x, says that at the point (x, y) the
direction in which we should travel to satisfy the equations should be the direction of the
vector (2y — x, x) with the speed equal to the magnitude of this vector. So we draw the
vector (2y — x, x) at the point (x, y) and we do this for many points on the xy-plane. For
example, at the point (1, 2) we draw the vector (2(2) — 1,1) = (3, 1), a vector pointing to the
right and a little bit up, while at the point (2, 1) we draw the vector (2(1) -2,2) = (0,2) a
vector that points straight up. When drawing the vectors, we will scale down their size to
fit many of them on the same direction field. If we drew the arrows at the actual size, the
diagram would be a jumbled mess once you would draw more than a couple of arrows. So
we scale them all so that not even the longest one interferes with the others. We are mostly
interested in their direction and relative size. See Figure 3.2 on the facing page.

We can draw a path of the solution in the plane. Suppose the solution is given by
x = f(t), y = g(t). We pick an interval of ¢ (say 0 < ¢ < 2 for our example) and plot all
the points (f(t), g(t)) for ¢ in the selected range. The resulting picture is called the phase
portrait (or phase plane portrait). The particular curve obtained is called the trajectory or
solution curve. See an example plot in Figure 3.3 on the next page. In the figure the solution
starts at (1,0) and travels along the vector field for a distance of 2 units of t. We solved this
system precisely, so we compute x(2) and y(2) to find x(2) ~ 2.475 and y(2) ~ 2.457. This
point corresponds to the top right end of the plotted solution curve in the figure.

Notice the similarity to the diagrams we drew for autonomous systems in one dimension.
But note how much more complicated things become when we allow just one extra
dimension.

We can draw phase portraits and trajectories in the xy-plane even if the system is not
autonomous. In this case, however, we cannot draw the direction field, since the field
changes as t changes. For each t we would get a different direction field.
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Figure 3.2: The direction field for x’ = 2y — x,  Figure 3.3: The direction field for x’ = 2y — x,

Yy =x. Y’ = x with the trajectory of the solution starting
at (1,0) for0 <t < 2.
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3.1.5 Picard’s theorem

Perhaps before going further, let us mention that Picard’s theorem on existence and
uniqueness still holds for systems of ODE. Let us restate this theorem in the setting of
systems. A general first order system is of the form

x1 = Fi(x1,x2,..., x4, 1),

xé :Fz(xlleI"'lxﬂlt)l (3 1)

xy, = Fp(x1,x2, ..., %, ).

Theorem 3.1.1 (Picard’s theorem on existence and uniqueness for systems). If for every

. . . . . OF; . .
j=1,2,...,nandevery k =1,2,...,n each F; is continuous and the derivative 8_x1]< exists and is
continuous near some (x?, xg, oo, 29, 19), then a solution to (3.1) subject to the initial condition
x1(t9) = x?, xo(t9) = xg, oo, xn(t%) = x0 exists (at least for t in some small interval) and is

unique.

That is, a unique solution exists for any initial condition given that the system is
reasonable (F; and its partial derivatives in the x variables are continuous). As for single
equations we may not have a solution for all time ¢, but at least for some short period of
time.

As we can change any nth order ODE into a first order system, then we notice that this
theorem provides also the existence and uniqueness of solutions for higher order equations
that we have until now not stated explicitly.
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3.1.6 Exercises

Exercise 3.1.2: Find the general solution of x] = x2 — x1 +t, X, = x2.
Exercise 3.1.3: Find the general solution of x] = 3x1 — x2 + ef, X, = X1.
Exercise 3.1.4: Write ay” + by’ + cy = f(x) as a first order system of ODEs.

Exercise 3.1.5: Write x” + y2y’ — x> = sin(t), y” + (x' + v')* — x = 0 as a first order system of
ODEs.

Exercise 3.1.6: Suppose two masses on carts on frictionless surface are at displacements x1 and x;
as in Example 3.1.3 on page 122. Suppose that a rocket applies force F in the positive direction on
cart x1. Set up the system of equations.

Exercise 3.1.7: Suppose the tanks are as in Example 3.1.2 on page 121, starting both at volume V,
but now the rate of flow from tank 1 to tank 2 is r1, and rate of flow from tank 2 to tank one is ry.
Notice that the volumes are now not constant. Set up the system of equations.

Exercise 3.1.101: Find the general solution to y| = 3y1, y5 = Y1+ Y2, Y5 = y1 + 3.
Exercise 3.1.102: Solve y’ =2x,x’ =x +y, x(0) =1, y(0) = 3.

Exercise 3.1.103: Write x" = x +t as a first order system.

Exercise 3.1.104: Write y; + y1 + y2 = t, y) + y1 — y2 = t* as a first order system.

Exercise 3.1.105: Suppose two masses on carts on frictionless surface are at displacements x1 and
x2 as in Example 3.1.3 on page 122. Suppose initial displacement is x1(0) = x2(0) = 0, and initial
velocity is x1(0) = x5(0) = a for some number a. Use your intuition to solve the system, explain
your reasoning.

Exercise 3.1.106: Suppose the tanks are as in Example 3.1.2 on page 121 except that clean water
flows in at the rate s liters per second into tank 1, and brine flows out of tank 2 and into the sewer
also at the rate of s liters per second.

a) Draw the picture.

b) Set up the system of equations.

c) Intuitively, what happens as t goes to infinity, explain.
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3.2 Matrices and linear systems

Note: 1.5 lectures, first part of §5.1 in [EP], §7.2 and §7.3 in [BD], see also appendix A

3.2.1 Matrices and vectors

Before we start talking about linear systems of ODEs, we need to talk about matrices, so let
us review these briefly. A matrix is an m X n array of numbers (m rows and n columns).
For example, we denote a 3 X 5 matrix as follows

a1 ap 413 414 Aais
A=|ay ax ax axy ax|.
az1 Az a3z a34 035

The numbers a;; are called elements or entries.
By a vector we usually mean a column vector, that is an m X 1 matrix. If we mean a row
vector, we will explicitly say so (a row vector is a 1 X n matrix). We usually denote matrices

by upper case letters and vectors by lower case letters with an arrow such as X or b. By 0
we mean the vector of all zeros.

We define some operations on matrices. We want 1 X 1 matrices to really act like
numbers, so our operations have to be compatible with this viewpoint.

First, we can multiply a matrix by a scalar (a number). We simply multiply each entry
in the matrix by the scalar. For example,

5 123 |12 4 6
4 5 6| |[8 10 12|
Matrix addition is also easy. We add matrices element by element. For example,
123 N 11 -1 |2 3 2
4 56 02 4| (4 7 10|
If the sizes do not match, then addition is not defined.

If we denote by 0 the matrix with all zero entries, by ¢, d scalars, and by A, B, C matrices,
we have the following familiar rules:

A+0=A=0+A,
A+B=B+A,
(A+B)+C=A+(B+0C),
c(A+B)=cA+cB,
(c+d)A=cA+dA.
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Another useful operation for matrices is the so-called transpose. This operation just
swaps rows and columns of a matrix. The transpose of A is denoted by AT. Example:

3.2.2 Matrix multiplication

Let us now define matrix multiplication. First we define the so-called dot product (or inner
product) of two vectors. Usually this will be a row vector multiplied with a column vector
of the same size. For the dot product we multiply each pair of entries from the first and the
second vector and we sum these products. The result is a single number. For example,

b1
[[11 an ng] . bz = a1b1 + agbz + (13173.
b3

Similarly for larger (or smaller) vectors.

Armed with the dot product we define the product of matrices. First let us denote by
row;(A) the i row of A and by column;(A) the i column of A. For an m X n matrix A
and an n X p matrix B, we can define the product AB. We let AB be an m X p matrix whose
ijh entry is the dot product

row;(A) - column;(B).

Do note how the sizes match up: m X n multiplied by n X p is m X p. Example:

-1

[N
O = O

1
0
[1-1+2-1+3-1 1-0+2-1+3-0 1-(-1)+2-1+3-0| |6 21
4-1+5-1+6:1 4-0+45-1+6-0 4-(-1)+5-1+6-0| |15 5 1

For multiplication we want an analogue of a 1. This analogue is the so-called identity
matrix. The identity matrix is a square matrix with 1s on the diagonal and zeros everywhere
else. It is usually denoted by I. For each size we have a different identity matrix and so
sometimes we may denote the size as a subscript. For example, the I3 would be the 3 x 3
identity matrix
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We have the following rules for matrix multiplication. Suppose that A, B, C are matrices
of the correct sizes so that the following make sense. Let a denote a scalar (number).

A(BC) = (AB)C,
AB+C)=AB+AC,
(B+C)A=BA+CA,

a(AB) = (a¢A)B = A(aB),

IA=A=AIL

A few warnings are in order.

(i) AB # BA in general (it may be true by fluke sometimes). That is, matrices do not
commute. For example, take A = [11]and B = [}9].

(i) AB = AC does not necessarily imply B = C, even if A is not 0.
(iii) AB = 0does not necessarily meanthat A = 0or B = 0. Try, forexample, A = B = [} ].

For the last two items to hold we would need to “divide” by a matrix. This is where the
matrix inverse comes in. Suppose that A and B are n X n matrices such that

AB =1 = BA.

Then we call B the inverse of A and we denote B by A~L. If the inverse of A exists, then we
call A invertible. If A is not invertible, we sometimes say A is singular.

If A is invertible, then AB = AC does imply that B = C (in particular, the inverse of
A is unique). We just multiply both sides by A~! (on the left) to get A”!AB = A™LAC or

IB =1IC or B =C. Itis also not hard to see that (A‘l)_1 = A.

3.2.3 The determinant

For square matrices we define a useful quantity called the determinant. We define the
determinant of a 1 X 1 matrix as the value of its only entry. For a 2 X 2 matrix we define

det(la bl) def 14— be.
c d

Before trying to define the determinant for larger matrices, let us note the meaning of
the determinant. Consider an 7 X n matrix as a mapping of the n-dimensional euclidean
space R" to itself, where X gets sent to AX. In particular, a 2 X 2 matrix A is a mapping
of the plane to itself. The determinant of A is the factor by which the area of objects
changes. If we take the unit square (square of side 1) in the plane, then A takes the square
to a parallelogram of area |det(A)|. The sign of det(A) denotes changing of orientation
(negative if the axes get flipped). For example, let

a1
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Then det(A) =1+ 1 = 2. Let us see where the (unit) square with vertices (0, 0), (1,0), (0, 1),
and (1, 1) gets sent. Clearly (0, 0) gets sent to (0, 0).

R e R 1 R e 1 R

The image of the square is another square with vertices (0,0), (1, -1), (1,1), and (2,0). The
image square has a side of length V2 and is therefore of area 2.

If you think back to high school geometry, you may have seen a formula for computing
the area of a parallelogram with vertices (0,0), (a,c), (b,d) and (a + b,c + d). And it is

precisely
a b
sl[e &)
b

The vertical lines above mean absolute value. The matrix [ a2 ] carries the unit square to
the given parallelogram.

Let us look at the determinant for larger matrices. We define A;; as the matrix A with
the i" row and the j" column deleted. To compute the determinant of a matrix, pick one
row, say the i row and compute:

n

det(A) = > (~1)"*/a;; det(Ay).
j=1

For the first row we get

+a1, det(Ay,) if nis odd,

det(A) = a11 det(A11) — a1p det(A1p) + a1z det(Aq13) — - - -
(A) = ar1 det(Aq1) — arp det(Ar2) + a13 det(A13) {—alndet(Aln) £ even.

We alternately add and subtract the determinants of the submatrices A;; multiplied by
ajj for a fixed i and all j. For a 3 X 3 matrix, picking the first row, we get det(A) =
aq1 det(A11) — a1p det(Aq2) + a13 det(A13). For example,
4 5
[RERETE)

1 2 3
det|{[4 5 6 :1-det([5 6])—2-det([4 6
=15-9-6-8)-2(4-9-6-7)+3(4-8-5-7)=0.

7 8 9 8 9 79

The numbers (—1)"*/ det(A; j) are called cofactors of the matrix and this way of computing
the determinant is called the cofactor expansion. No matter which row you pick, you always
get the same number. It is also possible to compute the determinant by expanding along
columns (picking a column instead of a row above). It is true that det(A) = det(AT).

A common notation for the determinant is a pair of vertical lines:

|

d
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I personally find this notation confusing as vertical lines usually mean a positive quantity;,
while determinants can be negative. Also think about how to write the absolute value of a
determinant. I will not use this notation in this book.

Think of the determinants telling you the scaling of a mapping. If B doubles the sizes
of geometric objects and A triples them, then AB (which applies B to an object and then A)
should make size go up by a factor of 6. This is true in general:

det(AB) = det(A) det(B).

This property is one of the most useful, and it is employed often to actually compute
determinants. A particularly interesting consequence is to note what it means for existence
of inverses. Take A and B to be inverses of each other, that is AB = I. Then

det(A) det(B) = det(AB) = det(I) = 1.

Neither det(A) nor det(B) can be zero. Let us state this as a theorem as it will be very
important in the context of this course.

Theorem 3.2.1. An n X n matrix A is invertible if and only if det(A) # 0.

In fact, det(A~!)det(A) = 1 says that det(A™!) = #(Aﬂ' So we even know what the
determinant of A~ is before we know how to compute A™L.

There is a simple formula for the inverse of a 2 X 2 matrix

a b1 [d -b

c d| ad-bc|-c al’
Notice the determinant of the matrix [ ¢ Z] in the denominator of the fraction. The formula
only works if the determinant is nonzero, otherwise we are dividing by zero.

3.2.4 Solving linear systems

One application of matrices we will need is to solve systems of linear equations. This is
best shown by example. Suppose that we have the following system of linear equations

2x1 + 2x7 +2.’>C3 =2,
X1 + x2+3X3 =5,
x1+4x, + x3 = 10.

Without changing the solution, we could swap equations in this system, we could
multiply any of the equations by a nonzero number, and we could add a multiple of one
equation to another equation. It turns out these operations always suffice to find a solution.

It is easier to write the system as a matrix equation. The system above can be written as

2 2 2| [x 2
1 1 3| x| =15
1 4 1] |x3 10
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To solve the system we put the coefficient matrix (the matrix on the left-hand side of the
equation) together with the vector on the right and side and get the so-called augmented
matrix

2 222
1135
1 4 1]10

We apply the following three elementary operations.
(i) Swap two rows.
(if) Multiply a row by a nonzero number.
(iii) Add a multiple of one row to another row.

We keep doing these operations until we get into a state where it is easy to read off the
answer, or until we get into a contradiction indicating no solution, for example if we come
up with an equation such as 0 = 1.

Let us work through the example. First multiply the first row by 1/2 to obtain

1111
1135
1 4 1|10

Now subtract the first row from the second and third row.

1111
0 0 2|4
0 3 0/|9

Multiply the last row by 1/3 and the second row by 1/2.

(1 1 11 ]
00 1|2
|01 03

Swap rows 2 and 3.
(1 1 1|1]
010|3
0 012

Subtract the last row from the first, then subtract the second row from the first.

1 0 0|4
010]|3
00 1|2

If we think about what equations this augmented matrix represents, we see that x; = —4,
x2 = 3, and x3 = 2. We try this solution in the original system and, voila, it works!
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Exercise 3.2.1: Check that the solution above really solves the given equations.

We write this equation in matrix notation as
AZ=b,

. . [222 > 2 .
where A is the matrix [ 11 ?] and b is the vector [ 2 ] . The solution can also be computed
via the inverse,
X=ATAX=ATD.

It is possible that the solution is not unique, or that no solution exists. It is easy to tell if
a solution does not exist. If during the row reduction you come up with a row where all the
entries except the last one are zero (the last entry in a row corresponds to the right-hand
side of the equation), then the system is inconsistent and has no solution. For example, for
a system of 3 equations and 3 unknowns, if you find a row suchas [0 0 0 | 1]in the
augmented matrix, you know the system is inconsistent. That row corresponds to 0 = 1.

You generally try to use row operations until the following conditions are satisfied. The
tirst (from the left) nonzero entry in each row is called the leading entry.

(i) The leading entry in any row is strictly to the right of the leading entry of the row
above.

(ii) Any zero rows are below all the nonzero rows.
(iii) All leading entries are 1.

(iv) All the entries above and below a leading entry are zero.

Such a matrix is said to be in reduced row echelon form. The variables corresponding to
columns with no leading entries are said to be free variables. Free variables mean that we can
pick those variables to be anything we want and then solve for the rest of the unknowns.

Example 3.2.1: The following augmented matrix is in reduced row echelon form.
1 2 0/|3
00 1|1

0 0 O0f0

Suppose the variables are x1, xp, and x3. Then x; is the free variable, x; = 3 — 2x», and
X3 = 1.

On the other hand if during the row reduction process you come up with the matrix

—_

3

S O =
S ON
W = W

1
0
there is no need to go further. The last row corresponds to the equation 0x; + 0x2 + 0x3 = 3,
which is preposterous. Hence, no solution exists.
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3.2.5 Computing the inverse

If the matrix A is square and there exists a unique solution X to AX = b for any b (there are
no free variables), then A is invertible. Multiplying both sides by A~!, you can see that

% = A7'b. Soit is useful to compute the inverse if you want to solve the equation for many
different right-hand sides b.

We have a formula for the 2 X 2 inverse, but it is also not hard to compute inverses of
larger matrices. While we will not have too much occasion to compute inverses for larger
matrices than 2 X 2 by hand, let us touch on how to do it. Finding the inverse of A is
actually just solving a bunch of linear equations. If we can solve AXi = éx where ¢ is the
vector with all zeros except a 1 at the k! position, then the inverse is the matrix with the
columns Xy for k =1,2,...,n (exercise: why?). Therefore, to find the inverse we write a
larger n X 2n augmented matrix [ A | I ], where I is the identity matrix. We then perform
row reduction. The reduced row echelon form of [ A | I ] will be of the form [I | A~!] if
and only if A is invertible. We then just read off the inverse A~L.

3.2.6 Exercises

Exercise 3.2.2: Solve [12] % = [ 2] by using matrix inverse.
: : 9 26
Exercise 3.2.3: Compute determinant of [ 23 66].
12
Exercise 3.2.4: Compute determinant of lg 9
80

to make the calculations simpler.

. . 123
Exercise 3.2.5: Compute inverse of [(1) % (1)]

Exercise 3.2.6: For which h is [41% § %] not invertible? Is there only one such h? Are there several?
Infinitely many?

h
Exercise 3.2.7: For which h is [(1) I} é] not invertible? Find all such h.
Exercise 3.2.8: Solve [—98 Bl _66] X= [%] .
10 -2 -6
Exercise 3.2.9: Solve [g 2 Z]
633
3230 2
Exercise 3.2.10: Solve lg 33 %] X = lgl.
2343
Exercise 3.2.11: Find 3 nonzero 2 X 2 matrices A, B, and C such that AB = AC but B # C.

, 111
Exercise 3.2.101: Compute determinant of [% 3 —05]
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Exercise 3.2.102: Find t such that | 1 } | is not invertible.

Exercise 3.2.103: Solve [1 1 ]X=[15].

OO

o000
—

Exercise 3.2.104: Suppose a, b, ¢ are nonzero numbers. Let M = [g 2], N = [

a) Compute M1, b) Compute N~1.
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3.3 Linear systems of ODEs

Note: less than 1 lecture, second part of §5.1 in [EP], §7.4 in [BD]

First let us talk about matrix- or vector-valued functions. Such a function is just a matrix
or vector whose entries depend on some variable. If ¢ is the independent variable, we write
a vector-valued function X(t) as

x1(t)
w =]
xn.(t)
Similarly a matrix-valued function A(t) is
an(t) an(t) -+ aw(t)
Alt) = a21.(t) m.(t) azn.(t) :
1) ) o an®)

The derivative A’(t) or ‘i’i—’? is just the matrix-valued function whose ij" entry is a;j(t).

Rules of differentiation of matrix-valued functions are similar to rules for normal
functions. Let A(t) and B(t) be matrix-valued functions. Let ¢ a scalar and let C be a
constant matrix. Then

4

(A(t) + B(t)) = A'(t) + B'(t),
(A(®)B()) = A'(HB(t) + A(H)B'(1),
(cA(t)) = cA'(t),
(CA(t)) = CA'(1),
(A(t)C) = A'(t)C.

Note the order of the multiplication in the last two expressions.
A first order linear system of ODEs is a system that can be written as the vector equation

F'(t) = P(HE() + f (1),

where P(t) is a matrix-valued function, and ¥(¢) and f(t) are vector-valued functions. We

will often suppress the dependence on t and only write X’ = PX + f. A solution of the
system is a vector-valued function ¥ satisfying the vector equation.
For example, the equations

xy = 2txy + etxs + 12,

X1
’ t
xzzT—x2+€,
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P ef . t2
Y -1 et

We will mostly concentrate on equations that are not just linear, but are in fact constant
coefficient equations. That is, the matrix P will be constant; it will not depend on ¢.

can be written as

When j? = 0 (the zero vector), then we say the system is homogeneous. For homogeneous
linear systems we have the principle of superposition, just like for single homogeneous
equations.

Theorem 3.3.1 (Superposition). Let X’ = PX be a linear homogeneous system of ODEs. Suppose
that X1, X2, ..., Xy are n solutions of the equation and c1, ¢z, . . . , ¢, are any constants, then

X = lel + C23_C)2 + -+ CnJ_C)n, (3.2)

-

is also a solution. Furthermore, if this is a system of n equations (P is n X n), and X1,X2, ..., Xy
are linearly independent, then every solution X can be written as (3.2).

Linear independence for vector-valued functions is the same idea as for normal functions.
The vector-valued functions X1, Xy, . .., X, are linearly independent when

013_6)1+C23_C)2+"-+Cn3_c)n=0

has only the solution c1 = ¢; - = ¢, = 0, where the equation must hold for all ¢.

Example 3.3.1: X1 = [fz ], Xp = [lgt ], X3 = [—tz] are linearly dependent because X1 + X3 =

7]

X», and this holds for all t. So c¢; = 1, c» = —1, and c3 = 1 above will work.
On the other hand if we change the example just slightly X; = [ A ], Xp = [ 9 ] X3 =
then the functions are linearly independent. First write ¢1X1 + c2X2 + ¢3X3 = 0 and note
that it has to hold for all t. We get that

10

= ol

In other words c1t2 — c3t2 = 0 and c1t + cot + ¢3 = 0. If we set t = 0, then the second
equation becomes c3 = 0. But then the first equation becomes c1t? = 0 for all ¢ and so
c1 = 0. Thus the second equation is just cot = 0, which means c; =0. Soc; =c2 =c3 =01is
the only solution and ¥1, ¥, and X3 are linearly independent.

Cltz — C3t2

C1X1 + CoXoy + C3X3 =
11 272 343 C1t+Czt+C3

The linear combination ¢1X1 + c2X2 + - - - + ¢, X, could always be written as
X(t)¢c,

where X (t) is the matrix with columns X1, X», . . ., X,;, and € is the column vector with entries
€1,€2,...,Cn. Assuming that X1,X%2,...,X, are linearly independent, the matrix-valued
function X(t) is called a fundamental matrix, or a fundamental matrix solution.

To solve nonhomogeneous first order linear systems, we use the same technique as we
applied to solve single linear nonhomogeneous equations.



138 CHAPTER 3. SYSTEMS OF ODES

Theorem 3.3.2. Let X' = PX + f bea linear system of ODEs. Suppose Xp is one particular solution.
Then every solution can be written as

-

X =Xc+Xp,
where X is a solution to the associated homogeneous equation (X' = PX).
The procedure for systems is the same as for single equations. We find a particular

solution to the nonhomogeneous equation, then we find the general solution to the
associated homogeneous equation, and finally we add the two together.

Alright, suppose you have found the general solution of ¥’ = PX + ]? . Next suppose
you are given an initial condition of the form

(o) = b

for some fixed ty and a constant vector b. Let X (t) be a fundamental matrix solution of
the associated homogeneous equation (i.e. columns of X(t) are solutions). The general
solution can be written as

X(t) = X(t) ¢ + Xp(t).

We are seeking a vector ¢ such that
b= J?(fo) = X(to) ¢+ J_C},(to).

In other words, we are solving for ¢ the nonhomogeneous system of linear equations

-

X(to) ¢ = b — Xp(to).
Example 3.3.2: In § 3.1 we solved the system
X1 = X1,
Xy = X1— X2,
with initial conditions x1(0) = 1, x2(0) = 2. Let us consider this problem in the language of

this section. .
The system is homogeneous, so f(t) = 0. We write the system and the initial conditions

as
fzﬁ_ﬂf, ﬂm=BL

We found the general solution is x1 = cief and x, = Fef + cpe™!

. Letting c1 = 1 and
¢> = 0, we obtain the solution [ a /ezt) of ] Letting c1 = 0 and ¢, = 1, we obtain [69, ] These

two solutions are linearly independent, as can be seen by setting t = 0, and noting that
the resulting constant vectors are linearly independent. In matrix notation, a fundamental
matrix solution is, therefore,
t
e 0
X(t) = [ e—tl -

1,t
28
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To solve the initial value problem we solve for ¢ in the equation

X(0)Z=b,

i 3)e=bl

A single elementary row operation shows ¢ = [3}2 |. Our solution is

7(t) = X(t)2 = lfet e(‘)tl M _

2 2

or in other words,

al
Il

et l
1t 3,-t]-
ie + 7@

This new solution agrees with our previous solution from § 3.1.

3.3.1 Exercises

Exercise 3.3.1: Write the system x| = 2x1 — 3tx + sint, x; = e'x1 + 3x, + cost in the form
¥ =PI+ f(t).

Exercise 3.3.2:

a) Verify that the system X' = [ 1 3| ¥ has the two solutions 1] e* and [ 1, ] e™2.
b) Write down the general solution.

c) Write down the general solution in the form x1 =?, xo =? (i.e. write down a formula for each
element of the solution).

Exercise 3.3.3: Verify that [ 1] e' and [ 1| e' are linearly independent. Hint: Just plug in t = 0.

, 1 1 1 : : ,
Exercise 3.3.4: Verify that [ ! ] el and [—11] el and [—11] e?! are linearly independent. Hint: You
must be a bit more tricky than in the previous exercise.

Exercise 3.3.5: Verify that | ), | and [:Z] are linearly independent.
Exercise 3.3.6: Take the system x| + X}, = x1, X] — X5 = Xa.

a) Write it in the form AX’ = BX for matrices A and B.

b) Compute A~ and use that to write the system in the form X' = PX.

Exercise 3.3.101: Are [E;f] and [ :;t] linearly independent? Justify.

Exercise 3.3.102: Are [Cos{‘(t)], [elt ], and [eit] linearly independent? Justify.
Exercise 3.3.103: Write x’ = 3x — y + ¢!, y’ = tx in matrix notation.
Exercise 3.3.104:

a) Write x| = 2tx,, x, = 2tx; in matrix notation.

b) Solve and write the solution in matrix notation.
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3.4 Eigenvalue method

Note: 2 lectures, §5.2 in [EP], part of §7.3, §7.5, and §7.6 in [BD]

In this section we will learn how to solve linear homogeneous constant coefficient
systems of ODEs by the eigenvalue method. Suppose we have such a system

X" = PX,

where P is a constant square matrix. We wish to adapt the method for the single constant
coefficient equation by trying the function e*. However, ¥ is a vector. So we try ¥ = de’,
where 7 is an arbitrary constant vector. We plug this X into the equation to get
ABeM = Pget .
~—— ~——
X’ Px

We divide by e and notice that we are looking for a scalar A and a vector ¥ that satisfy the
equation
AT = Po.

To solve this equation we need a little bit more linear algebra, which we now review.

3.4.1 Eigenvalues and eigenvectors of a matrix

Let A be a constant square matrix. Suppose there is a scalar A and a nonzero vector v such
that

A = AD.
We call A an eigenvalue of A and we call 7 a corresponding eigenvector.

Example 3.4.1: The matrix |2 ]| has an eigenvalue A = 2 with a corresponding eigenvector

| -

Let us see how to compute eigenvalues for any matrix. Rewrite the equation for an
eigenvalue as

]as

(A - D = 0.

This equation has a nonzero solution @ only if A — Al is not invertible. Were it invertible,
we could write (A — AI) (A — A)G = (A — AI)'0, which implies 0 = 0. Therefore, A has
the eigenvalue A if and only if A solves the equation

det(A — AI) =0.

Consequently, we can find an eigenvalue of A without finding a corresponding eigen-
vector at the same time. An eigenvector will have to be found later, once A is known.
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Example 3.4.2: Find all eigenvalues of [é (12)
We write

2
det

11 100
2 0[-A|0 1 Of|=det[f{ 1 2-A 0 =
0 2 001
=2-M)(2-A)?=1) = (A = 1)(A - 2)(A - 3).
So the eigenvalues are A =1, A =2,and A = 3.

For an n X n matrix, the polynomial we get by computing det(A — AI) is of degree 1, and
hence in general, we have n eigenvalues. Some may be repeated, some may be complex.

To find an eigenvector corresponding to an eigenvalue A, we write
(A-ADB =0,

and solve for a nontrivial (nonzero) vector v. If A is an eigenvalue, there will be at least one
free variable, and so for each distinct eigenvalue A, we can always find an eigenvector.

Example 3.4.3: Find an eigenvector of [i % (12)] corresponding to the eigenvalue A = 3.
We write
211 1 0 Of\ o1 -1 1 1]]|vn
(A-ADo=[|1 2 0|-3|0 1 O|||v2|=|1 -1 O[[ovz2|=0.
00 2 0 0 1/ |vs 0 0 -1f|vs

It is easy to solve this system of linear equations. We write down the augmented matrix

-1 1 110
1 -1 0|0},
0 0 -1/0

and perform row operations (exercise: which ones?) until we get:

1 -1 0|0
0 0 1]0
0 0 0]0

The entries of ¥ have to satisfy the equations v1 — v; = 0, v3 = 0, and v, is a free variable.
We can pick v, to be arbitrary (but nonzero), let v1 = v, and of course v3 = 0. For example,

if we pick v, =1, then v = [(%) ] . Let us verify that o really is an eigenvector corresponding
toA =3:

21 1|1 3 1
1 2 0(1]=1|3[=3]1
0 0 2{(0 0 0

Yay! It worked.
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Exercise 3.4.1 (easy): Are eigenvectors unique? Can you find a different eigenvector for A = 3 in
the example above? How are the two eigenvectors related?

Exercise 3.4.2: When the matrix is 2 X 2 you do not need to do row operations when computing an
eigenvector, you can read it off from A — Al (if you have computed the eigenvalues correctly). Can

you see why? Explain. Try it for the matrix [31].

3.4.2 The eigenvalue method with distinct real eigenvalues

OK. We have the system of equations
X" = PX.

We find the eigenvalues A1, Ay, ..., A, of the matrix P, and corresponding eigenvectors 71,
Dy, ..., 0n. Now we notice that the functions 91ef, Dre?2t, ..., 9, are solutions of the

system of equations and hence X = c151eM! + c02eM! + - - + ¢, 0,eM! is a solution.

Theorem 3.4.1. Take X’ = PX. If P is an n X n constant matrix that has n distinct real eigenvalues
A1, Ao, ..., Ay, then there exist n linearly independent corresponding eigenvectors 01,02, ...,0n,
and the general solution to X' = PX can be written as

Aot

‘ X = C151€/\1t + C252€ + -+ cn?)neA”t. ]

The corresponding fundamental matrix solution is
X(t) = [z_heht DoeM2t .. g, et ]
That is, X(t) is the matrix whose j" column is 7 ]'eAf £

Example 3.4.4: Consider the system

211
=11 2 0|X
00 2
Find the general solution.
Earlier, we found the eigenvalues are 1,2,3. We found the eigenvector [i] for the
eigenvalue 3. Similarly we find the eigenvector [ —(1)1 ] for the eigenvalue 1, and [ (1)1 ] for the

eigenvalue 2 (exercise: check). Hence our general solution is

1 0 1 cret + cse’t
X=c1|-1lef +co| 1 |eX +c3|1]e3 = [=cre! + cre?t + cze®
0 -1 0 —cpet

In terms of a fundamental matrix solution,
et 0 &t [e

cyl.
0 —e2 0]|cs

al
Il
|

x

¥=X(t)
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Exercise 3.4.3: Check that this X really solves the system.

Note: If we write a single homogeneous linear constant coefficient nt" order equation
as a first order system (as we did in § 3.1), then the eigenvalue equation

det(P - AI) =0

is essentially the same as the characteristic equation we got in § 2.2 and § 2.3.

3.4.3 Complex eigenvalues

A matrix may very well have complex eigenvalues even if all the entries are real. Take, for

example,
E’—[l 1];?
-1 1T

Let us compute the eigenvalues of the matrix P = [ R ] .

1-A 1

det(P — AI) = det([ 1 1-1

l):(1-A)2+1:/\2—2A+2:0.

Thus A =1 +i. Corresponding eigenvectors are also complex. Start with A =1 —i.

(P-(1-)I)3 =0,

i 11#
0=

B

The equations iv; + v, = 0 and —v; + ivp = 0 are multiples of each other. So we only need

to consider one of them. After picking v, = 1, for example, we have an eigenvector 7 = [ 1 |.

In similar fashion we find that [ B ] is an eigenvector corresponding to the eigenvalue 1 + i.
We could write the solution as

X=0a lil e=Mt 4 ¢y

—i (1+i)t _ Clie(l—i)f _ Czie(“i)f
1 ‘ - Cle(l_i)f + Cze(1+i)t

We would then need to look for complex values c1 and ¢, to solve any initial conditions. It
is perhaps not completely clear that we get a real solution. After solving for ¢1 and ¢y, we
could use Euler’s formula and do the whole song and dance we did before, but we will not.
We will apply the formula in a smarter way first to find independent real solutions.

We claim that we did not have to look for a second eigenvector (nor for the second
eigenvalue). All complex eigenvalues come in pairs (because the matrix P is real).

First a small detour. The real part of a complex number z can be computed as %2,
where the bar above z means a + ib = a — ib. This operation is called the complex conjugate.
If a is a real number, then 2 = a. Similarly we bar whole vectors or matrices by taking
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the complex conjugate of every entry. Suppose a matrix P is real. Then P = P, and so

PX = PX = PX. Also the complex conjugate of 0 is still 0, therefore,
0=0=(P—-AI3 = (P - AI)3.

In other words, if A = a +ib is an eigenvalue, then sois A = a —ib. And if ¥ is an eigenvector

corresponding to the eigenvalue A, then 7 is an eigenvector corresponding to the eigenvalue
A
Suppose a + ib is a complex eigenvalue of P, and @ is a corresponding eigenvector. Then

3-51 — 5e(a+ib)t

is a solution (complex-valued) of ¥’ = PX. Euler’s formula shows that e?*i? = ¢~ and so

is also a solution. As X1 and X5 are solutions, the function
; J_C)l + 3?1 J_fl + 3?2 1. 1.
(a+ib)t _ — = =X+ =%

X3 = Rex1 = Reve > > > >

is also a solution. And X3 is real-valued! Similarly as Imz = %=

find that

is the imaginary part, we
Fp=Imi = hoh_E-%
S TR T
is also a real-valued solution. It turns out that X3 and ¥4 are linearly independent. We will
use Euler’s formula to separate out the real and imaginary part.

Returning to our problem,

z = i L=t _ i (e cost — ie! sint) = ie' cost +elsint| |elsint e el cost
'l |1 ~ |efcost —iefsint|  |efcost —etsint|’

Then t
- e’ cost
I = . ,
] , and m X1 [—et smtl
are the two real-valued linearly independent solutions we seek.
Exercise 3.4.4: Check that these really are solutions.

The general solution is
. el sint ef cost ciefsint + cref cost
e’ cost —e'sint c1e’ cost — cpe’ sint

This solution is real-valued for real c¢; and c;. At this point, we would solve for any initial
conditions we may have to find ¢; and c5.

Let us summarize the discussion as a theorem.
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Theorem 3.4.2. Let P be a real-valued constant matrix. If P has a complex eigenvalue a + ib and
a corresponding eigenvector v, then P also has a complex eigenvalue a — ib with a corresponding

eigenvector 0. Furthermore, X' = PX has two linearly independent real-valued solutions

(a+z’b)t, and 3-52 — Im5€<a+ib)t.

J_C)l =Re 56

For each pair of complex eigenvalues a + ib and a — ib, we get two real-valued linearly

independent solutions. We then go on to the next eigenvalue, which is either a real

eigenvalue or another complex eigenvalue pair. If we have n distinct eigenvalues (real

or complex), then we end up with n linearly independent solutions. If we had only two

equations (n = 2) as in the example above, then once we found two solutions we are
finished, and our general solution is

(a+z’b)t) (a+ib)t).

X = 01%1 + c2X2 = c1(Re e + oo (Im e

We can now find a real-valued general solution to any homogeneous system where the
matrix has distinct eigenvalues. When we have repeated eigenvalues, matters get a bit
more complicated and we will look at that situation in § 3.7.

3.4.4 Exercises

Exercise 3.4.5 (easy): Let A be a 3 X 3 matrix with an eigenvalue of 3 and a corresponding
eigenvector v = [—;’1] Find AD.

Exercise 3.4.6:

a) Find the general solution of x| = 2x1, x, = 3x, using the eigenvalue method (first write the
system in the form X’ = AX).

b) Solve the system by solving each equation separately and verify you get the same general
solution.

Exercise 3.4.7: Find the general solution of x = 3x1 + x2, X, = 2x1 + 4x7 using the eigenvalue
method.

Exercise 3.4.8: Find the general solution of xi = x1 — 2xp, X} = 2X1 + X using the eigenvalue
method. Do not use complex exponentials in your solution.

Exercise 3.4.9:
. . 9 -2 -6
a) Compute eigenvalues and eigenvectors of A = [Ig 3 8 ]
b) Find the general solution of X’ = AX.

[y

. . -2 -1 -1
Exercise 3.4.10: Compute eigenvalues and eigenvectors of [ 321 ]

[ay
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b
Exercise 3.4.11: Leta,b,c,d, e, f be numbers. Find the eigenvalues of [§ g ;]
Exercise 3.4.101:
a) Compute eigenvalues and eigenvectors of A = [—;1 § z]

b) Solve the system X’ = AX.
Exercise 3.4.102:

a) Compute eigenvalues and eigenvectors of A = [_1 %]

b) Solve the system X' = AX.

Exercise 3.4.103: Solve xi = Xp, X, = X1 using the eigenvalue method.

Exercise 3.4.104: Solve xi = X2, X, = —x1 using the eigenvalue method.
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3.5 Two-dimensional systems and their vector fields

Note: 1 lecture, part of §6.2 in [EP], parts of §7.5 and §7.6 in [BD]

Let us take a moment to talk about constant coefficient linear homogeneous systems in
the plane. Much intuition can be obtained by studying this simple case. We use coordinates
(x, y) for the plane as usual, and suppose P = [? b ] is a 2 X 2 matrix. Consider the system

IR I A

The system is autonomous (compare this section to § 1.6) and so we can draw a vector field
(see the end of § 3.1). We will be able to visually tell what the vector field looks like and how
the solutions behave, once we find the eigenvalues and eigenvectors of the matrix P. For
this section, we assume that P has two eigenvalues and two corresponding eigenvectors.

Case 1. Suppose that the eigenvalues of P are real and positive. We find two corre-
sponding eigenvectors and plot them in the plane. For example, take the matrix [é ! ] . The
eigenvalues are 1 and 2 and corresponding eigenvectors are [(1)] and H ] See Figure 3.4.

Let (x, y) be a point on the line deter-
mined by an eigenvector @ for an eigenvalue
A. Thatis, [ | = @ for some scalar a. Then

m -p m = P(a%) = a(P%) = aA3. ' : el

The derivative is a multiple of ¥ and hence
points along the line determined by 0. As | -
A > 0, the derivative points in the direction
of o when « is positive and in the opposite
direction when « is negative. We draw the | .t - - - 1‘ . s
lines determined by the eigenvectors, and
we draw arrows on the lines to indicate the
directions. See Figure 3.5 on the next page.
We fill in the rest of the arrows for the vector field and we also draw a few solutions. See
Figure 3.6 on the following page. The picture looks like a source with arrows coming out
from the origin. Hence we call this type of picture a source or sometimes an unstable node.

-3 2 -1 0 1 2
3 T T T T T 3

Figure 3.4: Eigenvectors of P.

Case 2. Suppose both eigenvalues are negative. For example, take the negation of the
matrix in case 1, [ 7' 21 |. The eigenvalues are —1 and —2 and corresponding eigenvectors
are the same, [} | and []]. The calculation and the picture are almost the same. The only
difference is that the eigenvalues are negative and hence all arrows are reversed. We get
the picture in Figure 3.7 on the next page. We call this kind of picture a sink or a stable node.

Case 3. Suppose one eigenvalue is positive and one is negative. For example the matrix
[(1) 4 ] The eigenvalues are 1 and -2 and corresponding eigenvectors are [(1)] and [_13 ]
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o « - o - o S
® ~ - o - o @
@ T T
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© I I

o « - o - o 3
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Figure 3.6: Example source vector field with eigen-

vectors and solutions.

Figure 3.5: Eigenvectors of P with directions.
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Figure 3.8: Example saddle vector field with eigen-

vectors and solutions.

Figure 3.7: Example sink vector field with eigen-

vectors and solutions.

We reverse the arrows on one line (corresponding to the negative eigenvalue) and we

obtain the picture in Figure 3.8. We call this picture a saddle point.

For the next three cases we will assume the eigenvalues are complex. In this case the

eigenvectors are also complex and we cannot just plot them in the plane.

[_04 (1)] The eigenvalues are +2i and corresponding eigenvectors are [211] and [_11- ]

Consider the eigenvalue 2i and its eigenvector [211 ] The real and imaginary parts of Fe?

are

Case 4. Suppose the eigenvalues are purely imaginary, that is, +ib. For example, let

P =

sin(2t)
2cos(2t)| "

|

eZzt —

1
2i

o

cos(2t)
—2sin(2t)

|

L it
21’] ‘

ke
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We can take any linear combination of them to get other solutions, which one we take
depends on the initial conditions. Now note that the real part is a parametric equation for
an ellipse. Same with the imaginary part and in fact any linear combination of the two.
This is what happens in general when the eigenvalues are purely imaginary. So when the
eigenvalues are purely imaginary, we get ellipses for the solutions. This type of picture is
sometimes called a center. See Figure 3.9.

&
w
&
o
w
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~]®
“n
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A A IR T S N A a1 N LN N\
Tt vy L S Y A 4 4 > ™\ NN N\
T N VA A A A /1 2, A NN N\
T U A L S A A N 3 I ERERVERY
O vyl LS U S N A N NI Y
N VAR R 0 % IS S W S S W » ARANEEA VAR SRR R E
R vyl LS T S N N N v vV vy LY
L S S ) vy oy N S R N N NN r v v Voyoy
My r o v b NN RN N - v v VR
S R S S S S vy ] TEN N N K v v\ 3 oo LA IR e IR
LR S vy o N KRN N v NG < Loy A A
YA R oA vov v NN KK N v % Lov 1 R
JP L Y. S N S vov v oy e PO W T N - VS A A A Y
AL L U S S RN AR NN X K % v o« Lo vyl v b
NN NN R AR AR N XN X X % % < P ¢¢¢¢¢i/
’\N'\\NNN“\“$<\‘ k%¢¢¢\f¢«/ NN NSNS S S W ¢¢¢\¢L
) 2 -1 0 1 2 37 ) 2 -1 0 1 2 32
Figure 3.9: Example center vector field. Figure 3.10: Example spiral source vector field.

Case 5. Now suppose the complex eigenvalues have a positive real part. That is, suppose

the eigenvalues are a + ib for some a > 0. For example, letP = [ 1 1 ] The eigenvalues

turn out to be 1 + 2i and eigenvectors are [211] and [ Ry ] We take 1 + 2i and its eigenvector

[211' ] and find the real and imaginary parts of Fe(!+?)* are

(+2i _ ¢ | €os(2t) | a2 _ ot | sin(2t)
¢ ¢ l—2sin(2t) L P ¢ |2cos2t)|"

1
Re [21'

Note the ¢! in front of the solutions. The solutions grow in magnitude while spinning
around the origin. Hence we get a spiral source. See Figure 3.10.

Case 6. Finally suppose the complex eigenvalues have a negative real part. That is,
suppose the eigenvalues are —a + ib for some a > 0. For example, let P = [ ! 1]. The

eigenvalues turn out to be —1 + 2i and eigenvectors are | }; | and [ J;|. We take -1 —2i

—1-2i)t

and its eigenvector [211 ] and find the real and imaginary parts of de' are

cos(2t) l m l 1] Q120 _ -t l— sin(Zt)l
! 2i ’

2i

1 :
(-1-2i)t _ ,—t
Re [ ] ¢ ¢ 2 sin(2t) 2 cos(2t)

Note the e~ in front of the solutions. The solutions shrink in magnitude while spinning
around the origin. Hence we get a spiral sink. See Figure 3.11 on the next page.
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Figure 3.11: Example spiral sink vector field.

We summarize the behavior of linear homogeneous two-dimensional systems given by
a nonsingular matrix in Table 3.1. Systems where one of the eigenvalues is zero (the matrix
is singular) come up in practice from time to time, see Example 3.1.2 on page 121, and the
pictures are somewhat different (simpler in a way). See the exercises.

Eigenvalues Behavior

real and both positive source / unstable node
real and both negative sink / stable node

real and opposite signs saddle

purely imaginary center point / ellipses

complex with positive real part spiral source
complex with negative real part spiral sink

Table 3.1: Summary of behavior of linear homogeneous two-dimensional systems.

3.5.1 Exercises

Exercise 3.5.1: Take the equation mx” + cx’ + kx = 0, with m > 0, c > 0, k > O for the
mass-spring system.

a) Convert this to a system of first order equations.

b) Classify for what m, c, k do you get which behavior.

c) Explain from physical intuition why you do not get all the different kinds of behavior here?
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Exercise 3.5.2: What happens in the case when P = [% 1 ] ? In this case the eigenvalue is repeated

and there is only one independent eigenvector. What picture does this look like?

Exercise 3.5.3: What happens in the case when P = [11]? Does this look like any of the pictures
we have drawn?

Exercise 3.5.4: Which behaviors are possible if P is diagonal, that is P = [ & 9]? You can assume
that a and b are not zero.

Exercise 3.5.5: Tuake the system from Example 3.1.2 on page 121, xi = px2a—x1), x5 = (x1—x2).
As we said, one of the eigenvalues is zero. What is the other eigenvalue, how does the picture look
like and what happens when t goes to infinity.

Exercise 3.5.101: Describe the behavior of the following systems without solving:
a xX'=x+y, yY=x-y. b)x1=x1+x2, x5 = 2x2.
c) xi =—2xy, X, =2x1. d x'=x+3y, vy =-2x-4y.
e) X' =x-4y, y =-4x+y.

Exercise 3.5.102: Suppose that X' = AX where A is a 2 by 2 matrix with eigenvalues 2 + i.
Describe the behavior.

Exercise 3.5.103: Take [} = [54] [ ] Draw the vector field and describe the behavior. Is it
one of the behaviors that we have seen before?
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3.6 Second order systems and applications

Note: more than 2 lectures, §5.4 in [EP], not in [BD]

3.6.1 Undamped mass-spring systems

While we did say that we will usually only look at first order systems, it is sometimes more
convenient to study the system in the way it arises naturally. For example, suppose we
have 3 masses connected by springs between two walls. We could pick any higher number,
and the math would be essentially the same, but for simplicity we pick 3 right now. Let
us also assume no friction, that is, the system is undamped. The masses are my, m,, and
m3 and the spring constants are ki, ky, k3, and k4. Let x1 be the displacement from rest
position of the first mass, and x; and x3 the displacement of the second and third mass.
We make, as usual, positive values go right (as x; grows, the first mass is moving right).
See Figure 3.12.

Figure 3.12: System of masses and springs.

This simple system turns up in unexpected places. For example, our world really
consists of many small particles of matter interacting together. When we try the system
above with many more masses, we obtain a good approximation to how an elastic material
behaves. By somehow taking a limit of the number of masses going to infinity, we obtain
the continuous one-dimensional wave equation (that we study in § 4.7). But we digress.

Let us set up the equations for the three mass system. By Hooke’s law, the force acting
on the mass equals the spring compression times the spring constant. By Newton’s second
law, force is mass times acceleration. So if we sum the forces acting on each mass, put the
right sign in front of each term, depending on the direction in which it is acting, and set
this equal to mass times the acceleration, we end up with the desired system of equations.

myx] = —kix1 + ka(x2 — x1) = —(k1 + ko)x1 + koxo,
moxy = —ko(xa — x1) + ka(x3 = x2) = kox1 — (k2 + k3)x2 + kaxs,
m3xy = —kz(x3 — x2) — kax3 = ksxo — (k3 + kq)x3.

We define the matrices

mp 0O 0 —(k1 + ko) ko 0
M=10 m O and K= kz —(kz + kg) k3 .
0 0 ms 0 ks —(ks + ka)
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We write the equation simply as
MX" = KX.

At this point we could introduce 3 new variables and write out a system of 6 first order
equations. We claim this simple setup is easier to handle as a second order system. We call
X the displacement vector, M the mass matrix, and K the stiffness matrix.

Exercise 3.6.1: Repeat this setup for 4 masses (find the matrices M and K). Do it for 5 masses.
Can you find a prescription to do it for n masses?

As with a single equation we want to “divide by M.” This means computing the inverse
of M. The masses are all nonzero and M is a diagonal matrix, so computing the inverse is
easy:

1
L
M7T=|0 L 0

0 0 L

This fact follows readily by how we multiply diagonal matrices. As an exercise, you should
verify that MM~ = M~IM = I.

Let A = M~'K. We look at the system X¥”” = M~'K¥, or
X" = AX.

Many real world systems can be modeled by this equation. For simplicity, we will only talk
about the given masses-and-springs problem. We try a solution of the form

X = e,

2

We compute that for this guess, X = a*ve®. We plug our guess into the equation and get

a*Be®t = Age®.

We divide by e to arrive at a0 = AD. Hence if a? is an eigenvalue of A and 7 is a
corresponding eigenvector, we have found a solution.

In our example, and in other common applications, A has only real negative eigenvalues
(and possibly a zero eigenvalue). So we study only this case. When an eigenvalue A is
negative, it means that a? = A is negative. Hence there is some real number w such that
—w? = A. Then a = +iw. The solution we guessed was

X = 7 (cos(wt) + i sin(wt)).

By taking the real and imaginary parts (note that o is real), we find that @ cos(wt) and
¥ sin(wt) are linearly independent solutions.

If an eigenvalue is zero, it turns out that both v and vt are solutions, where o is an
eigenvector corresponding to the eigenvalue 0.
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Exercise 3.6.2: Show that if A has a zero eigenvalue and T is a corresponding eigenvector, then
X = 0(a + bt) is a solution of X" = AX for arbitrary constants a and b.

Theorem 3.6.1. Let A be a real n X n matrix with n distinct real negative (or zero) eigenvalues we

denote by —w? > —w3 > -+ > —w3, and corresponding eigenvectors by 1, Do, ..., Uy. If A'is

invertible (that is, if w1 > 0), then

n

X(t) = Z ¥i(aj cos(wit) + b; sin(wjt)),

i=1

is the general solution of
x" = AX,

for some arbitrary constants a; and b;. If A has a zero eigenvalue, that is w1 = 0, and all other
eigenvalues are distinct and negative, then the general solution can be written as

n
X(t) = O1(ay + bit) + Z 0i(a; cos(wit) + b; sin(w;t)).
i=2

We use this solution and the setup from the introduction of this section even when
some of the masses and springs are missing. For example, when there are only 2 masses
and only 2 springs, simply take only the equations for the two masses and set all the spring
constants for the springs that are missing to zero.

3.6.2 Examples

Example 3.6.1: Consider the setup in Figure 3.13, with m; = 2kg, my = 1kg, k1 = 4N/m,
and k2 = 2N/m.

k1 ko

O o

Figure 3.13: System of masses and springs.

The equations we write down are

2 0], _
01 B

-(4+2) 2|.
I

or
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We find the eigenvalues of A to be A = —1, -4 (exercise). We find corresponding
eigenvectors to be [%] and [_11] respectively (exercise).
We check the theorem and note that w; = 1 and w, = 2. Hence the general solution is

(a2 cos(2t) + by sin(2t)).

1
-1

X= B] (a1 cos(t) + by sin(t)) +

The two terms in the solution represent the two so-called natural or normal modes of
oscillation. And the two (angular) frequencies are the natural frequencies. The first natural
frequency is 1, and second natural frequency is 2. The two modes are plotted in Figure 3.14.

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0 25 5.0 75 10.0

Figure 3.14: The two modes of the mass-spring system. In the left plot the masses are moving in unison
and in the right plot are masses moving in the opposite direction.

Let us write the solution as

1 l Cp cos(2t — ay).

X = 1 c (t—ap) +
= ) 1 COS a1 1

The first term,
1 _ | cicos(t — aq)
[2] crcos(t —ar) = lch cos(t —aq)|’

corresponds to the mode where the masses move synchronously in the same direction.
The second term,

cp cos(2t — ap) l

1
|—1] €2 CO8(2t — a2) = l—cz cos(2t — ay)

corresponds to the mode where the masses move synchronously but in opposite directions.
The general solution is a combination of the two modes. That is, the initial conditions
determine the amplitude and phase shift of each mode. As an example, suppose we have

initial conditions
- 1 =) _ O
wo-[1], ro-[]
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We use the a;, b; constants to solve for initial conditions. First

-5+ 2]

We solve (exercise) to find a1 = 0, a; = 1. To find the by and b;, we differentiate first:

a1 +dp

al +
! 2611—&2

X = [;l (—a1 sin(t) + b1 cos(t)) +

v

Again solve (exercise) to find b1 = 2, by = —1. So our solution is

_11] (—2a2 sin(2t) + 2b; cos(2t)).

Now we solve:
bl +

1

bl + 2b2
2b1 —2by |-

1 . _|2sin(t) + cos(2t) — sin(2t)
—1] (cos(2t) - sin(24)) = [4 sin(t) — cos(2t) + sin(2t) |

X = E] 2sin(t) +

The graphs of the two displacements, x1 and x, of the two carts is in Figure 3.15.

I I I
0.0 25 5.0 75 10.0

Figure 3.15: Superposition of the two modes given the initial conditions.

Example 3.6.2: We have two toy rail cars. Car 1 of mass 2 kg is traveling at 3 m/s towards
the second rail car of mass 1kg. There is a bumper on the second rail car that engages at
the moment the cars hit (it connects to two cars) and does not let go. The bumper acts
like a spring of spring constant k = 2N/m. The second car is 10 meters from a wall. See
Figure 3.16 on the facing page.

We want to ask several questions. At what time after the cars link does impact with the
wall happen? What is the speed of car 2 when it hits the wall?

OK, let us first set the system up. Let t = 0 be the time when the two cars link up. Let x1
be the displacement of the first car from the position at t = 0, and let x be the displacement
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—_—
k

Figure 3.16: The crash of two rail cars.

10 meters

of the second car from its original location. Then the time when x;(t) = 10 is exactly the
time when impact with wall occurs. For this ¢, x7() is the speed at impact. This system
acts just like the system of the previous example but without k;. Hence the equation is

2 0l., [-2 2].
0o 1|* T2 2|

¥ = -1 1 b
12 2|7
We compute the eigenvalues of A. It is not hard to see that the eigenvalues are 0 and
-3 (exercise). Furthermore, eigenvectors are H] and [_12] respectively (exercise). Then

or

(111 + b1t) +

1 ] (az cos(V3t) + by sin(V3 t))

w1 =0, wy = V3, and by the second part of the theorem the general solution is
-2

-1
!
| ar+bit+a cos(V3t) + by sin(V3 1)
a1 + b1t —2ap cos(V31t) — 2b, sin(V31) |

We now apply the initial conditions. First the cars start at position 0 so x1(0) = 0 and
x2(0) = 0. The first car is traveling at 3m/s, so x{(0) = 3 and the second car starts at rest, so
x7(0) = 0. The first conditions says

a1+ as
a1 — 2&12

0= X(0) =

It is not hard to see that a1 = a, = 0. We set a3 = 0 and a, = 0 in X(t) and differentiate to get

F(t) = b1 + V3 by cos(V31) l
~|b1 —2V3bacos(V31)|”
So A
3 o _ b1+ V3b>
[Ol =*(0)= b1—2\/§bzl.
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1

Solving these two equations we find by = 2 and b, = —=. Hence the position of our cars is

S

(until the impact with the wall)

X =

2t + % sin(V31t)
2t — % sin(V3 )|’

Note how the presence of the zero eigenvalue resulted in a term containing ¢. This means
that the cars will be traveling in the positive direction as time grows, which is what we
expect.

What we are really interested in is the second expression, the one for x,. We have
xy(t) =2t — % sin(V31). See Figure 3.17 for the plot of x; versus time.

Just from the graph we can see that time of impact will be a little more than 5 seconds
from time zero. For this we have to solve the equation 10 = x;(t) = 2t — % sin(V31). Using
a computer (or even a graphing calculator) we find that timpact ~ 5.22 seconds.

The speed of the second car is x} =
2 —2cos(V31t). At the time of impact (5.22 ‘ ‘ : ‘ ‘
seconds from ¢ = 0) we get X} (timpact) ~ 3.85.
The maximum speed is the maximum of
2 — 2 cos(V3 t), which is 4. We are traveling
at almost the maximum speed when we hit
the wall.

Suppose that Bob is a tiny person sitting
on car 2. Bob has a Martini in his hand and
would like not to spill it. Let us suppose
Bob would not spill his Martini when the ° “ : é J‘ ; °
first car links up with car 2, but if car 2 hits | Figure 3.17: Position of the second car in time
the wall at any speed greater than zero, Bob | (ignoring the wall).
will spill his drink. Suppose Bob can move
car 2 a few meters towards or away from
the wall (he cannot go all the way to the wall, nor can he get out of the way of the first car).
Is there a “safe” distance for him to be at? A distance such that the impact with the wall is
at zero speed?

The answer is yes. On Figure 3.17, note the “plateau” between t = 3 and t = 4. There is
a point where the speed is zero. To find it we solve x}(t) = 0. This is when cos(V3t) =1
or in other words when t = 2&, 4Z

X2 (2—”) = % ~ 7.26. So a “safe” distance is about 7 and a quarter meters from the wall.

V3

Alternatively Bob could move away from the wall towards the incoming car 2, where

another safe distance is x» (4—”) = 8% ~ 14.51 and so on. We can use all the different ¢ such

V3] V3

that x7(t) = 0. Of course ¢ = 0 is also a solution, corresponding to x» = 0, but that means
standing right at the wall.

. and so on. We plug in the first value to obtain
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3.6.3 Forced oscillations

Finally we move to forced oscillations. Suppose that now our system is
X" = AX + F cos(wt). (3.4)

That is, we are adding periodic forcing to the system in the direction of the vector F.

As before, this system just requires us to find one particular solution ¥,, add it to the
general solution of the associated homogeneous system X, and we will have the general
solution to (3.4). Let us suppose that w is not one of the natural frequencies of X" = AX,
then we can guess

X, = ¢ cos(wt),

where ¢ is an unknown constant vector. Note that we do not need to use sine since there
are only second derivatives. We solve for ¢ to find ¥,. This is really just the method of
undetermined coefficients for systems. Let us differentiate X, twice to get

Xy = —w?C cos(wt).

Plug X, and X, into equation (3.4):

174

; A%,

—w2Z cos(wt) = AZ cos(wt) +F cos(wt).

We cancel out the cosine and rearrange the equation to obtain
(A + )¢ = —F.

So
¢=(A+ ) (=F).
Of course this is possible only if (A + w?I) = (A — (~w?)I) is invertible. That matrix is
invertible if and only if —w? is not an eigenvalue of A. That is true if and only if w is not a
natural frequency of the system.
We simplified things a little bit. If we wish to have the forcing term to be in the units of
force, say Newtons, then we must write

MZX” = KX + G cos(wt).
If we then write things in terms of A = M ~1K, we have
¥ = M7'KZ + MG cos(wt) or ¥’ = A% + F cos(wt),

where 1? = M‘lé.

Example 3.6.3: Let us take the example in Figure 3.13 on page 154 with the same parameters
as before: my; =2, my =1, k; =4, and ko = 2. Now suppose that there is a force 2 cos(3t)
acting on the second cart.
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The equation is

20 2 -4 2

01 12 -2
We solved the associated homogeneous equation before and found the complementary
solution to be

-3 1
2 =2

0
2

-

X +

-

X+ cos(3t).

g cos(3t) or X" = [

Xe = B] (a1 cos(t) + by sin(t)) +

_11] (a2 cos(2t) + by sin(2t)).

The natural frequencies are 1 and 2. As 3 is not a natural frequency, we try ¢ cos(3t).
We invert (A + 3%I):

Hence,
1 = Z =710 1
c=(A+w’) (-F)= lﬁ(; 4;] l l = [Egl .
n w72 1w
Combining with the general solution of the associated homogeneous problem, we get
that the general solution to X” = AX + F cos(wt) is

1

20
=3
10

1
X=Xc+X,= [2] (a1 cos(t) + by sin(t)) + cos(3t).

_11] (a2 cos(2t) + by sin(2t)) +

We then solve for the constants a1, a2, b1, and by using any initial conditions we are given.

Note that given force ]? , we write the equation as MX” = KX + f to get the units right.
Then we write ¥/ = M™1KX + M_lj?. The term g = M_lj? in ¥ = AX + g is in units of force
per unit mass.

If w is a natural frequency of the system, resonance may occur, because we will have to
try a particular solution of the form

Xp = Ctsin(wt) + d cos(wt).

That is assuming that the eigenvalues of the coefficient matrix are distinct. Next, note that
the amplitude of this solution grows without bound as ¢t grows.

3.6.4 Exercises

Exercise 3.6.3: Find a particular solution to

=1 -3 1 =
x" = lz R cos(2t).
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Exercise 3.6.4 (challenging): Let us take the example in Figure 3.13 on page 154 with the same
parameters as before: my = 2, k1 = 4, and ky = 2, except for my, which is unknown. Suppose
that there is a force cos(5t) acting on the first mass. Find an my such that there exists a particular
solution where the first mass does not move.

Note: This idea is called dynamic damping. In practice there will be a small amount of
damping and so any transient solution will disappear and after long enough time, the first mass will
always come to a stop.

Exercise 3.6.5: Let us take the Example 3.6.2 on page 156, but that at time of impact, car 2 is
moving to the left at the speed of 3 .

a) Find the behavior of the system after linkup.
b) Will the second car hit the wall, or will it be moving away from the wall as time goes on?

c) At what speed would the first car have to be traveling for the system to essentially stay in
place after linkup?

Exercise 3.6.6: Let us take the example in Figure 3.13 on page 154 with parameters my = mp =1,
k1 = ko = 1. Does there exist a set of initial conditions for which the first cart moves but the second
cart does not? If so, find those conditions. If not, arque why not.

. . 1001 - 30 07- 2t
Exercise 3.6.101: Find the general solution to [0 2 0] X" = [ 2 -4 0 ] X+ [Cosé )].
003 0 6 -3 0
Exercise 3.6.102: Suppose there are three carts of equal mass m and connected by two springs of
constant k (and no connections to walls). Set up the system and find its general solution.

Exercise 3.6.103: Suppose a cart of mass 2 kg is attached by a spring of constant k =1 to a cart of
mass 3 kg, which is attached to the wall by a spring also of constant k = 1. Suppose that the initial
position of the first cart is 1 meter in the positive direction from the rest position, and the second
mass starts at the rest position. The masses are not moving and are let go. Find the position of the
second mass as a function of time.
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3.7 Multiple eigenvalues

Note: 1 or 1.5 lectures, §5.5 in [EP], §7.8 in [BD]

It may happen that a matrix A has some “repeated” eigenvalues. That is, the character-
istic equation det(A — AI) = 0 may have repeated roots. This is actually unlikely to happen
for a random matrix. If we take a small perturbation of A (we change the entries of A
slightly), we get a matrix with distinct eigenvalues. As any system we want to solve in
practice is an approximation to reality anyway;, it is not absolutely indispensable to know
how to solve these corner cases. On the other hand, these cases do come up in applications
from time to time. Furthermore, if we have distinct but very close eigenvalues, the behavior
is similar to that of repeated eigenvalues, and so understanding that case will give us
insight into what is going on.

3.7.1 Geometric multiplicity

Take the diagonal matrix
30
A

A has an eigenvalue 3 of multiplicity 2. We call the multiplicity of the eigenvalue in the
characteristic equation the algebraic multiplicity. In this case, there also exist 2 linearly
independent eigenvectors, [(1]] and [‘1)] corresponding to the eigenvalue 3. This means
that the so-called geometric multiplicity of this eigenvalue is also 2.

In all the theorems where we required a matrix to have n distinct eigenvalues, we only
really needed to have n linearly independent eigenvectors. For example, X’ = AX has the

general solution
X=c l 0 1] e’

Let us restate the theorem about real eigenvalues. In the following theorem we will repeat
eigenvalues according to (algebraic) multiplicity. So for the matrix A above, we would say
that it has eigenvalues 3 and 3.

€3t + Cp

Theorem 3.7.1. Suppose the n X n matrix P has n real eigenvalues (not necessarily distinct), A1,
Ag, ..., Ay, and there are n linearly independent corresponding eigenvectors 01, 09, ..., 0n. Then
the general solution to X’ = PX can be written as

Aot Ant

%= c101eM + ot + -+ ¢, Te
The geometric multiplicity of an eigenvalue of algebraic multiplicity n is equal to the
number of corresponding linearly independent eigenvectors. The geometric multiplicity is
always less than or equal to the algebraic multiplicity. The theorem handles the case when
these two multiplicities are equal for all eigenvalues. If for an eigenvalue the geometric
multiplicity is equal to the algebraic multiplicity, then we say the eigenvalue is complete.
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In other words, the hypothesis of the theorem could be stated as saying that if all the
eigenvalues of P are complete, then there are n linearly independent eigenvectors and thus
we have the given general solution.

If the geometric multiplicity of an eigenvalue is 2 or greater, then the set of linearly
independent eigenvectors is not unique up to multiples as it was before. For example, for
the diagonal matrix A = [ 39| we could also pick eigenvectors [ 1] and [ }; |, or in fact any
pair of two linearly independent vectors. The number of linearly independent eigenvectors
corresponding to A is the number of free variables we obtain when solving A% = A9. We
pick specific values for those free variables to obtain eigenvectors. If you pick different
values, you may get different eigenvectors.

3.7.2 Defective eigenvalues

If an n X n matrix has less than n linearly independent eigenvectors, it is said to be deficient.
Then there is at least one eigenvalue with an algebraic multiplicity that is higher than its
geometric multiplicity. We call this eigenvalue defective and the difference between the two
multiplicities we call the defect.

31

b 5

has an eigenvalue 3 of algebraic multiplicity 2. Let us try to compute eigenvectors.

01 011 _ 2

b ol -2
We must have that v, = 0. Hence any eigenvector is of the form [%1 ] Any two such
vectors are linearly dependent, and hence the geometric multiplicity of the eigenvalue is 1.

Therefore, the defect is 1, and we can no longer apply the eigenvalue method directly to a
system of ODEs with such a coefficient matrix.

Example 3.7.1: The matrix

Roughly, the key observation is that if A is an eigenvalue of A of algebraic multiplicity m,

then we can find certain m linearly independent vectors solving (A — AI )¥% = 0 for various
powers k. We will call these generalized eigenvectors.

Let us continue with the example A = [8 %] and the equation X’ = AX. We found an
eigenvalue A = 3 of (algebraic) multiplicity 2 and defect 1. We found one eigenvector
v = [ § |- We have one solution

We are now stuck, we get no other solutions from standard eigenvectors. But we need two
linearly independent solutions to find the general solution of the equation.
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Let us try (in the spirit of repeated roots of the characteristic equation for a single
equation) another solution of the form

3?2 = (1_52 + 51t) €3t.
We differentiate to get
J?; = 51€3t + 3(7_52 + 51t) et = (352 + 51) et + 351t€3t.
As we are assuming that X, is a solution, X, must equal AX». So let’s compute AXo:
Aﬁ?z = A(Z_52 + Z_}lt) €3t = A52€3t + A51t€3t.

By looking at the coefficients of e3' and te® we see 30, + U1 = AT, and 371 = A%;. This
means that
(A - 31)’52 = ’(71, and (A - 31)’(_51 =0.

Therefore, X, is a solution if these two equations are satisfied. The second equation is
satisfied if 77 is an eigenvector, and we found the eigenvector above, so let 71 = [(1)] . So, if
we can find a ¥, that solves (A — 31)7, = 71, then we are done. This is just a bunch of linear
equations to solve and we are by now very good at that. Let us solve (A — 31)7, = 7. Write

0 1fja] |1

0 0] |b| [0]"
By inspection we see that letting a = 0 (a could be anything in fact) and b = 1 does the job.
Hence we can take 7 = [{]. Our general solution to ¥’ = AX is

1 3t 3t
t) 3t = lC16 +§t7_te '
e

0 11 ™ o

X=c 1
1 -

0
€3t +C2(

Let us check that we really do have the solution. First x] = c13e3 + cre3 +3coted = 3xq + xp.
Good. Now x), = 3c2e3! = 3x,. Good.

In the example, if we plug (A — 31)7, = 97 into (A — 31)71 = 0 we find
(A-31)(A-303, =0, or (A-3I)>%,=0.

Furthermore, if (A — 31)W # 0, then (A - 3I)w is an eigenvector, a multiple of 7;. In this
2x2case (A—-3I )2 is just the zero matrix (exercise). So any vector @ solves (A — 31 )ZZT) =0
and we just need a @ such that (A — 3)w # 0. Then we could use @ for 7>, and (A — 31)@
for 7.

Note that the system ¥’ = AX has a simpler solution since A is a so-called upper triangular
matrix, that is every entry below the diagonal is zero. In particular, the equation for x;
does not depend on x;. Mind you, not every defective matrix is triangular.
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Exercise 3.7.1: Solve X’ = [8 %] X by first solving for x, and then for x1 independently. Check
that you got the same solution as we did above.

Let us describe the general algorithm. Suppose that A is an eigenvalue of multiplicity 2,

defect 1. First find an eigenvector 71 of A. That is, 71 solves (A — AI)7; = 0. Then, find a

vector 7, such that
(A = ADvy = 71.
This gives us two linearly independent solutions
J_C)l = 516M P
J_C)z = (52 + Elt) e,

Example 3.7.2: Consider the system

—_ o O
=1

Compute the eigenvalues,

2-1 -5 0
O=det(A—Al)=det|| 0 2-A 0 [|=@2-1)>21-A7).
-1 4 1-A
The eigenvalues are 1 and 2, where 2 has multiplicity 2. We leave it to the reader to find
that [%] is an eigenvector for the eigenvalue A = 1.

Let’s focus on A = 2. We compute eigenvectors:

) 0 -5 0][on
0=A-23=[0 0 0]|vf.
-1 4 -1||ov;

The first equation says that v2 = 0, so the last equation is —v1 — v3 = 0. Let v3 be the free

variable to find that v; = —v3. Perhaps let v3 = —1 to find an eigenvector [ (1) ] Problem is

that setting v3 to anything else just gets multiples of this vector and so we have a defect of
1. Let 91 be the eigenvector and let’s look for a generalized eigenvector ;:

(A—-20)0, =74,

0 -5 0]|a 1
0 0 O0]|fp|={(0],
-1 4 -1f|c -1

where we used 4, b, ¢ as components of ¥, for simplicity. The first equation says —5b = 1
so b = -1/5. The second equation says nothing. The last equation is —a +4b — ¢ = -1, or
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a+4/5+c=1,0ra+c =15 Welet ¢ be the free variable and we choose ¢ = 0. We find
- 1/5
Up = [—1/5 l .

0

The general solution is therefore,

0 1 51 [1
X=c1|0lef +co| O |eX +cs| |15+ ] 0|t]|e*.
1 -1 0 -1

This machinery can also be generalized to higher multiplicities and higher defects. We
will not go over this method in detail, but let us just sketch the ideas. Suppose that A has
an eigenvalue A of multiplicity m. We find vectors such that

(A-AD¥5 =0, but (A-AD'5£0.

Such vectors are called generalized eigenvectors (then 71 = (A — AI )k_15 is an eigenvector).
For the eigenvector 77 there is a chain of generalized eigenvectors v, through 7 such that:

(A— A3, =0,
(A - /U)52 = 51/

(A = AD)3y = Bror.

Really once you find the 7y such that (A — AI YT = 0but (A — A5, 0, you find the
entire chain since you can compute the rest, 7x_1 = (A — AI)0k, Ox—p = (A — AI)T_1, etc. We
form the linearly independent solutions

J_C)l = 516“,

Xp = (2_52 + 51t) e/‘t,

_ . _ R t2 R tk—z N tk—l
X = |0k + Okt + Oy -+ Do H Oy | €

At

Recall that k! =1-2-3---(k —1) - k is the factorial. If you have an eigenvalue of geometric
multiplicity ¢, you will have to find ¢ such chains (some of them might be short: just the
single eigenvector equation). We go until we form m linearly independent solutions where
m is the algebraic multiplicity. We don’t quite know which specific eigenvectors go with
which chain, so start by finding 7y first for the longest possible chain and go from there.

For example, if A is an eigenvalue of A of algebraic multiplicity 3 and defect 2, then
solve

(A-ADB1 =0, (A-ADBa=%1, (A— AT =70
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That is, find 3 such that (A — A1)*%3 = 0, but (A — AI)*33 # 0. Then you are done as
U2 = (A — Al)v3 and 71 = (A — AI)T,. The 3 linearly independent solutions are

- - - - - - - - - tz
X = D, Xy = (Do + 01t) M, X3 = (03 + Dot + Ui e,

If, on the other hand, A has an eigenvalue A of algebraic multiplicity 3 and defect 1,
then solve

(A-=ADB1 =0, (A-=ADB=0, (A—Al)D3=70,.

Here 77 and 0, are actual honest eigenvectors, and 73 is a generalized eigenvector. So

there are two chains. To solve, first find a 73 such that (A — A1)*D5 = 0, but (A — AI)33 # 0.
Then 7, = (A — AI)73 is going to be an eigenvector. Then solve for an eigenvector 77 that is
linearly independent from 7. You get 3 linearly independent solutions

X1 =7v1e", Xp = vpe’, J?:J, = (7_53 + 52t) e,

3.7.3 Exercises

Exercise 3.7.2: Let A = |3 =3 |. Find the general solution of X' = AX.

5 —4 4
Exercise 3.7.3: Let A = [ 02 Z 01].

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X’ = AX.

Exercise 3.7.4: Let A = [% % 8].
002

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?
¢) Find the general solution of X' = AX in two different ways and verify you get the same answer.

01 2
-2 -21.

Exercise 3.7.5: Let A = [_411 y,

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X’ = AX.
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Exercise 3.7.6: Let A = [—01 —44 _12 ]
0 0 -2

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X’ = AX.

Exercise 3.7.7: Let A = [ -1 0 21]
-1-2 4

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X’ = AX.

Exercise 3.7.8: Suppose that A is a 2 X 2 matrix with a repeated eigenvalue A. Suppose that there
are two linearly independent eigenvectors. Show that A = Al

Exercise 3.7.101: Let A = [1 11 ]

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X' = AX.

Exercise 3.7.102: Let A = [ 11 % g]

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?

¢) Find the general solution of X’ = AX.
Exercise 3.7.103: Let A = [ %]

a) What are the eigenvalues?
b) What is/are the defect(s) of the eigenvalue(s)?
¢) Find the general solution of X’ = AX.
Exercise 3.7.104: Let A = [} 7], where a, b, and c are unknowns. Suppose that 5 is a doubled

eigenvalue of defect 1, and suppose that [(1)] is a corresponding eigenvector. Find A and show that
there is only one such matrix A.
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3.8 Matrix exponentials

Note: 2 lectures, §5.6 in [EP], §7.7 in [BD]

3.8.1 Definition

There is another way of finding a fundamental matrix solution of a system. Consider the
constant coefficient equation
X" = PX.

If this would be just one equation (when P is a number or a 1 X 1 matrix), then the solution
would be

X =
That doesn’t make sense if P is a larger matrix, but essentially the same computation that
led to the above works for matrices when we define e”* properly. First let us write down

the Taylor series for e for some number a:

e =1+at+

(at)*  (at)’®  (at)’ o (at)
Tt e Tt Tl

Recall k! =1-2-3---kis the factorial, and 0! = 1. We differentiate this series term by term

d | . ,. adt?  a*td (at)*  (at)®
— (") =0+a+a*t+—+—+---=a|l+at+——+—"+--- | = ae”.

dt () 2 6 2 6

Maybe we can try the same trick with matrices. For an n X n matrix A we define the matrix

exponential as

A def L LI SN Y S
e _I+A+2A+6A+ +k!A+

Let us not worry about convergence. The series really does always converge. We usually
write Pt as tP by convention when P is a matrix. With this small change and by the exact
same calculation as above we have that
d (i tP
—|e"" ) =Pe'.
(")

Now P and hence ¢? is an n X n matrix. What we are looking for is a vector. In the 1 x 1

case we would at this point multiply by an arbitrary constant to get the general solution. In
the matrix case we multiply by a column vector ¢.
Theorem 3.8.1. Let P be an n X n matrix. Then the general solution to X’ = PX is

X =etl,

where € is an arbitrary constant vector. In fact, ¥(0) = C.
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Let us check:

do_d(ps tP> _ pz
—X = e c|=Pe’c=DPx.
i =)
Hence e'” is a fundamental matrix solution of the homogeneous system. So if we can

compute the matrix exponential, we have another method of solving constant coefficient
homogeneous systems. It also makes it easy to solve for initial conditions. To solve X’ = AX,

%(0) = b, we take the solution
X =e'b.
This equation follows because ¢%4 = I, so X(0) = e04p = .

We mention a drawback of matrix exponentials. In general eA*8 # ¢leB. The trouble is
that matrices do not commute, that is, in general AB # BA. If you try to prove e ™8 # ¢/e®
using the Taylor series, you will see why the lack of commutativity becomes a problem.
However, it is still true that if AB = BA, that is, if A and B commute, then e = ¢eB. We
will find this fact useful. Let us restate this as a theorem to make a point.

Theorem 3.8.2. If AB = BA, then eA*B = e/eB. Otherwise, e*B # ee® in general.

3.8.2 Simple cases

In some instances it may work to just plug into the series definition. Suppose the matrix is
diagonal. For example, D = [ ] Then

k
k_ |42 0
o= [ )
and
D_[+D+iD%+ D34
2 6

10|l [a 0 1a20 1a30 _]em 0

0 1] |0 D 0 2| T6lo »¥|” 0 e
So by this rationale

1_(30 al _ e’ 0
e—|0 el and e—[o ik

This makes exponentials of certain other matrices easy to compute. For example, the
matrix A = [_51 ‘11] can be written as 31 + B where B = [_21 _42]. Notice that B2 = [8 8]. So
B¥ = 0 for all k > 2. Therefore, e® = I + B. Suppose we actually want to compute e'4. The
matrices 3t and tB commute (exercise: check this) and e‘? = I + tB, since (t‘B)2 = t?B% = 0.
We write

e (I+1tB) =

et 0
= l 0 e3t

3t
LA _ 3tI+B _ ,3t1,tB _ |€ 0
= = =1g o

(1+2t)e3 4te3t

—t  1-2t —tedt (1 -=2t)e3|"

1+2t 4t l_
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We found a fundamental matrix solution for the system X’ = AX. Note that this matrix has
a repeated eigenvalue with a defect; there is only one eigenvector for the eigenvalue 3. So
we found a perhaps easier way to handle this case. In fact, if a matrix A is 2 X 2 and has an
eigenvalue A of multiplicity 2, then either A = AI, or A = Al + B where B? = 0. This is a
good exercise.

Exercise 3.8.1: Suppose that A is 2 x 2 and A is the only eigenvalue. Show that (A — AI)* = 0,
and therefore that we can write A = Al + B, where B> = 0 (and possibly B = 0). Hint: First write
down what does it mean for the eigenvalue to be of multiplicity 2. You will get an equation for the
entries. Now compute the square of B.

Matrices B such that B¥ = 0 for some k are called nilpotent. Computation of the matrix
exponential for nilpotent matrices is easy by just writing down the first k terms of the
Taylor series.

3.8.3 General matrices

In general, the exponential is not as easy to compute as above. We usually cannot write a
matrix as a sum of commuting matrices where the exponential is simple for each one. But
fear not, it is still not too difficult provided we can find enough eigenvectors. First we need
the following interesting result about matrix exponentials. For two square matrices A and
B, with B invertible, we have

ePABT = BeABTT,
This can be seen by writing down the Taylor series. First
(BAB™'Y = BAB™'BAB™! = BAIAB™! = BA2B™".

And by the same reasoning (BAB‘l)k = BA¥B~!. Now write the Taylor series for eBAB™

eBAB [ 4 BAB! + %(BAB‘l)z + %(BAB‘l)?’ .

1 1
= BB '+ BAB™' + ZBA?’B™' + ZBA®B7! + ...

2 6
1 1

= B(I+A+§A2+6A3+~--)B‘1

= BB

Given a square matrix A, we can usually write A = EDE~!, where D is diagonal and
E invertible. This procedure is called diagonalization. If we can do that, the computation
of the exponential becomes easy as eP is just taking the exponential of the entries on the
diagonal. Adding t into the mix, we can then compute the exponential

't = Ee'PETL,
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To diagonalize A we need n linearly independent eigenvectors of A. Otherwise, this
method of computing the exponential does not work and we need to be trickier, but
we will not get into such details. Let E be the matrix with the eigenvectors as columns.
Let A1, Ay, ..., Ay be the eigenvalues and let 01, Uy, ..., U, be the eigenvectors, then

E=[%1 Oy --- 70,] Makea diagonal matrix D with the eigenvalues on the diagonal:
A 0 - 0
0 Ay --- 0
0 0 --- A,

We compute

AE = A[3 B - ]
_[AB, ABy - AD,]
=[MD1 A2 -0 AnTy]
=[%1 T2 -+ 0,]1D
=ED.

The columns of E are linearly independent as these are linearly independent eigenvectors
of A. Hence E is invertible. Since AE = ED, we multiply on the right by E~! and we get

A=EDE™L

This means that e#* = EePE~1. Multiplying the matrix by  we obtain

eMt 0 ... 0
0 Mt ... 0
e'A =Ee'"ET' =E| A L (3.5)
0 0 ... et

The formula (3.5), therefore, gives the formula for computing a fundamental matrix solution
et/ for the system ¥’ = A%, in the case where we have 7 linearly independent eigenvectors.

This computation still works when the eigenvalues and eigenvectors are complex,
though then you have to compute with complex numbers. It is clear from the definition
that if A is real, then ¢!/ is real. So you will only need complex numbers in the computation
and not for the result. You may need to apply Euler’s formula to simplify the result. If
simplified properly, the final matrix will not have any complex numbers in it.

Example 3.8.1: Compute a fundamental matrix solution using the matrix exponential for

the system
x'_12 X
vl 12 1yl

Then compute the particular solution for the initial conditions x(0) = 4 and y(0) = 2.
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Let A be the coefficient matrix [% %] . We first compute (exercise) that the eigenvalues

are 3 and —1 and corresponding eigenvectors are [ ! ] and [ 4 ] . Hence the diagonalization

of A is
12] 1 1][3 o]t 1]
2 1|~ |1 -1||o -1||1 -1 -
—_—— —— —— —— ——
A E D E-1
We write

1 [—Bt — gt _pBt 4 ot
2

_€3t + e—t _e3t _ e—t

Bt e3t_et]

The initial conditions are x(0) = 4 and y(0) = 2. Hence, by the property that ¢%4 = |

we find that the particular solution we are looking for is e!Ab where b is [4]- Then the
particular solution we are looking for is

3t —t 3t_ ,—t _ _ —
x| | S5 (4] (283 42 + €3 -t [3e3 et
y €3tae_t €3t;€_t 2| T 263 —2et 43t 47t T (B3 —e 7t

3.8.4 Fundamental matrix solutions

We note that if you can compute a fundamental matrix solution in a different way, you can
use this to find the matrix exponential e'4. A fundamental matrix solution of a system of
ODEs is not unique. The exponential is the fundamental matrix solution with the property
that for t = 0 we get the identity matrix. So we must find the right fundamental matrix
solution. Let X be any fundamental matrix solution to X’ = AX. Then we claim

et = X (1) [X(0)] .

Clearly, if we plug t = 0 into X(t)[X (0)]_1 we get the identity. We can multiply a
fundamental matrix solution on the right by any constant invertible matrix and we still
get a fundamental matrix solution. All we are doing is changing what are the arbitrary
constants in the general solution X(t) = X(t)¢.
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3.8.5 Approximations

If you think about it, the computation of any fundamental matrix solution X using the
eigenvalue method is just as difficult as the computation of 4. So perhaps we did not
gain much by this new tool. However, the Taylor series expansion actually gives us a way
to approximate solutions, which the eigenvalue method did not.

The simplest thing we can do is to just compute the series up to a certain number of
terms. There are better ways to approximate the exponential®. In many cases, however,
few terms of the Taylor series give a reasonable approximation for the exponential and
may suffice for the application. For example, let us compute the first 4 terms of the series
for the matrix A = [} 2].

t2 t3 5 13 7

AT +tA+ —AZ+ A3 =T+t + 122 s +13]0 3=
2 6 2 1 2 3 7B
3

T+t+32+4 88 21422428
2042124218 1+t+ 32+ B3]

Just like the scalar version of the Taylor series approximation, the approximation will be
better for small t and worse for larger t. For larger t, we will generally have to compute
more terms. Let us see how we stack up against the real solution with t = 0.1. The
approximate solution is approximately (rounded to 8 decimal places)

0.12 0.13 1.12716667 0.22233333
0.1A _ Ul a2, Y 43
e IA0LAY S AT S [0.22233333 1.12716667|°

And plugging t = 0.1 into the real solution (rounded to 8 decimal places) we get

0.1A

0.22251069 1.12734811

1.12734811 0.22251069]

Not bad at all! Although if we take the same approximation for t = 1 we get

La_ l6.66666667 6.33333333]

1 2
[+A+3A +¢ 6.33333333  6.66666667

while the real value is (again rounded to 8 decimal places)

A _ [10.22670818  9.85882874
| 9.85882874 10.22670818| "

So the approximation is not very good once we get up to t = 1. To get a good approximation
att =1 (say up to 2 decimal places) we would need to go up to the 11" power (exercise).

*C. Moler and C.F. Van Loan, Nineteenn Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five
Years Later, SIAM Review 45 (1), 2003, 3-49
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3.8.6 Exercises

Exercise 3.8.2: Using the matrix exponential, find a fundamental matrix solution for the system
x'=3x+y,y =x+3y.

Exercise 3.8.3: Find e' for the matrix A = [33].

Exercise 3.8.4: Find a fundamental matrix solution for the system x] = 7x1 + 4x2 + 12x3,
x, = X1+ 2x2 + x3, x5 = —3x1 — 2x2 — 5x3. Then find the solution that satisfies x(0) = [_?2 ]
Exercise 3.8.5: Compute the matrix exponential e for A = [§2].

A,B

B = oApB,

Exercise 3.8.6 (challenging): Suppose AB = BA. Show that under this assumption, e*8 = e

Exercise 3.8.7: Use Exercise 3.8.6 to show that (%)™ = e=4. In particular, e? is invertible even
if A is not.

Exercise 3.8.8: Let A be a 2 X 2 matrix with eigenvalues —1, 1, and corresponding eigenvectors
HaN

a) Find matrix A with these properties.

b) Find a fundamental matrix solution to X’ = AX.

¢) Solve the system in with initial conditions X(0) = [%] .

Exercise 3.8.9: Suppose that A is an n X n matrix with a repeated eigenvalue A of multiplicity n
with n linearly independent eigenvectors. Show that the matrix is diagonal, in fact, A = Al. Hint:
Use diagonalization and the fact that the identity matrix commutes with every other matrix.

Exercise 3.8.10: Let A = | 7 :3].
a) Find et4. b) Solve ¥ = AX, %¥(0)=[ L]

Exercise 3.8.11: Let A = |} 2]. Approximate e'* by expanding the power series up to the third
order.

Exercise 3.8.12: For any positive integer n, find a formula (or a recipe) for A" for the following
matrices:

30 5 2 01 21
I T B
Exercise 3.8.101: Compute e'4 where A = [ 1, 12].

1-32
Exercise 3.8.102: Compute e't where A = [—% L i]
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Exercise 3.8.103:
a) Compute e where A = [$7]. b) Solve ¥’ = A% for (0) = [1].

Exercise 3.8.104: Compute the first 3 terms (up to the second degree) of the Taylor expansion of e'4

where A = [% g] Write it as a single matrix. Then use it to approximate e*14.

Exercise 3.8.105: For any positive integer n, find a formula (or a recipe) for A" for the following
matrices:

7 4 -3 4 01
a) [_5 _Zl b) [—6 _7l c) ll 0]
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3.9 Nonhomogeneous systems

Note: 3 lectures (may have to skip a little), somewhat different from §5.7 in [EP], §7.9 in [BD]

3.9.1 First order constant coefficient

Integrating factor

Let us first focus on the nonhomogeneous first order equation

(1) = AZ() + f (1),

where A is a constant matrix. The first method we look at is the integrating factor method.
For simplicity we rewrite the equation as

(1) + PE(t) = f(1),

where P = —A. We multiply both sides of the equation by e'¥’ (being mindful that we are
dealing with matrices that may not commute) to obtain

e!PE (1) + e!PPX(t) = e!F £(1).

We notice that Pe!” = ¢!P'P. This fact follows by writing down the series definition of e'’:

1 1
PetP:P(I+tP+§(tP)2+~-):P+tP2+§t2P3+--~:

1
= (I+tP+§(tP)2+---)P:etPP.

So 4 (et?) = Pe!f = ¢*PP. The product rule says

%(etpf(t)) = PR(1) + e'PPE(1),

and so

%(etpf(t)) = etpf(t).

We can now integrate. That is, we integrate each component of the vector separately
etPX(t) = / e!P £(t)dt +C.
Recall from Exercise 3.8.7 that (e’ )_1 = ¢7tP. Therefore, we obtain

(t)=et? / e £(t)dt + e 'PEC.
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Perhaps it is better understood as a definite integral. In this case it will be easy to also
solve for the initial conditions. Consider the equation with initial conditions

() +Pi(H) = f(t), X0)=b.

The solution can then be written as

t
‘ X(t) = e_tP/ espf(s) ds + e"'Pp. (3.6)

0

Again, the integration means that each component of the vector %" j? (s) is integrated
separately. It is not hard to see that (3.6) really does satisfy the initial condition x(0) = b.

0
X(0) = e‘OP/ ePf(s)ds +e b =1b = b.
0
Example 3.9.1: Suppose that we have the system
Xy +5x1—3x = ¢,
x5 +3x1—x2=0,

with initial conditions x1(0) = 1, x2(0) = 0.
Let us write the system as

I ] I !

x+|3 _1lx—[ol, x(O)—[Ol.
The matrix P = [g j;’] has a doubled eigenvalue 2 with defect 1, and we leave it as an
exercise to double check we computed e correctly. Once we have ¢‘”', we find e~*, simply
by negating t.

tP

(1+3t)e?  —3te? op | =3t)e™? 3te?
3te?t (1-3t)e?|’ T | =3te®  (1+3t)e7 |

Instead of computing the whole formula at once, let us do it in stages. First

/tespj?(s)ds _ /t (1+3s)e*  —3se* l lesl s
0 0

3se% (1-3s)e*||0
t
-

(1+3s)e3
3se3 ds
[ [1(1 +35) €% ds
b
fot 3se3 ds

te3t
= | 3t=1) ¢ +1] (used integration by parts).
L3
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Then

t
X(t) = e_tP/ eP f(s)ds + e 'Pb
0
[(1-3t)e 2 3te™ ] l te®
_Q4,2t =2t | | (Bt=1)e3+1
3te (1+3t)e ==
te=2t (1-3t)e 2
-S + (L +1) e —3te~?t
[ @a-2te™
-4+ (1-21) o]

+

(1-3t)e % 3te 2 1
—3te™?  (1+3t)e 2| |0

Phew!
Let us check that this really works.

X +5x1 —3xy = (4te™ —de™) +5(1—2t) e H +e! —(1-6t) e =¢'.

Similarly (exercise) x} + 3x1 — x2 = 0. The initial conditions are also satisfied (exercise).

For systems, the integrating factor method only works if P does not depend on ¢, that
is, P is constant. The problem is that in general

% [efP(t)dt] + P(t)e/P(t)dt,

because matrix multiplication is not commutative.

Eigenvector decomposition

For the next method, note that eigenvectors of a matrix give the directions in which the
matrix acts like a scalar. If we solve the system along these directions, the computations
are simpler as we treat the matrix as a scalar. We then put those solutions together to get
the general solution for the system.

Take the equation

() = AX(t) + F(b). (3.7)
Assume A has n linearly independent eigenvectors 01, 0y, . .., 0,. Write
X(t) = 01 &Ex(t) + Do &) + - -+ + Ty En(H). (3.8)

That is, we wish to write our solution as a linear combination of eigenvectors of A. If we

solve for the scalar functions &; through &, we have our solution X. Let us decompose ]? in
terms of the eigenvectors as well. We wish to write

F() =51 g1(t) + B2 ga(t) + -+ + By gu(t). (3.9)

That is, we wish to find g; through g, that satisfy (3.9). Since all the eigenvectors are
independent, the matrix E = [07 U» --- 0, ] is invertible. Write the equation (3.9)
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as f = EZ, where the components of § are the functions g through g,. Then § = E~17.
Hence it is always possible to find ¢ when there are n linearly independent eigenvectors.
We plug (3.8) into (3.7), and note that ATy = A, 0:

X’ AX f

D1E] +02&) + -+ + 0y = A (0181 + Doén + -+ + 0yéy) + 0181 + 0282 + -+ + D&
= AZ_51€1 +A52£2 + - +A5n5n + 2_51g1 + 52g2 + -+ 5ngn
= 01A1&1 + 0oApo + - + DAy + D181 + 0282 + -+ + Tngn
=01(AMé1 + §1) + 02(A2éa + @) + -+ + D (Anén + Q).

If we identify the coefficients of the vectors 71 through v, we get the equations

& =Mé&1+ g1,
& =8+ g,

5;, =Apén + 8n.

Each one of these equations is independent of the others. They are all linear first order
equations and can easily be solved by the standard integrating factor method for single
equations. That is, for the k*h equation we write

Ep(t) = Akéi(t) = gk(t).

We use the integrating factor e ! to find that

2 lene] = eMigutn).

We integrate and solve for & to get

Ek(t) = Mt / e M gr (£) dt + Crelt,

If we are looking for just any particular solution, we can set Cy to be zero. If we leave these
constants in, we get the general solution. Write X(t) = 01&1(t) + 02&2(t) + - - - + U, (t), and
we are done.

As always, it is perhaps better to write these integrals as definite integrals. Suppose that
we have an initial condition ¥(0) = b. Take @ = E~'b to find b = D1a1 + Doas + - - + Dpdy,
just like before. Then if we write

t
Er(t) = et e~ Mks k(s)ds + apet,
; 4
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we get the particular solution X(t) = 01&1(t) + 02&2(F) + - - - + 0, &, (t) satisfying ¥(0) = b,
because &x(0) = ak.
Let us remark that the technique we just outlined is the eigenvalue method applied to

nonhomogeneous systems. If a system is homogeneous, that is, if j? = 0, then the equations
we get are é;{ = A&, and so & = Crett are the solutions and that’s precisely what we got
in § 3.4.

Example 3.9.2: Let A = |3 1] Solve X’ = AX +f where f(t) = [22‘3:] for x(0) = [_35//1166]
The eigenvalues of A are —2 and 4 and corresponding eigenvectors are [ L ] and [ 1 ]
respectively. This calculation is left as an exercise. We write down the matrix E of the

eigenvectors and compute its inverse (using the inverse formula for 2 X 2 matrices)

11 S 11 41
E_l—l 1]’ E ‘5[1 1]'

] &o. We first need to write f
in terms of the eigenvectors. That is we wish to write ]? = [ 23;] = [_11] g1+ H] g2. Thus

g1| _ poa|2ef| _1[1 —1f|2ef| _
o 20| 2|1 1|2t
Sogi=el—tand g = e +1.

We further need to write ¥(0) in terms of the eigenvectors. That is, we wish to write
X(0) = [ 3/16 ] =[14]a1+[1] a2 Hence

-5/16
ar| i |%he] | /4
IR

So a1 = 1/4 and ap = —1/16. We plug our ¥ into the equation and get

We are looking for a solution of the form X = [ 1 | & + [ 1
2

el —t
et +t|°

4 AR f
1 1 1
l_llél [léz [151+A152+ _q| 81t ] &
Tl s
(251)+ 4£2+ 1 (e —t)+ 1 (e +1).
We get the two equations
’ t 1
&1 =-2& +e" —t, where £1(0) = a; = 7
& =486+ et +1t, where &(0) = a; = _—1

16
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We solve with integrating factor. Computation of the integral is left as an exercise to the
student. You will need integration by parts.

|
Elze_Zt/eZt (et—t)dt+Cle_2t:%—§+Z+Cle_2t.

Cj is the constant of integration. As £1(0) = 1/4, then 1/4 = 1/34+1/44+ C; and hence C; = -1/.
Similarly

t
& = et / e (e +1)dt + Coe* = —— -~ - — +Coe

As &>(0) = -1/16 we have -1/16 = -1/3 — 1/16 + C, and hence C, = 1/3. The solution is

1] et —e2 1-2t\ [1]fe* —et 4t+1 e ® 43l
f(t) = l l + +[ - = | -2 34t_2t 121&—5 .
-1 3 4 1\ 3 16 e el el |
&1 &

3 16

e~ 2ttt _2et | 415
3 R TRE

. 4t _ -2t _
Thatis, x1 = &—— + 332 and x, =

Exercise 3.9.1: Check that x1 and x; solve the problem. Check both that they satisfy the differential
equation and that they satisfy the initial conditions.

Undetermined coefficients

The method of undetermined coefficients also works for systems. The only difference is that
we use unknown vectors rather than just numbers. Same caveats apply to undetermined
coefficients for systems as for single equations. This method does not always work.
Furthermore, if the right-hand side is complicated, we have to solve for lots of variables.
Each element of an unknown vector is an unknown number. In system of 3 equations with
say say 4 unknown vectors (this would not be uncommon), we already have 12 unknown
numbers to solve for. The method can turn into a lot of tedious work if done by hand. As
the method is essentially the same as for single equations, let us just do an example.

Example 3.9.3: Let A = [ 1 {]. Find a particular solution of ¥’ = AX + f where f(t) = [<].

Note that we can solve this system in an easier way (can you see how?), but for the
purposes of the example, let us use the eigenvalue method plus undetermined coefficients.
The eigenvalues of A are —1 and 1 and corresponding eigenvectors are H] and [(1)]
respectively. Hence our complementary solution is

1
1

0
1

X.=ag et +an et

for some arbitrary constants a1 and a».
We would want to guess a particular solution of

X =de' + bt +C.
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However, something of the form de! appears in the complementary solution. Because we
do not yet know if the vector 4 is a multiple of [ (1)], we do not know if a conflict arises. It is

possible that there is no conflict, but to be safe we should also try bte!. Here we find the
crux of the difference between a single equation and systems. We try both terms de’ and

bte! in the solution, not just the term bte!. Therefore, we try
¥ = el +bte' + 2t +4d.
Thus we have 8 unknowns. We write 4 = [Z; ], b= [Z; ], c=|d ], and d = [g;] We plug

X into the equation. First let us compute X’.

X = (Z+5)et+5tet+8: R PO L e o
ar + bz bz_ (8))
Now ¥ must equal A% + f, which is
AR+ f = Adie! + Abte' + ACt + Ad + f

_ —ﬂl t _b]_ t _C1 _dl 1 t 0
- l—2a1+a2 e l—2b1+b2 S I TS [—2d1+d2 " [o i
|+l —by t —C1 —d1
B [—2a1+a2 e+ [—2b1+b2 fe" + —2c1+cr+1 b+ —2d1+d2 ’

We identify the coefficients of ¢/, te!, t and any constant vectors in ¥’ and in AX + f to find
the equations:

a1+b1:—a1+1, 0=—cy,
a2+b2:—2a1+a2, 0=-2c1+cp+1,
by =-by, c1=—d,
bz = —2b1 + bz, Cy = —2d1 + dz.

We could write the 8 X 9 augmented matrix and start row reduction, but it is easier to just
solve the equations in an ad hoc manner. Immediately we see that by =0, c1 =0, d; = 0.
Plugging these back in, we get that c; = —1 and d, = —1. The remaining equations that tell
us something are

a1 =-a1+1,
an + bz = -2a1 + a».

So a1 =1/2and by = 1. Finally, a; can be arbitrary and still satisfy the equations. We are
looking for just a single solution so presumably the simplest one is when a; = 0. Therefore,

. 5 [11 0 0 Let
S _ =t — _ t t _ 2
=de’ + +ct+d= + + + = .
X =ae +bte' +ct+d [O e 1 te t _1l [—tet g 1]
Thatis, x1 = % ef, xy = —te! —t — 1. We would add this to the complementary solution to

-1

get the general solution of the problem. Notice that both e’ and bte! were really needed.
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Exercise 3.9.2: Check that x1 and x; solve the problem. Try setting ap = 1 and check we get a
solution as well. What is the difference between the two solutions we obtained (one with a; = 0 and
one with a, = 1)?

As you can see, other than the handling of conflicts, undetermined coefficients works
exactly the same as it did for single equations. However, the computations can get out of
hand pretty quickly for systems. The equation we considered was pretty simple.

3.9.2 First order variable coefficient

Variation of parameters

Just as for a single equation, there is the method of variation of parameters. For constant

coefficient systems, it is essentially the same thing as the integrating factor method we

discussed earlier. However, this method works for any linear system, even if it is not

constant coefficient, provided we somehow solve the associated homogeneous problem.
Suppose we have the equation

¥ =AMI+fb). (3.10)

Further, suppose we solved the associated homogeneous equation ¥’ = A(f) X and found a
fundamental matrix solution X (). The general solution to the associated homogeneous
equation is X ()¢ for a constant vector ¢. Just like for variation of parameters for single
equation we try the solution to the nonhomogeneous equation of the form

X, = X(t)(t),

where ii(t) is a vector-valued function instead of a constant. We substitute X, into (3.10) to
obtain .
X'(t)u(t) + X () u'(t) = A(t) X () u(t) +f(¢).

X(t) A(t)xp(t)

But X(t) is a fundamental matrix solution to the homogeneous problem. So X'(t) = A(t)X(t),

and
XU + X () (1) = XBAE) + F(1).

Hence X(t) u'(t) = ]?(t). If we compute [X(£)] ™}, then ii’(t) = [X(t)] " f(t). We integrate to
obtain # and we have the particular solution X, = X(t) #(t). Let us write this as a formula

‘ %, = X(t) / [X(O]7" f(¢) at.

If A is a constant matrix and X(¢) = e'4, then [X(#)]"! = e~*4. We obtain a solution
Xp = eth / e~A f(t) dt, which is precisely what we got using the integrating factor method.
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Example 3.9.4: Find a particular solution to

t_1f+t
1 ¢ 1

Here A = ﬁ [ P ] is most definitely not constant. Perhaps by a lucky guess, we find
that X = [} ‘f] solves X'(t) = A(t)X(t). Once we know the complementary solution we

can easily find a solution to (3.11). First we find

- 1

= 2 +1). 3.11
Y= ( ) (3.11)

_ 1 1 t
xor = |

2 +1

Next we know a particular solution to (3.11) is

7, = X(t) / (X Ft) e
(1 —¢] 1 1 t][¢t
1</_t2+1 L 1] H (1) dt

] 2t
1_/”L¢2+1ldt

—t t2
1] |-383+t

K eumrare ] suemrareswmran
I
-

Adding the complementary solution we find the general solution to (3.11):

S EE

Exercise 3.9.3: Check that x1 = 1 t* and x5 = % 3 + t really solve (3.11).

144

3 C1—C2t+%t4
213+t

o+(a+D)t+383]°

In the variation of parameters, just like in the integrating factor method we can obtain
the general solution by adding in constants of integration. That is, we will add X (¢)¢ for a
vector of arbitrary constants. But that is precisely the complementary solution.

3.9.3 Second order constant coefficients

Undetermined coefficients

We have already seen a simple example of the method of undetermined coefficients for
second order systems in § 3.6. This method is essentially the same as undetermined
coefficients for first order systems. There are some simplifications that we can make, as we
did in § 3.6. Let the equation be

¥ = AX+ E(t),



186 CHAPTER 3. SYSTEMS OF ODES

where A is a constant matrix. If F (t) is of the form Fo cos(wt), then as two derivatives of
cosine is again cosine we can try a solution of the form

X, = ¢ cos(wt),

and we do not need to introduce sines.

If the F is a sum of cosines, note that we still have the superposition principle. If
E(t) = Fycos(wot) + F1cos(wit), then we would try a cos(wot) for the problem X" =
A% + Fy cos(wot), and we would try l;cos(ant) for the problem X" = AX + F1 cos(wit). Then
we sum the solutions.

However, if there is duplication with the complementary solution, or the equation is of
the form X" = A¥ + B¥ + E(t), then we need to do the same thing as we do for first order
systems.

You will never go wrong with putting in more terms than needed into your guess. You
will find that the extra coefficients will turn out to be zero. But it is useful to save some
time and effort.

Eigenvector decomposition

If we have the system
= AT+ f(t),

we can do eigenvector decomposition, just like for first order systems.
Let A1, Ay, ..., A, be the eigenvalues and 71, 0y, . . ., U, be eigenvectors. Again form the
matrix E=[01 0» --- 7, ]. Write

X(t) =01 &E1(t) + 02 Ea(t) + -+ - + 0y En(B).

Decompose j? in terms of the eigenvectors

-

f(t) = 51 gl(t) + 52 g2(t) +-ee 511 gn(t)/

where, again, § = E71f.
We plug in, and as before we obtain

7 AR f

018 + 02&) + -+ + Ty = A (0181 + Tala + -+ + 0p&p) + 0181+ D2g2 + -+ + Vugn
=A2_51£1 +A52§2+---+A5n5n +Z_51g1 +52g2+---+5ngn
= 01M& +0oA&o + -+ UpAnén #0181+ 02 Q2+ -+ + U S
= 01(M&1 + 1) + D2(A2&a + g2) + -+ + 0p(An &y + gn)-
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We identify the coefficients of the eigenvectors to get the equations

& =Mé&+ g1,
&Y =&+ 9,

5;,1, = Apép + 8n-

Each one of these equations is independent of the others. We solve each equation using the
methods of chapter 2. We write X(t) = 01&1(t) + 02&2(t) + - - - + 0,&,(F), and we are done;
we have a particular solution. We find the general solutions for &; through &, and again
X(t) = 01&1(t) + Do Ea(t) + - - - + 0, & (t) is the general solution (and not just a particular
solution).

Example 3.9.5: Let us do the example from § 3.6 using this method. The equation is

-

X+ 0 cos(3t).

= -3 1
B 2

2 -2

The eigenvalues are —1 and —4, with eigenvectors [%] and [_11 ] Therefore E = [% _11] and
E1l= % [% _11] Therefore,

81| _ po1z _ 1 1 1 0 B %Cos(3t)
lgzl =B )= 3 [2 —1] l2c0s(3t)l B l‘% cos(3t)|

So after the whole song and dance of plugging in, the equations we get are
” 2 ” 2
&l ==&+ 3 cos(3t), &) =—4& - 3 cos(3t).

For each equation we use the method of undetermined coefficients. We try C; cos(3t) for
the first equation and C; cos(3t) for the second equation. We plug in to get

2
—9C1 cos(3t) = —Cq cos(3t) + 3 cos(3t),
—9C5 cos(3t) = —4C; cos(3t) — % cos(3t).

We solve each of these equations separately. We get -9C; = —C1+2/3and —9C, = —4C, - 2/s.
And hence C; = -1/12and C, = 2/15. So our particular solution is
1

%= [2] (I—; Cos(3t)) + _11] (% cos(3t)) = [_13//230] cos(3t).

This solution matches what we got previously in § 3.6.
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3.9.4 Exercises

Exercise 3.9.4: Find a particular solution to x’ = x +2y +2t, y’ = 3x + 2y — 4,

a) using integrating factor method, b) using eigenvector decomposition,

c) using undetermined coefficients.
Exercise 3.9.5: Find the general solution tox’ =4x +y —1,y’ = x + 4y — ¢,

a) using integrating factor method, b) using eigenvector decomposition,

c) using undetermined coefficients.
Exercise 3.9.6: Find the general solution to x| = —6x1 + 3x2 + cos(t), x] = 2x1 — 7xp + 3 cos(t),
a) using eigenvector decomposition, b) using undetermined coefficients.

Exercise 3.9.7: Find the general solution to xi’ = —6x1+3x3+cos(2t), xy =2x1—7x2+3 cos(2t),

a) using eigenvector decomposition, b) using undetermined coefficients.
Exercise 3.9.8: Take the equation X" = li L[ X+
1 -

a) Check that X. = ¢1 [ t smttl ) lt cost

—f cOS / sin tl is the complementary solution.

b) Use variation of parameters to find a particular solution.
Exercise 3.9.101: Find a particular solution to x’ =5x +4y +t,y’ = x +8y — t,

a) using integrating factor method, b) using eigenvector decomposition,

c) using undetermined coefficients.
Exercise 3.9.102: Find a particular solution to x’ =y +e', y’' = x + ¢,

a) using integrating factor method, b) using eigenvector decomposition,

c) using undetermined coefficients.

Exercise 3.9.103: Solve x| = x2 +t, x;, = x1 + t with initial conditions x1(0) = 1, x2(0) = 2,

using eigenvector decomposition.

Exercise 3.9.104: Solve x| = —3x1 + x2 +t, x] = 9x1 + 5x + cos(t) with initial conditions

x1(0) = 0, x2(0) = 0, x7(0) = 0, x5(0) = 0, using eigenvector decomposition.



Chapter 4

Fourier series and PDEs

4.1 Boundary value problems

Note: 2 lectures, similar to §3.8 in [EP], §10.1 and §11.1 in [BD]

41.1 Boundary value problems

Before we tackle the Fourier series, we study the so-called boundary value problems (or
endpoint problems). Consider

x"+Ax =0, x(a)=0, x(b)=0,

for some constant A, where x(t) is defined for t in the interval [a, b]. Previously we specified
the value of the solution and its derivative at a single point. Now we specify the value of
the solution at two different points. As x = 0 is a solution, existence of solutions is not a
problem. Uniqueness of solutions is another issue. The general solution to x” + Ax = 0 has
two arbitrary constants’. It is, therefore, natural (but wrong) to believe that requiring two
conditions guarantees a unique solution.

Example 4.1.1: Take A =1,a =0, b = 7. That s,
x"+x=0, x(0)=0, x(m)=0.

Then x = sint is another solution (besides x = 0) satisfying both boundary conditions.
There are more. Write down the general solution of the differential equation, which is
x = Acost + Bsint. The condition x(0) = 0 forces A = 0. Letting x(71) = 0 does not give us
any more information as x = Bsint already satisfies both boundary conditions. Hence,
there are infinitely many solutions of the form x = B sint, where B is an arbitrary constant.

Example 4.1.2: On the other hand, consider A = 2. That is,

x"+2x=0, x(0)=0, x(m)=0.

*See subsection 0.2.4 on page 13 or Example 2.2.1 on page 85 and Example 2.2.3 on page 88.
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Then the general solution is x = A cos(V2t) + Bsin(V2t). Letting x(0) = 0 still forces A = 0.
We apply the second condition to find 0 = x(nt) = B sin(V2 7). As sin(V27) # 0 we obtain
B = 0. Therefore x = 0 is the unique solution to this problem.

What is going on? We will be interested in finding which constants A allow a nonzero
solution, and we will be interested in finding those solutions. This problem is an analogue
of finding eigenvalues and eigenvectors of matrices.

4.1.2 Eigenvalue problems

For basic Fourier series theory we will need the following three eigenvalue problems. We
will consider more general equations and boundary conditions, but we will postpone this
until chapter 5.

x"+Ax =0, x(a)=0, x(b)=0, 4.1)
x"+Ax =0, x'(a)=0, x'(b)=0, 4.2)

and
x"+Ax =0, x(a)=x(b), x'(a)=x"(D). (4.3)

A number A is called an eigenvalue of (4.1) (resp. (4.2) or (4.3)) if and only if there exists a
nonzero (not identically zero) solution to (4.1) (resp. (4.2) or (4.3)) given that specific A. A
nonzero solution is called a corresponding eigenfunction.

Note the similarity to eigenvalues and eigenvectors of matrices. The similarity is not
just coincidental. If we think of the equations as differential operators, then we are doing
the same exact thing. Think of a function x(t) as a vector with infinitely many components
(one for each t). Let L = —; be the linear operator. Then the eigenvalue/eigenfunction
pair should be A and nonzero x such that Lx = Ax. In other words, we are looking for
nonzero functions x satisfying certain endpoint conditions that solve (L — A)x = 0. A lot of
the formalism from linear algebra still applies here, though we will not pursue this line of
reasoning too far.

Example 4.1.3: Let us find the eigenvalues and eigenfunctions of
x"+Ax =0, x(0)=0, x(n)=0.

We have to handle the cases A > 0, A = 0, A < 0 separately. First suppose that A > 0.
Then the general solution to x” + Ax = 0is

x = Acos(VAt) + Bsin(VA ).
The condition x(0) = 0 implies immediately A = 0. Next
0 = x(n) = Bsin(VA n).

If B is zero, then x is not a nonzero solution. So to get a nonzero solution we must
have that sin(VA 7r) = 0. Hence, VA  must be an integer multiple of 7. In other words,
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VA = k for a positive integer k. Hence the positive eigenvalues are k2 for all integers
k > 1. Corresponding eigenfunctions can be taken as x = sin(kt). Just like for eigenvectors,
constant multiples of an eigenfunction are also eigenfunctions, so we only need to pick one.
Now suppose that A = 0. In this case the equation is x” = 0, and its general solution
is x = At + B. The condition x(0) = 0 implies that B = 0, and x(r) = 0 implies that A = 0.
This means that A = 0 is not an eigenvalue.
Finally, suppose that A < 0. In this case we have the general solution*

x = Acosh(V=11) + Bsinh(V=11).

Letting x(0) = 0 implies that A = 0 (recall cosh0 = 1 and sinh 0 = 0). So our solution must
be x = Bsinh(V-At) and satisfy x(mr) = 0. This is only possible if B is zero. Why? Because
sinh ¢ is only zero when & = 0. You should plot sinh to see this fact. We can also see this
from the definition of sinh. We get 0 = sinh & = "E_Te_k Hence e¢ = ¢~¢, which implies
& = —¢ and that is only true if £ = 0. So there are no negative eigenvalues.

In summary, the eigenvalues and corresponding eigenfunctions are

Ak =k*  withaneigenfunction  xj =sin(kt)  forall integers k > 1.
Example 4.1.4: Let us compute the eigenvalues and eigenfunctions of
x"+Ax =0, x'(0)=0, x'(n)=0.

Again we have to handle the cases A > 0, A = 0, A < 0 separately. First suppose that
A > 0. The general solution to x” + Ax =0isx = A cos(VA t) + Bsin(VA £). So

x' = —AVA sin(VA t) + BVA cos(VA #).
The condition x’(0) = 0 implies immediately B = 0. Next
0 = x'(n) = —AVA sin(VA n).

Again A cannot be zero if A is to be an eigenvalue, and sin(VA 77) is only zero if VA = k for
a positive integer k. Hence the positive eigenvalues are again k? for all integers k > 1. And
the corresponding eigenfunctions can be taken as x = cos(kt).

Now suppose that A = 0. In this case the equation is x” = 0 and the general solution is
x = At + B so x’ = A. The condition x’(0) = 0 implies that A = 0. The condition x’(7r) = 0
also implies A = 0. Hence B could be anything (let us take it to be 1). So A = 0 is an
eigenvalue and x = 1 is a corresponding eigenfunction.

Finally, let A < 0. In this case the general solution is x = A cosh(V=At) + Bsinh(V—-A7 t)

and
x’ = AV=2A sinh(V=At) + BV=A cosh(V=-11).

*Recall that coshs = %(eS +e7°) and sinhs = %(es —¢e7%). As an exercise try the computation with the

general solution written as x = AeVAt 4 Be~V-1t (for different A and B of course).
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We have already seen (with roles of A and B switched) that for this expression to be zero at
t =0and t = r, we must have A = B = 0. Hence there are no negative eigenvalues.
In summary, the eigenvalues and corresponding eigenfunctions are

Av=k*  withaneigenfunction  xj =cos(kt)  forall integers k > 1,
and there is another eigenvalue
Ao =0  with an eigenfunction = xp =1.

The following problem is the one that leads to the general Fourier series.

Example 4.1.5: Let us compute the eigenvalues and eigenfunctions of
x"+Ax =0, x(-m)=x(n), x'(-n)=x"(n).

We have not specified the values or the derivatives at the endpoints, but rather that they
are the same at the beginning and at the end of the interval.

Let us skip A < 0. The computations are the same as before, and again we find that
there are no negative eigenvalues.

For A = 0, the general solution is x = At + B. The condition x(—n) = x(n) implies
that A =0 (An+ B = —An + B implies A = 0). The second condition x’(-7) = x’(7) says
nothing about B and hence A = 0 is an eigenvalue with a corresponding eigenfunction
x=1

For A > 0O we get that x = A cos(VA ) + Bsin(VA t). Now

A cos(-=VA ) + Bsin(-VA 1) = Acos(VA 7)) + Bsin(VA 7).

x(=m) x(mt)
We remember that cos(—6) = cos(6) and sin(—0) = —sin(6). Therefore,
A cos(\/X 1) — B sin(‘/x n)=A cos(\/X 71) + B sin(\/x 7).

Hence either B = 0 or sin(VA rt) = 0. Similarly (exercise) if we differentiate x and plug in
the second condition we find that A = 0 or sin(VA 7t) = 0. Therefore, unless we want A
and B to both be zero (which we do not) we must have sin(VA ©r) = 0. Hence, VA is an
integer and the eigenvalues are yet again A = k? for an integer k > 1. In this case, however,
x = Acos(kt) + Bsin(kt) is an eigenfunction for any A and any B. So we have two linearly
independent eigenfunctions sin(kt) and cos(kt). Remember that for a matrix we can also
have two eigenvectors corresponding to a single eigenvalue if the eigenvalue is repeated.
In summary, the eigenvalues and corresponding eigenfunctions are

Ar =k*  with eigenfunctions cos(kt) and sin(kt) for all integers k > 1,

Ap=0 with an eigenfunction xgp = 1.
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4.1.3 Orthogonality of eigenfunctions

Something that will be very useful in the next section is the orthogonality property of the
eigenfunctions. This is an analogue of the following fact about eigenvectors of a matrix. A
matrix is called symmetric if A = AT (it is equal to its transpose). Eigenvectors for two distinct
eigenvalues of a symmetric matrix are orthogonal. The differential operators we are dealing
with act much like a symmetric matrix. We, therefore, get the following theorem.

Theorem 4.1.1. Suppose that x1(t) and x2(t) are two eigenfunctions of the problem (4.1), (4.2) or
(4.3) for two different eigenvalues A1 and A,. Then they are orthogonal in the sense that

b
/ xl(t)xz(t) dt = 0.

The terminology comes from the fact that the integral is a type of inner product. We will
expand on this in the next section. The theorem has a very short, elegant, and illuminating
proof so let us give it here. First, we have the following two equations.

x7 +Ax1 =0 and x5 + Axxo = 0.
Multiply the first by x, and the second by x; and subtract to get
(A1 = A2)x1x2 = xx1 — x2x7.

Now integrate both sides of the equation:
b b
(A — /\2)/ X1Xxp dt = / xé’x1 — xzxi’ dt
a a

v d
= — (xhx1 — xpx!) dt
[ g = aw)
b
= [xéxl - xzxi] =0.
t=a
The last equality holds because of the boundary conditions. For example, if we consider
(4.1) we have x1(a) = x1(b) = x2(a) = x2(b) = 0 and so x}x1 — x2x] is zero at both a and b.
As A1 # Ay, the theorem follows.

Exercise 4.1.1 (easy): Finish the proof of the theorem (check the last equality in the proof) for the
cases (4.2) and (4.3).

The function sin(nt) is an eigenfunction for the problem x” + Ax = 0, x(0) = 0, x(r) = 0.
Hence for positive integers n and m we have the integrals

T
/ sin(mt)sin(nt)dt =0, whenm # n.
0
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Similarly,

‘/O7T cos(mt)cos(nt)dt =0, whenm # n, and ‘/077 cos(nt)dt =
And finally we also get

s s
/ sin(mt)sin(nt)dt =0, whenm # n, and / sin(nt)dt =0

Tt s

/ cos(mt)cos(nt)dt =0, whenm # n, and / cos(nt)dt =

T s
and
s
/ cos(mt)sin(nt)dt =0 (even if m = n).

Tt

41.4 Fredholm alternative

We now touch on a very useful theorem in the theory of differential equations. The theorem
holds in a more general setting than we are going to state it, but for our purposes the
following statement is sufficient. We will give a slightly more general version in chapter 5.

Theorem 4.1.2 (Fredholm alternative®). Exactly one of the following statements holds. Either
x"+Ax=0, x(a)=0, x(b)=0 (4.4)
has a nonzero solution, or
x"+Ax=f(t), x(a)=0, x(b)=0 (4.5)
has a unique solution for every function f continuous on [a, b].

The theorem is also true for the other types of boundary conditions we considered. The
theorem means that if A is not an eigenvalue, the nonhomogeneous equation (4.5) has a
unique solution for every right-hand side. On the other hand if A is an eigenvalue, then
(4.5) need not have a solution for every f, and furthermore, even if it happens to have a
solution, the solution is not unique.

We also want to reinforce the idea here that linear differential operators have much
in common with matrices. So it is no surprise that there is a finite-dimensional version
of Fredholm alternative for matrices as well. Let A be an n X n matrix. The Fredholm
alternative then states that elther (A-ADX = 0 has a nontrivial solution, or (A-ADX =
has a unique solution for every b.

A lot of intuition from linear algebra can be applied to linear differential operators, but
one must be careful of course. For example, one difference we have already seen is that in
general a differential operator will have infinitely many eigenvalues, while a matrix has
only finitely many.

*Named after the Swedish mathematician Erik Ivar Fredholm (1866-1927).
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4.1.5 Application

Let us consider a physical application of an endpoint problem. Suppose we have a tightly
stretched quickly spinning elastic string or rope of uniform linear density p, for example in
kg/m. Let us put this problem into the xy-plane and both x and y are in meters. The x-axis
represents the position on the string. The string rotates at angular velocity w, in radians/s.
Imagine that the whole xy-plane rotates at angular velocity w. This way, the string stays in
this xy-plane and y measures its deflection from the equilibrium position, y = 0, on the
x-axis. Hence the graph of y gives the shape of the string. We consider an ideal string with
no volume, just a mathematical curve. We suppose the tension on the string is a constant T
in Newtons. Assuming that the deflection is small, we can use Newton’s second law (let us
skip the derivation) to get the equation

Ty” + pw?y = 0.

To check the units notice that the units of y” are m/m?, as the derivative is in terms of x.
Let L be the length of the string (in meters) and the string is fixed at the beginning and
end points. Hence, y(0) = 0 and y(L) = 0. See Figure 4.1.

D

’ N

Figure 4.1: Whirling string.

We rewrite the equation as y” + pTwzy = 0. The setup is similar to Example 4.1.3
on page 190, except for the interval length being L instead of . We are looking for
2
eigenvalues of y” + Ay = 0,y(0) = 0,y(L) = 0 where A = £, As before there are
no nonpositive eigenvalues. With A > 0, the general solution to the equation is y =
Acos(VAx) + Bsin(VA x). The condition y(0) = 0 implies that A = 0 as before. The
condition y(L) = 0 implies that sin(VA L) = 0 and hence VA L = k for some integer k > 0,
SO
pw? ke
T 12
What does this say about the shape of the string? It says that for all parameters p, v, T
not satisfying the equation above, the string is in the equilibrium position, y = 0. When
2
b= %, then the string will “pop out” some distance B. We cannot compute B with the
information we have.
Let us assume that p and T are fixed and we are changing w. For most values of w, the

knVT
Lo’ then

string is in the equilibrium state. When the angular velocity w hits a value w =



196 CHAPTER 4. FOURIER SERIES AND PDES

the string pops out and has the shape of a sin wave crossing the x-axis k — 1 times between
the end points. For example, at k = 1, the string does not cross the x-axis and the shape
looks like in Figure 4.1 on the preceding page. On the other hand, when k = 3 the string
crosses the x-axis 2 times, see Figure 4.2. When w changes again, the string returns to the
equilibrium position. The higher the angular velocity, the more times it crosses the x-axis
when it is popped out.

yT /\q

o‘ Wx

Figure 4.2: Whirling string at the third eigenvalue (k = 3).

For another example, if you have a spinning jump rope (then k = 1 as it is completely
“popped out”) and you pull on the ends to increase the tension, then the velocity also
increases for the rope to stay “popped out”.

4.1.6 Exercises

Hint for the following exercises: Note that when A > 0, then cos (\/I (t— a)) and sin(\/x (t—
a)) are also solutions of the homogeneous equation.

Exercise 4.1.2: Compute all eigenvalues and eigenfunctions of x” + Ax =0, x(a) =0, x(b) =0
(assume a < b).

Exercise 4.1.3: Compute all eigenvalues and eigenfunctions of x” + Ax =0, x’(a) =0, x’(b) =0
(assume a < b).

Exercise 4.1.4: Compute all eigenvalues and eigenfunctions of x” + Ax =0, x’(a) =0, x(b) =0
(assume a < b).

Exercise 4.1.5: Compute all eigenvalues and eigenfunctions of x” + Ax =0, x(a) = x(b), x’(a) =
x’'(b) (assume a < b).

Exercise 4.1.6: We skipped the case of A < 0 for the boundary value problem x” + Ax =0, x(-m) =
x(m), x’(—=m) = x’'(n). Finish the calculation and show that there are no negative eigenvalues.

Exercise 4.1.101: Consider a spinning string of length 2 and linear density 0.1 and tension 3. Find
smallest angular velocity when the string pops out.

Exercise 4.1.102: Suppose x” + Ax = 0and x(0) = 1, x(1) = 1. Find all A for which there is more
than one solution. Also find the corresponding solutions (only for the eigenvalues).
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Exercise 4.1.103: Suppose x” + x = 0 and x(0) = 0, x’(n) = 1. Find all the solution(s) if any
exist.

Exercise 4.1.104: Consider x’ + Ax = 0 and x(0) = 0, x(1) = 0. Why does it not have any
eigenvalues? Why does any first order equation with two endpoint conditions such as above have no
eigenvalues?

Exercise 4.1.105 (challenging): Suppose x””” + Ax = 0 and x(0) = 0, x’(0) = 0, x(1) = 0.
Suppose that A > 0. Find an equation that all such eigenvalues must satisfy. Hint: Note that —V/A
isaroot of r>+ A = 0.
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4.2 The trigonometric series

Note: 2 lectures, §9.1 in [EP], §10.2 in [BD]

4.2.1 Periodic functions and motivation

As motivation for studying Fourier series, suppose we have the problem
x” + a)(z)x = f(t), (4.6)
for some periodic function f(t). We already solved
x” + a)(z)x = Fp cos(wt). 4.7)

One way to solve (4.6) is to decompose f(t) as a sum of cosines (and sines) and then solve
many problems of the form (4.7). We then use the principle of superposition, to sum up all
the solutions we got to get a solution to (4.6).

Before we proceed, let us talk a little bit more in detail about periodic functions. A
function is said to be periodic with period P if f(t) = f(t + P) for all t. For brevity we say
f(t) is P-periodic. Note that a P-periodic function is also 2P-periodic, 3P-periodic and
so on. For example, cos(t) and sin(t) are 2m-periodic. So are cos(kt) and sin(kt) for all
integers k. The constant functions are an extreme example. They are periodic for any
period (exercise).

Normally we start with a function f () defined on some interval [-L, L], and we want to
extend f(t) periodically to make it a 2L-periodic function. We do this extension by defining
a new function F(t) such that for ¢t in [-L,L], F(t) = f(t). For t in [L,3L], we define
F(t) = f(t —=2L), for t in [-3L, L], F(t) = f(t + 2L), and so on. To make that work we
needed f(—L) = f(L). We could have also started with f defined only on the half-open
interval (—L, L] and then define f(-L) = f(L).

Example 4.2.1: Define f(t) = 1—t2on [-1,1]. Now extend f(t) periodically to a 2-periodic
function. See Figure 4.3 on the facing page.

You should be careful to distinguish between f(t) and its extension. A common mistake
is to assume that a formula for f(¢) holds for its extension. It can be confusing when the
formula for f(t) is periodic, but with perhaps a different period.

Exercise 4.2.1: Define f(t) = cost on [~7/2,7/2]. Take the m-periodic extension and sketch its
graph. How does it compare to the graph of cos t?
4.2.2 Inner product and eigenvector decomposition

Suppose we have a symmetric matrix, thatis AT = A. As we remarked before, eigenvectors of
A are then orthogonal. Here the word orthogonal means that if 7 and @ are two eigenvectors
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Figure 4.3: Periodic extension of the function 1 — t2.

of A for distinct eigenvalues, then (0, @) = 0. In this case the inner product (7, @) is the
dot product, which can be computed as 57 .
To decompose a vector ¥ in terms of mutually orthogonal vectors w1 and w, we write

0= aﬂ/_l}l + IZQZTiz.
Let us find the formula for 41 and a,. First let us compute

(0, W) = (@W1 + AWy, W1) = a1{W1, W1) + ap (W2, W1) = a1{W1, W1).

—
=0
Therefore, o
_ (o, w1)
a1 =-5—>=--
(w1, wr)
Similarly
ay = M
(W2, Wa)

You probably remember this formula from vector calculus.

Example 4.2.2: Write 0 = [%] as a linear combination of w; = [_11] and W, = H]
First note that @1 and @, are orthogonal as (w1, @) = 1(1) + (-1)1 = 0. Then

@@ _ 20)+3(-1) -1
Y@,y 1)+ (D)) 27
_ <5,H72> _2+3_5

ay = = =,
? (Wy,wpy 141 2

Hence
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4.2.3 The trigonometric series

Instead of decomposing a vector in terms of eigenvectors of a matrix, we decompose
a function in terms of eigenfunctions of a certain eigenvalue problem. The eigenvalue
problem we use for the Fourier series is

x"+Ax =0, x(-m)=x(n), x'(-n)=x"(n).

We computed that eigenfunctions are 1, cos(kt), sin(kt). That is, we want to find a
representation of a 2n-periodic function f(f) as

f(t) = % + i a, cos(nt) + b, sin(nt).
n=1

This series is called the Fourier series* or the trigonometric series for f(t). We write the
coefficient of the eigenfunction 1 as 3 for convenience. We could also think of 1 = cos(0t),
so that we only need to look at cos(kt) and sin(kt).

As for matrices we want to find a projection of f(t) onto the subspaces given by the
eigenfunctions. So we want to define an inner product of functions. For example, to find a,
we want to compute ( f(t), cos(nt)). We define the inner product as

def

CF(), g(8)) & / F(6) g(t) dt.

With this definition of the inner product, we saw in the previous section that the eigenfunc-
tions cos(kt) (including the constant eigenfunction), and sin(kt) are orthogonal in the sense
that

(cos(mt), cos(nt)) =0 for m # n,
(sin(mt), sin(nt)) =0 form #n,
(sin(mt), cos(nt)) =0 for all m and n.

Forn=1,2,3,... we have

(cos(nt), cos(nt)) = /n cos(nt)cos(nt)dt =T,

—Tt
Tt

(sin(nt), sin(nt)) = / sin(nt)sin(nt)dt = 7,

-7

by elementary calculus. For the constant we get

Tt
<1,1>:/ 1-1dt =2m.

Tt

*Named after the French mathematician Jean Baptiste Joseph Fourier (1768-1830).
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The coefficients are given by

_ (f(t),cos(nt)) 1 [T

"7 (cos(nt), cos(nt)) %[n f(£) cos(nt) dt,
_ (f@),sin(nt)) 1 [T .

"= (sin(nt), sin(nt)) = /_ _fB)sin(ni)dt.

Compare these expressions with the finite-dimensional example. For a9 we get a similar

formula
D

(1,1

Let us check the formulas using the orthogonality properties. Suppose for a moment
that

£(t) = % + i ay cos(nt) + by sin(nt).
n=1

Then for m > 1 we have

(f(t), cos(mt)) = < % + i a, cos(nt) + b, sin(nt), cos(mt) >
n=1

= L12_o< 1, cos(mt)) + i ay{cos(nt), cos(mt)) + b, (sin(nt), cos(mt))
n=1

= a,,{ cos(mt), cos(mt)).

(f(t),cos(mt))

And hence a,, = (cos(mt),cos(mt))"

Exercise 4.2.2: Carry out the calculation for ag and by,.

Example 4.2.3: Take the function

flt)=t
for t in (—m, ). Extend f(t) periodically and write it as a Fourier series. This function is
called the sawtooth.

The plot of the extended periodic function is given in Figure 4.4 on the next page. Let
us compute the coefficients. We start with ao,

1 TC
ao:—/ tdt =0.
Tt —Tt

We will often use the result from calculus that says that the integral of an odd function
over a symmetric interval is zero. Recall that an odd function is a function ¢(t) such that
@(—t) = —@(t). For example the functions ¢, sint, or (importantly for us) t cos(nt) are all
odd functions. Thus

1 s
a, = %/ t cos(nt)dt = 0.

Tt
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-5.0 -2.5 0.0 2.5 5.0
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Figure 4.4: The graph of the sawtooth function.

Let us move to b,,. Another useful fact from calculus is that the integral of an even function
over a symmetric interval is twice the integral of the same function over half the interval.
Recall an even function is a function ¢(t) such that p(—t) = ¢(t). For example ¢ sin(nt) is
even.

s
b, = —/ t sin(nt) dt

T

s
/ t sin(nt) dt
0

(l—t cos(nt) :10 + % /On cos(nt) dt)

n

(—n cos(nm) N O)

n

SN AN N -

~2cos(nm) _ 2(~1)"*"!
n - oon

We have used the fact that

1 if n even,

cos(nm) = (-1)" = {_1 if n odd

The series, therefore, is

© 2(_1)Tl+1 '
; — sin(nt).

Let us write out the first 3 harmonics of the series for f(t).

2
2 sin(t) — sin(2t) + 3 sin(3t) + - - -
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The plot of these first three terms of the series, along with a plot of the first 20 terms is
given in Figure 4.5.

-2.5 0.0 2.5 5.0

| | | | | | | | | |
-5.0 25 0.0 25 5.0 -5.0 -25 0.0 25 5.0

Figure 4.5: First 3 (left graph) and 20 (right graph) harmonics of the sawtooth function.

Example 4.2.4: Take the function

f(t):{o if —m<t<0,

nw if 0<t<m.

Extend f(t) periodically and write it as a Fourier series. This function or its variants appear
often in applications and the function is called the square wave.

-5.0 -2.5 0.0 2.5 5.0

| | | | |
-5.0 -25 0.0 25 5.0

Figure 4.6: The graph of the square wave function.

The plot of the extended periodic function is given in Figure 4.6. Now we compute the
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:l/ f(t)dt:l/ rndt = .
TC J_n T Jo

coefficients. We start with ag

Next,
= l/ f(t)cos(nt)dt = l‘/ mcos(nt)dt =
Tt - T 0
And finally,
1 Tt
:E/ f(t)sin(nt) dt
L
=—/ nusin(nt) dt
T Jo

_ | —cos(nt) T
=|—

_1-cos(nmn) 1-(-1)" |2 ifnisodd,
- n - on o

if n is even.

The Fourier series is

T o 2 T o
5+ Z; Esm(nt) =5 kZ_: sm (2k—-1)t).
nno_dd -

Let us write out the first 3 harmonics of the series for f(t):
2
g + 2 sin(t) + 3 sin(3t) + - - -
The plot of these first three and also of the first 20 terms of the series is given in Figure 4.7

on the facing page.

We have so far skirted the issue of convergence. For example, if f(t) is the square wave
function, the equation

(o]

f=243 22

k=1

sm (Qk—1)t).

is only an equality for such t where f(t) is continuous. We do not get an equality for
t = —m, 0, ™ and all the other discontinuities of f(#). It is not hard to see that when f is an
integer multiple of 7t (which gives all the discontinuities), then

7'(

sm (Qk-1)t) =

N|:1
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Figure 4.7: First 3 (left graph) and 20 (right graph) harmonics of the square wave function.

We redefine f(t) on [-7, 7] as

0 if -m<t<O,
f(t)y=qm if 0<t<m,

/2 if t=-m,t=0,ort=m,

and extend periodically. The series equals this new extended f(t) everywhere, including
the discontinuities. We will generally not worry about changing the function values at
several (finitely many) points.

We will say more about convergence in the next section. Let us, however, briefly
mention an effect of the discontinuity. Zoom in near the discontinuity in the square wave.
Further, plot the first 100 harmonics, see Figure 4.8 on the next page. While the series is a
very good approximation away from the discontinuities, the error (the overshoot) near the
discontinuity at ¢t = 7= does not seem to be getting any smaller as we take more and more
harmonics. This behavior is known as the Gibbs phenomenon. The region where the error is
large does get smaller, however, the more terms in the series we take.

We can think of a periodic function as a “signal” being a superposition of many signals
of pure frequency. For example, we could think of the square wave as a tone of certain base
frequency. This base frequency is called the fundamental frequency. The square wave will
be a superposition of many different pure tones of frequencies that are multiples of the
fundamental frequency. In music, the higher frequencies are called the overtones. All the
frequencies that appear are called the spectrum of the signal. On the other hand a simple
sine wave is only the pure tone (no overtones). The simplest way to make sound using a
computer is the square wave, and the sound is very different from a pure tone. If you ever
played video games from the 1980s or so, then you heard what square waves sound like.
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Figure 4.8: Gibbs phenomenon in action.

4.2.4 Exercises

Exercise 4.2.3: Suppose f(t) is defined on [—m, 1] as sin(5t) + cos(3t). Extend periodically and
compute the Fourier series of f(t).

Exercise 4.2.4: Suppose f(t) is defined on [—mt, ] as |t|. Extend periodically and compute the
Fourier series of f(t).

Exercise 4.2.5: Suppose f(t) is defined on [—m, 7] as |t|3. Extend periodically and compute the
Fourier series of f(t).

Exercise 4.2.6: Suppose f(t) is defined on (—m, 7] as

f(t):{l_l Zf—T[<tSO,

if 0<t<m.
Extend periodically and compute the Fourier series of f(t).

Exercise 4.2.7: Suppose f(t) is defined on (—m, 7] as t3. Extend periodically and compute the
Fourier series of f(t).

Exercise 4.2.8: Suppose f(t) is defined on [—m, 7] as t2. Extend periodically and compute the
Fourier series of f(t).

There is another form of the Fourier series using complex exponentials e"! for n =
...,—2,-1,0,1,2,... instead of cos(nt) and sin(nt) for positive n. This form may be easier
to work with sometimes. It is certainly more compact to write, and there is only one
formula for the coefficients. On the downside, the coefficients are complex numbers.
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Exercise 4.2.9: Let -
f(t) = % + )" aycos(nt) + by sin(nt).
n=1

Use Euler’s formula e'® = cos(0) + i sin(0) to show that there exist complex numbers c,, such that

(o]

f(t) = Z cmel™

m=—0o0

Note that the sum now ranges over all the integers including negative ones. Do not worry about
convergence in this calculation. Hint: It may be better to start from the complex exponential form

and write the series as
o0
co + Z (cme””t + c_me_””t).
m=1

Exercise 4.2.101: Suppose f(t) is defined on [—mt, ] as f(t) = sin(t). Extend periodically and
compute the Fourier series.

Exercise 4.2.102: Suppose f(t) is defined on (=7, ] as f(t) = sin(nt). Extend periodically and
compute the Fourier series.

Exercise 4.2.103: Suppose f(t) is defined on (—m, ] as f(t) = sin®(t). Extend periodically and
compute the Fourier series.

Exercise 4.2.104: Suppose f(t) is defined on (-7, m] as f(t) = t* Extend periodically and
compute the Fourier series.



208 CHAPTER 4. FOURIER SERIES AND PDES

4.3 More on the Fourier series

Note: 2 lectures, §9.2-§9.3 in [EP], §10.3 in [BD]

4.3.1 2L-periodic functions

We have computed the Fourier series for a 2n-periodic function, but what about functions
of different periods. Well, fear not, the computation is a simple case of change of variables.
We just rescale the independent axis. Suppose we have a 2L-periodic function f(¢). Then L
is called the half period. Let s = Tt. Then the function

g(s)=f (%)

is 2m-periodic. We must also rescale all our sines and cosines. In the series we use 7t as
the variable. That is, we want to write

f(t) = % + i a, cos (nTnt) + by, sin (nTnt) .

n=1

If we change variables to s, we see that

_ o S :
g(s) = > + Z a, cos(ns) + b, sin(ns).

n=1

We compute a, and b, as before. After we write down the integrals, we change variables
from s back to t, noting also that ds = T dt.

T L
ao=%[ g(s)ds=%[Lf(t)dt,

a, = %[: g(s) cos(ns)ds = %[LL f(t) cos (%t) dt,

b, = %[: o(s) sin(ns) ds = %[LL () sin (%t) dt.

The two most common half periods that show up in examples are 7w and 1 because of
the simplicity of the formulas. We should stress that we have done no new mathematics,
we have only changed variables. If you understand the Fourier series for 2m-periodic
functions, you understand it for 2L-periodic functions. You can think of it as just using
different units for time. All that we are doing is moving some constants around, but all the
mathematics is the same.
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Example 4.3.1: Let
f(t) = |t] for -1 <t <1,

extended periodically. The plot of the periodic extension is given in Figure 4.9. Compute
the Fourier series of f(t).

1.00

0.25

I I I
-2 -1 0 1 2

Figure 4.9: Periodic extension of the function f(t).

We want to write f(t) = 3 + X,y an cos(nmt) + b, sin(nnt). For n > 1 we note that
|t| cos(ntt) is even and hence

1
a, = /_1 f(t)cos(nmt)dt

n2n2

1
= 2/ t cos(nmt)dt
0
t ! 1
=2|— sin(nnt)l — 2/ — sin(nmit) dt
nrt =0 0 nm
1 1 2(-1"-1) f[o if 1 is even,
=0+ —— |cos(nmt)| = =— = =
n2m? cos(nmit) £=0 n2m? =2 ifnis odd.

Next we find ap:

1
a():/ [t| dt = 1.
-1

You should be able to find this integral by thinking about the integral as the area under the
graph without doing any computation at all. Finally we can find b,,. Here, we notice that
|t| sin(nmtt) is odd and, therefore,

1
b, = [1 f(t)sin(nmnt)dt = 0.
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Hence, the series is

o0

1 -4
5 + Z 33 cos(nrt).

n=1
n odd

Let us explicitly write down the first few terms of the series up to the 3' harmonic.
1 4 4
7 2 cos(mt) — 92 cos(3mtt) —---

The plot of these few terms and also a plot up to the 20 harmonic is given in Figure 4.10.
You should notice how close the graph is to the real function. You should also notice that
there is no “Gibbs phenomenon” present as there are no discontinuities.

Figure 4.10: Fourier series of f(t) up to the 3" harmonic (left graph) and up to the 20" harmonic (right
graph).

4.3.2 Convergence

We will need the one sided limits of functions. We will use the following notation
f(c—) =1Lm f(t), and f(c+) =Lm f(t).
tc tle

If you are unfamiliar with this notation, lim;. f (t) means we are taking a limit of f(t) as t
approaches c from below (i.e. t < c) and lim; . f(t) means we are taking a limit of f(t) as ¢
approaches c from above (i.e. t > c). For example, for the square wave function

0 if -m<t<0
t) = = 4:8
f() { if 0<t<m, (48)

we have f(0—) = 0and f(0+) = .
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Let f(t) be a function defined on an interval [a, b]. Suppose that we find finitely many
points a = ty, t1, t, ..., tx = b in the interval, such that f(t) is continuous on the intervals
(to, t1), (t1,t2), ..., (tk-1, tk). Also suppose that all the one sided limits exist, that is, all of
f(to+), f(t1—), f(t1+), f(t2—), f(t2+), ..., f(tx—) exist and are finite. Then we say f(f) is
piecewise continuous.

If moreover, f(t) is differentiable at all but finitely many points, and f’(t) is piecewise
continuous, then f(t) is said to be piecewise smooth.

Example 4.3.2: The square wave function (4.8) is piecewise smooth on [—7, 7t] or any other
interval. In such a case we simply say that the function is piecewise smooth.

Example 4.3.3: The function f(t) = |¢| is piecewise smooth.

Example 4.3.4: The function f(t) = 1 is not piecewise smooth on [-1,1] (or any other
interval containing zero). In fact, it is not even piecewise continuous.

Example 4.3.5: The function f(t) = Vt is not piecewise smooth on [~1,1] (or any other
interval containing zero). f(t) is continuous, but the derivative of f(t) is unbounded near
zero and hence not piecewise continuous.

Piecewise smooth functions have an easy answer on the convergence of the Fourier
series.

Theorem 4.3.1. Suppose f(t) is a 2L-periodic piecewise smooth function. Let

a = nm
?0 + Z a, Ccos (—t) + b, sin (Tt)

n=1

be the Fourier series for f(t). Then the series converges for all t. If f(t) is continuous at t, then

f(t):%+ianc ( )+b sm(%t)

n=1
Otherwise,

w = % +ian cos (nTnt) + b, sin (nTnt)

n=1

If we happen to have that f(t) = w at all the discontinuities, the Fourier series
converges to f(t) everywhere. We can always just redefine f(t) by changing the value at
each discontinuity appropriately. Then we can write an equals sign between f(t) and the
series without any worry. We mentioned this fact briefly at the end last section.

The theorem does not say how fast the series converges. Think back to the discussion
of the Gibbs phenomenon in the last section. The closer you get to the discontinuity, the
more terms you need to take to get an accurate approximation to the function.
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4.3.3 Differentiation and integration of Fourier series
Not only does Fourier series converge nicely, but it is easy to differentiate and integrate the
series. We can do this just by differentiating or integrating term by term.

Theorem 4.3.2. Suppose
a - nm . (nT
f(t) = ?0 + ; ay Cos (Tt) + b, sin (Tt)

is a piecewise smooth continuous function and the derivative f'(t) is piecewise smooth. Then the
derivative can be obtained by differentiating term by term,

o

') = Z —aznn sin (%t) + b":n cos (%t) .

n=1
It is important that the function is continuous. It can have corners, but no jumps.
Otherwise, the differentiated series will fail to converge. For an exercise, take the series

obtained for the square wave and try to differentiate the series. Similarly, we can also
integrate a Fourier series.

Theorem 4.3.3. Suppose

nm
—t

f(t):2—0+gancos( T )+bnsin(%t)

is a piecewise smooth function. Then the antiderivative is obtained by antidifferentiating term by
term and so

_aot — ayL (nn) -b, L (rm)
F(t) = > +C+nz:;nnsm Lt + ——cos Lt ,

where F'(t) = f(t) and C is an arbitrary constant.

Note that the series for F(t) is no longer a Fourier series as it contains the “Tot term. The
antiderivative of a periodic function need no longer be periodic and so we should not
expect a Fourier series.

4.3.4 Rates of convergence and smoothness

Let us do an example of a periodic function with one derivative everywhere.

Example 4.3.6: Take the function
(t+1)t if 1<t <0,
f(#) = .
1-t)t if 0<t<1,

and extend to a 2-periodic function. The plot is given in Figure 4.11 on the facing page.
This function has one derivative everywhere, but it does not have a second derivative
whenever ¢ is an integer.
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Figure 4.11: Smooth 2-periodic function.

Exercise 4.3.1: Compute f”(0+) and f”(0-).

Let us compute the Fourier series coefficients. The actual computation involves several
integration by parts and is left to student.

1 0 1
aozllf(t)dt:[l(tﬂ)tdufo (1-t)tdt =0,

1 0 1
a, = /_1 f(t) cos(nmt)dt = /_1 (t+ 1)t cos(nmt)dt +/0 (1-1t)t cos(nmt)dt =0,

1 0 1
b, = / f(t) sin(nmt)dt = / (t +1)t sin(nmt)dt +/ (1—1t)t sin(nmt)dt
-1 -1 0
_40-(-)") _|AE5 ifnisodd,
n3n3 0 if n is even.

That is, the series is

[00]

8
Z 3 3sin(nrct).
3n

n=1
n odd

This series converges very fast. If you plot up to the third harmonic, that is the function

% sin(7tt) + 27213 sin(37tt),
it is almost indistinguishable from the plot of f(t) in Figure 4.11. In fact, the coefficient
% is already just 0.0096 (approximately). The reason for this behavior is the 73 term in

the denominator. The coefficients b, in this case go to zero as fast as 1/n* goes to zero.

For functions constructed piecewise from polynomials as above, it is generally true
that if you have one derivative, the Fourier coefficients will go to zero approximately like
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1/n®. If you have only a continuous function, then the Fourier coefficients will go to zero as
1/n2. If you have discontinuities, then the Fourier coefficients will go to zero approximately
as 1/n. For more general functions the story is somewhat more complicated but the same
idea holds, the more derivatives you have, the faster the coefficients go to zero. Similar
reasoning works in reverse. If the coefficients go to zero like 1/#?, you always obtain a
continuous function. If they go to zero like 1/r?, you obtain an everywhere differentiable
function.
To justify this behavior, take for example the function defined by the Fourier series

o

1 .
f(t) = Z —5sin(nt).
n=1
When we differentiate term by term we notice
f'(t) = i 1 cos(nt)
) n=1 n? .

Therefore, the coefficients now go down like 1/#2, which means that we have a continuous
function. The derivative of f’(t) is defined at most points, but there are points where f’(t)
is not differentiable. It has corners, but no jumps. If we differentiate again (where we can),
we find that the function f”(¢), now fails to be continuous (has jumps)

(0 9]

f(t) = Z _71 sin(nt).

n=1
This function is similar to the sawtooth. If we tried to differentiate the series again, we

would obtain

o

Z — cos(nt),

n=1

which does not converge!

Exercise 4.3.2: Use a computer to plot the series we obtained for f(t), f'(t) and f”(t). That is,
plot say the first 5 harmonics of the functions. At what points does f” (t) have the discontinuities?

4.3.5 Exercises

Exercise 4.3.3: Let

_JOo if 1<t <0,
f(t)_{t if 0<t<1,

extended periodically.

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3 harmonic.



4.3. MORE ON THE FOURIER SERIES

Exercise 4.3.4: Let

—t if -1<t<0,
fi=11"
t if 0<t<1,

extended periodically.

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3" harmonic.

Exercise 4.3.5: Let

Lif -10<t <0,
fy=4% °
L if  0<t<10,

extended periodically (period is 20).

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3™ harmonic.
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Exercise 4.3.6: Let f(t) = >, & cos(nt). Is f(t) continuous and differentiable everywhere?

n=1 43

Find the derivative (if it exists everywhere) or justify why f(t) is not differentiable everywhere.

Exercise 4.3.7: Let f(t) = Y. . %sin(nt). Is f(t) differentiable everywhere? Find the

n=1

derivative (if it exists everywhere) or justify why f(t) is not differentiable everywhere.

Exercise 4.3.8: Let
0 if -2<t<0,

ft) =1t if 0<t<l1,
—t+2 if 1<t<2,

extended periodically.

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3 harmonic.

Exercise 4.3.9: Let
fHy=e"  for -1<t<1

extended periodically.
a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3 harmonic.

c) What does the series converge to at t = 1.
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Exercise 4.3.10: Let
fity=t> for -1<t<1

extended periodically.

a) Compute the Fourier series for f(t).

b) By plugging in t = 0, evaluate °°§ (_1)n—1_1+1_
y ptugging =0, ,121”2_ 175
o 1 1 1
c) Nowevaluateng_lﬁ:1+Z+§+...,

Exercise 4.3.11: Let

_JO0 if 3<t<0,
f(t)_{t if 0<t<3,

extended periodically. Suppose F(t) is the function given by the Fourier series of f. Without
computing the Fourier series evaluate

a) F(2) b) F(-2) c) F(4)
d) F(-4) e) F(3) H E(-9)

Exercise 4.3.101: Let
f(y=t> for 2<t<2

extended periodically.

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3™ harmonic.

Exercise 4.3.102: Let
f(t)y=t  for —A <t <A (forsome A > 0)
extended periodically.

a) Compute the Fourier series for f(t).

b) Write out the series explicitly up to the 3™ harmonic.

Exercise 4.3.103: Let

[Se]

ft) = % + Z n(n++1) sin(nt).

n=1
Compute f'(t).
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Exercise 4.3.104: Let
1 w1
f(t) = E + ng_l E COS(Tlt).

a) Find the antiderivative.

b) Is the antiderivative periodic?

Exercise 4.3.105: Let
ft)y=t2  for —-n<t<m

extended periodically.

a) Compute the Fourier series for f(t).
b) Plug in t = /2 to find a series representation for 7/4.

c) Using the first 4 terms of the result from part b) approximate 7/4.

Exercise 4.3.106: Let

_JO0 if —2<t <0,
f(t)_{z if 0<t<2,

extended periodically. Suppose F(t) is the function given by the Fourier series of f. Without
computing the Fourier series evaluate

a) F(0) b) F(-1) c) F(1)
d) F(=2) e) F(4) H E(-8)
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4.4 Sine and cosine series

Note: 2 lectures, §9.3 in [EP], §10.4 in [BD]

4.4.1 Odd and even periodic functions

You may have noticed by now that an odd function has no cosine terms in the Fourier
series and an even function has no sine terms in the Fourier series. This observation is not
a coincidence. Let us look at even and odd periodic function in more detail.

Recall that a function f(t) is odd if f(—t) = —f(t). A function f(t) is even if f(—t) = f(t).
For example, cos(nt) is even and sin(nt) is odd. Similarly the function tk is even if k is even
and odd when k is odd.

Exercise 4.4.1: Tuake two functions f(t) and g(t) and define their product h(t) = f(t)g(t).
a) Suppose both f(t) and g(t) are odd. Is h(t) odd or even?

b) Suppose one is even and one is odd. Is h(t) odd or even?

c) Suppose both are even. Is h(t) odd or even?

If f(t) and g(t) are both odd, then f(t) + g(¢) is odd. Similarly for even functions. On
the other hand, if f(t) is odd and g(t) even, then we cannot say anything about the sum
f(t) + g(t). In fact, the Fourier series of any function is a sum of an odd (the sine terms)
and an even (the cosine terms) function.

In this section we consider odd and even periodic functions. We have previously
defined the 2L-periodic extension of a function defined on the interval [-L, L]. Sometimes
we are only interested in the function on the range [0, L] and it would be convenient to have
an odd (resp. even) function. If the function is odd (resp. even), all the cosine (resp. sine)
terms disappear. What we will do is take the odd (resp. even) extension of the function to
[-L, L] and then extend periodically to a 2L-periodic function.

Take a function f(t) defined on [0, L]. On (-L, L] define the functions

wt [f() if 0<t<L,
Foaalt) = {—f(—t) if L <t<0,

Feven(?) def | f(t) if 0<t<IL,
YT f(-h) if -L <t <.

Extend Foqq(t) and Feven(t) to be 2L-periodic. Then F,qq4(t) is called the odd periodic extension
of f(t), and Feyen(t) is called the even periodic extension of f(t). For the odd extension we
generally assume that f(0) = f(L) = 0.

Exercise 4.4.2: Check that Fyy4(t) is odd and Feyen(t) is even. For F,q4, assume f(0) = f(L) = 0.

Example 4.4.1: Take the function f(t) = t (1 —t) defined on [0, 1]. Figure 4.12 on the facing
page shows the plots of the odd and even periodic extensions of f(t).
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Figure 4.12: Odd and even 2-periodic extension of f(t) =t(1—1),0<t < 1.

4.4.2 Sine and cosine series

Let f(t) be an odd 2L-periodic function. We write the Fourier series for f(t). First, we
compute the coefficients a, (including n = 0) and get

= %/_LLf(t)cos (nTnt) dt = 0.

That is, there are no cosine terms in the Fourier series of an odd function. The integral is
zero because f(t) cos (nmtLt) is an odd function (product of an odd and an even function is
odd) and the integral of an odd function over a symmetric interval is always zero. The
integral of an even function over a symmetric interval [-L, L] is twice the integral of the
function over the interval [0, L]. The function f(¢)sin (%t) is the product of two odd
functions and hence is even.

by 1/ f(t)sm(—t) dt 2/ f(t)sm(—t) dt.

We now write the Fourier series of f(t) as

Z b,, sin (%t) .

Similarly, if f(t) is an even 2L-periodic function. For the same exact reasons as above,

we find that b, = 0 and
2 [t nmn
= E/o f(t)cos (Tt) dt.

The formula still works for n = 0, in which case it becomes

L
—%/0 £(t) dt.
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The Fourier series is then
ao nm
— + Z a; CoS (—t) .
2 o L

An interesting consequence is that the coefficients of the Fourier series of an odd (or
even) function can be computed by just integrating over the half interval [0, L]. Therefore,
we can compute the Fourier series of the odd (or even) extension of a function by computing
certain integrals over the interval where the original function is defined.

Theorem 4.4.1. Let f(t) be a piecewise smooth function defined on [0, L]. Then the odd periodic
extension of f(t) has the Fourier series

Foaa(t) = 2 b, sin (%t) ,

where

{ by = %/OLf(t) sin(nTnt) dt. |

The even periodic extension of f(t) has the Fourier series

a - nmn
Fepen(t) = ?0 + Z a, cos (Tt) ,

n=1

where

‘ a, = %/OLf(t) cos (nTnt) dt. |

We call the series Y, ; b, sin (%%t) the sine series of f(t) and we call the series % +
Yineq n COS (”T”t) the cosine series of f(t). We often do not actually care what happens
outside of [0, L]. In this case, we pick whichever series fits our problem better.

It is not necessary to start with the full Fourier series to obtain the sine and cosine series.
The sine series is really the eigenfunction expansion of f(t) using eigenfunctions of the
eigenvalue problem x” + Ax = 0, x(0) = 0, x(L) = L. The cosine series is the eigenfunction
expansion of f(t) using eigenfunctions of the eigenvalue problem x” + Ax =0, x’(0) = 0,
x’(L) = L. We could have, therefore, gotten the same formulas by defining the inner
product

L
(b, g(0)) = /O F(Dg(t) dt,

and following the procedure of § 4.2. This point of view is useful, as we commonly use
a specific series that arose because our underlying question led to a certain eigenvalue
problem. If the eigenvalue problem is not one of the three we covered so far, you can still
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do an eigenfunction expansion, generalizing the results of this chapter. We will deal with
such a generalization in chapter 5.

Example 4.4.2: Find the Fourier series of the even periodic extension of the function
f(t)y=t>for0 <t < m.
We want to write

a o0
f(t) = 30 + Zan cos(nt),
n=1
2 [T 272
agz—/ 2dr =
T Jo 3
2

T, 2,1 . S
- t“cos(nt)dt = — |t —sm(nt) - — t sin(nt) dt
0 0

where

and

an

4( 1)

[tcos(nt) +—/ cos(nt)dt =

Note that we have “detected” the continuity of the extension since the coefficients decay
as —;. That is, the even periodic extension of t2 has no jump discontinuities. It does have
corners since the derivative, which is an odd function and a sine series, has jumps; it has a
Fourier series whose coefficients decay only as 1.

Explicitly, the first few terms of the series are
72 4
3 4 cos(t) + cos(2t) — 5 cos(3t) + - -

Exercise 4.4.3:

a) Compute the derivative of the even periodic extension of f(t) above and verify it has jump
discontinuities. Use the actual definition of f(t), not its cosine series!

b) Why is it that the derivative of the even periodic extension of f(t) is the odd periodic extension

of f'(£)?

4.4.3 Application

Fourier series ties in to the boundary value problems we studied earlier. Let us see this
connection in an application.
Consider the boundary value problem for 0 <t < L,

X(8) + A x(t) = (1),

for the Dirichlet boundary conditions x(0) = 0, x(L) = 0. The Fredholm alternative (The-
orem 4.1.2 on page 194) says that as long as A is not an eigenvalue of the underlying



222 CHAPTER 4. FOURIER SERIES AND PDES

homogeneous problem, there exists a unique solution. Eigenfunctions of this eigenvalue
problem are the functions sin (”T”t) Therefore, to find the solution, we first find the Fourier
sine series for f(t). We write x also as a sine series, but with unknown coefficients. We
substitute the series for x into the equation and solve for the unknown coefficients. If we
have the Neumann boundary conditions x’(0) = 0, x’(L) = 0, we do the same procedure using
the cosine series.

Let us see how this method works on examples.

Example 4.4.3: Take the boundary value problem for 0 <t <1,

x"() +2x(t) = f(t),

where f(t) =t on 0 < t < 1, and satisfying the Dirichlet boundary conditions x(0) = 0,
x(1) = 0. We write f(t) as a sine series

f(t) = Z cp sin(nmt).
n=1
Compute
1 _1\n+l
Cpn = 2/ tsin(nmt)dt = &
0 nm

We write x(t) as
x(t) = Z b, sin(nt).
n=1

We plug in to obtain

x”(t) +2x(t) = Z —b,n*n?sin(nmt) +2 Z b, sin(nTt)
n=1 n=1

x” X

Z b, (2 — n®’n®) sin(nmt)
n=1

© _1\r+1
= f(t) = Z —2( 1) sin(nt).

nrtt
n=1
Therefore,
2 _1 n+1
b,(2 - n2n2) - #
nrt
or
2 (_1)7’l+1

by = ———.
" nn(2 - n2n?)
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That 2 — n?n? is not zero for any 7, and that we can solve for b,, is precisely because 2 is
not an eigenvalue of the problem. We have thus obtained a Fourier series for the solution

(0]

_1\n+l
x(t) = Z % sin(nmt).
n=1

See Figure 4.13 for a graph of the solution. Notice that because the eigenfunctions satisfy
the boundary conditions, and x is written in terms of the boundary conditions, then x
satisfies the boundary conditions.

0.00 0.25 0.50 075 1.00
™ T T

I I I
0.00 0.25 0.50 0.75 1.00

Figure 4.13: Plot of the solution of x” +2x =t, x(0) =0, x(1) = 0.

Example 4.4.4: Similarly we handle the Neumann conditions. Take the boundary value
problem for0 < t <1,

xX(8) +2x(t) = f(t),
where again f(t) =t on 0 < t < 1, but now satisfying the Neumann boundary conditions
x’(0) =0, x’(1) = 0. We write f(t) as a cosine series

f(t) = % + Z cn cos(nmt),
n=1

1
C0=2/ tdt =1,
0

! 2((-D)" -1 =4 ifnodd
Cy = 2/ t cos(nmit) dt = % — {ﬂ2n2 1 oaaq,
0 n2n

where

and

0 if 1 even.

We write x(t) as a cosine series

o

x(t) = % + Z a, cos(nrt).

n=1
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We plug in to obtain

x”(t) +2x(t) = i[ —apn’n cos(nnt)] +ag+2 Z [an cos(nnt)]

n=1 n=1

=ag+ Z 1, (2 — n’m®) cos(nmt)

=f(t) = % + Z n;:Z cos(nmt).

Therefore, ag = %, a, =0 for n even (n > 2) and for n odd we have

—4

1,2 — n’n?) =

or
—4

n2n2(2 — n?n2)’

ay =

The Fourier series for the solution x(t) is

(o]

x(t) = % + Z 4 cos(nmt).

i n2m2(2 — n?n?)
n odd

4.4.4 Exercises
Exercise 4.4.4: Take f(t) = (t — 1)2 definedon 0 <t < 1.

a) Sketch the plot of the even periodic extension of f.
b) Sketch the plot of the odd periodic extension of f.
Exercise 4.4.5: Find the Fourier series of both the odd and even periodic extension of the function

F(t) = (t=1)*for 0 < t < 1. Can you tell which extension is continuous from the Fourier series
coefficients?

Exercise 4.4.6: Find the Fourier series of both the odd and even periodic extension of the function
f(t)y=tfor0<t <m.

Exercise 4.4.7: Find the Fourier series of the even periodic extension of the function f(t) = sin t
forO<t <m.
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Exercise 4.4.8: Consider
x"(t) +4x(t) = f(t),
where f(t)=1on0 <t <1
a) Solve for the Dirichlet conditions x(0) = 0, x(1) = 0.
b) Solve for the Neumann conditions x’(0) = 0, x’(1) = 0.

Exercise 4.4.9: Consider
x"(t) +9x(t) = f(t),
for f(t) =sin(2nt)on 0 <t < 1.
a) Solve for the Dirichlet conditions x(0) = 0, x(1) = 0.
b) Solve for the Neumann conditions x’'(0) = 0, x’(1) = 0.

Exercise 4.4.10: Consider
x"(t) +3x(t) = f(t), x(0)=0, x(1)=0,

where f(t) = 3,71 by sin(nmtt). Write the solution x(t) as a Fourier series, where the coefficients
are given in terms of by,.

Exercise 4.4.11: Let f(t) = t>(2 —t) for 0 < t < 2. Let F(t) be the odd periodic extension.
Compute F(1), F(2), F(3), F(-1), F(%9/2), F(101), F(103). Note: Do not compute the sine series.

Exercise 4.4.101: Let f(t) =t/3on 0 <t < 3.

a) Find the Fourier series of the even periodic extension.

b) Find the Fourier series of the odd periodic extension.
Exercise 4.4.102: Let f(t) = cos(2t)on 0 < t < m.

a) Find the Fourier series of the even periodic extension.
b) Find the Fourier series of the odd periodic extension.
Exercise 4.4.103: Let f(t) be defined on 0 < t < 1. Consider the average of the two extensions
t) = Fodq(t)+Feven(t)
g(t) = == :
a) What is g(t) if 0 < t < 1 (Justify!) b) What is g(t) if =1 < t < 0 (Justify!)

Exercise 4.4.104: Let f(t) = X7, % sin(nt). Solve x” — x = f(t) for the Dirichlet conditions
x(0) = 0and x(m) = 0.

Exercise 4.4.105 (challenging): Let f(f) =t + Y, zln sin(nt). Solve x” + ix = f(t) for the
Dirichlet conditions x(0) = 0 and x(t) = 1. Hint: Note that L satisfies the given Dirichlet
conditions.
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4.5 Applications of Fourier series

Note: 2 lectures, §9.4 in [EP], not in [BD]

4.5.1 Periodically forced oscillation

Let us return to the forced oscillations. Consider a mass- k F(t)
spring system as before, where we have a mass m on a spring m —»
with spring constant k, with damping c, and a force F(t) w

applied to the mass. Suppose the forcing function F(t) is
2L-periodic for some L > 0. We saw this problem in chapter 2

with F(t) = Fo cos(wt). The equation that governs this particular setup is

damping c

mx”(t) + cx'(t) + kx(t) = F(¢). 4.9)

The general solution of (4.9) consists of the complementary solution x., which solves
the associated homogeneous equation mx” + cx’ + kx = 0, and a particular solution of (4.9)
we call x,. For ¢ > 0, the complementary solution x. will decay as time goes by. Therefore,
we are mostly interested in a particular solution x, that does not decay and is periodic with
the same period as F(t). We call this particular solution the steady periodic solution and we
write it as x5, as before. What is new in this section is that we consider an arbitrary forcing
function F(t) instead of a simple cosine.

For simplicity, suppose ¢ = 0. The problem with ¢ > 0 is very similar. The equation

mx” +kx =0

has the general solution
x(t) = A cos(wot) + B sin(wot),

where wy = \/g Any solution to mx”(t) + kx(t) = F(t) is of the form A cos(wot) +
B sin(wot) + xsp. The steady periodic solution x5, has the same period as F(t).
In the spirit of the last section and the idea of undetermined coefficients we first write

nrt . nr
Cy COS (Tt) + d?’l sim (Tt) .

Ms

Co
F(t) = —
() 2+

=
I
—

Then we write a proposed steady periodic solution x as

nm . (N7
a, Cos (Tt) + b, sin (Tt) ,

e

ap
f)=—+
x(h) = 3

=
I
—

where a, and b, are unknowns. We plug x into the differential equation and solve for a,,
and b, in terms of ¢, and d,. This process is perhaps best understood by example.
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Example 4.5.1: Suppose that k = 2, and m = 1. The units are again the mks units (meters-
kilograms-seconds). There is a jetpack strapped to the mass, which fires with a force of 1
newton for 1 second and then is off for 1 second, and so on. We want to find the steady
periodic solution.
The equation is, therefore,
x” +2x = F(t),

where F(t) is the step function

0 if —1<t<0,
Fiy=4> " 'S
1 if O0<t<]1,

extended periodically. We write

c - .
F(t) = EO + Z ¢, cos(nmt) + d, sin(nmt).

n=1

We compute

1 1
Cp = / F(t)cos(nmtt)dt = / cos(nmt)dt =0 for n >1,
-1 0

1 1
w= [ Fwi= [ a1,
-1 0

1
dn=/ F(t)sin(ntt) dt

1

1
:/ sin(nrt) dt
0

_ | —cos(nmt) !

B nm t=0

_1-(-1)" _|Z ifnodd,

~ mn |0 ifneven.

So
1 ©« 2 .
F(t) = 5 + HZ; %sm(nrct).
n odd
We want to try

a (o8]
x(t) = ?0 + Z a, cos(nmt) + b, sin(nt).
n=1
Once we plug x into the differential equation x” + 2x = F(t), itis clear thata, =0forn > 1
as there are no corresponding terms in the series for F(t). Similarly b, = 0 for n even.



228 CHAPTER 4. FOURIER SERIES AND PDES

Hence we try

— ao S 5
x(t) = > + Z b, sin(nmt).
n=1
n odd
We plug into the differential equation and obtain

o

x” +2x = Z [—bnnznz sin(nnt)] +ag+2 i [bn sin(nnt)]

n=1 n=1
n odd n odd

=ap+ Z b, (2 — n®n®)sin(nmt)

n=1
n odd
1 - 2 .
=F(t) = 5 + Z; — sin(nTt).
n=
n odd

Soag = %, b, = 0 for even n, and for odd n we get

2

by = ——————.
" (2 - n2n?)

The steady periodic solution has the Fourier series

Xsp(t) = 7 + E Py B sin(nt).
n=1

n odd

| =

We know this is the steady periodic solution as it contains no terms of the complementary
solution and it is periodic with the same period as F(t) itself. See Figure 4.14 on the next
page for the plot of this solution.

4.5.2 Resonance

Just as when the forcing function was a simple cosine, we may encounter resonance.
Assume ¢ = 0 and let us discuss only pure resonance. Let F(t) be 2L-periodic and consider

mx”(t) + kx(t) = F(t).

When we expand F(t) and find that some of its terms coincide with the complementary
solution to mx” + kx = 0, we cannot use those terms in the guess. Just like before, they
disappear when we plug them into the left-hand side and we get a contradictory equation
(such as 0 = 1). That is, suppose

x. = A cos(wpt) + Bsin(wot),
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00 . L . 0.0
0.0 25 5.0 75 100

Figure 4.14: Plot of the steady periodic solution xs, of Example 4.5.1.

where wy = ¥ for some positive integer N. We have to modify our guess and try

x(t) = % +1 (aN cos (%t) + by sin (%t)) + Z ay COS (%t) + b, sin (%t) .
nEN
In other words, we multiply the offending term by t. From then on, we proceed as before.

Of course, the solution is not a Fourier series (it is not even periodic) since it contains
these terms multiplied by t. Further, the terms t (an cos (§2t) + by sin (2¥£t)) eventually
dominate and lead to wild oscillations. As before, this behavior is called pure resonance or
just resonance.

Note that there now may be infinitely many resonance frequencies to hit. That is, as we
change the frequency of F (we change L), different terms from the Fourier series of F may
interfere with the complementary solution and cause resonance. However, we should note
that since everything is an approximation and in particular c is never actually zero but
something very close to zero, only the first few resonance frequencies matter in real life.

Example 4.5.2: We want to solve the equation
2x" +18n%x = F(t), (4.10)

where

-1 if -1<t<0,
Fty=4 .
1 if O0<t<l,

extended periodically. We note that

o0

4
F(t) = Z — sin(nnt).
& mn
n odd



230 CHAPTER 4. FOURIER SERIES AND PDES

Exercise 4.5.1: Compute the Fourier series of F to verify the equation above.
As \/% = # = 37, the solution to (4.10) is
x(t) = c1cos(3mt) + co sin(3mt) + xp(t)

for some particular solution x,.

If we just try an x, given as a Fourier series with sin(n7tt) as usual, the complementary
equation, 2x” + 1872x = 0, eats our 3" harmonic. That is, the term with sin(37t) is already
in in our complementary solution. Therefore, we pull that term out and multiply it by ¢.
We also add a cosine term to get everything right. That is, we try

xp(t) = azt cos(3mtt) + bst sin(3mt) + Z b, sin(nmt).

n=1
n odd
n+3

Let us compute the second derivative.

xl’g'(t) = —6as7 sin(3nt) — 9n?as t cos(3mt) + 6bsm cos(3mt) — 9n?bs t sin(37t)

o0

+ Z (-nmb,,) sin(nmt).
n=1

n odd

n#3

We now plug into the left-hand side of the differential equation.
Zx;’ + 18n2xp = — 12a3m sin(37t) — 18m2ast cos(3mt) + 12b3m cos(3mt) — 18m2bst sin(37tt)

+ 18m?ast cos(3mt) + 187%b3t sin(37tt)

+ Z (=2n%1%b, + 187%b,,) sin(nmt).
n=1

n odd
n#3

We simplity,

Zx;’ + 18n2xp = —12a37 sin(37tt) + 12bsm cos(37tt) + Z (=2n%1%b,, + 181°b,) sin(nt).
n=1

n odd
n+3

This series has to equal to the series for F(t). We equate the coefficients and solve for a3
and b,,.

. 4/Bm) _ -1
3T T12m T on2’
b3 =0,
4 2
b, = for n odd and n # 3.

nn(18n2 — 2n2n2) B 31n(9 — n?)
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That is,

o

-1
xp(t) = ﬁt cos(3mt) + Z

n=1
n odd
n#+3

m Sin(i’lTlt).

When ¢ > 0, you do not have to worry about pure resonance. That is, there are never
any conflicts and you do not need to multiply any terms by ¢. There is a corresponding
concept of practical resonance and it is very similar to the ideas we already explored in
chapter 2. Basically what happens in practical resonance is that one of the coefficients in
the series for x;, can get very big. Let us not go into details here.

4.5.3 Exercises

Exercise 4.5.2: Let F(t) = % + 2 % cos(nmt). Find the steady periodic solution to x”" + 2x =
F(t). Express your solution as a Fourier series.

Exercise4.5.3: Let F(t) = ¥.°°, - sin(nmt). Find the steady periodic solution to x” +x"+x = F(t).

n=1 53
Express your solution as a Fourier series.

Exercise 4.5.4: Let F(t) = }7° 4 # cos(nmt). Find the steady periodic solution to x” + 4x = F(t).
Express your solution as a Fourier series.

Exercise 4.5.5: Let F(t) =t for =1 < t < 1 and extended periodically. Find the steady periodic
solution to x” + x = F(t). Express your solution as a series.

Exercise 4.5.6: Let F(t) =t for =1 < t < 1 and extended periodically. Find the steady periodic
solution to x” + ?x = F(t). Express your solution as a series.

Exercise 4.5.101: Let F(t) = sin(2mtt) + 0.1 cos(107tt). Find the steady periodic solution to
x” + V2 x = F(t). Express your solution as a Fourier series.

Exercise 4.5.102: Let F(t) = 3,7, e™" cos(2nt). Find the steady periodic solution to x” + 3x =
F(t). Express your solution as a Fourier series.

Exercise 4.5.103: Let F(t) = |t| for =1 < t < 1 extended periodically. Find the steady periodic
solution to x” + V3 x = F(t). Express your solution as a series.

Exercise 4.5.104: Let F(t) = |t| for =1 < t < 1 extended periodically. Find the steady periodic
solution to x” + ?x = F(t). Express your solution as a series.
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4.6 PDEs, separation of variables, and the heat equation

Note: 2 lectures, §9.5 in [EP], §10.5 in [BD]

Let us recall that a partial differential equation or PDE is an equation containing the partial
derivatives with respect to several independent variables. Solving PDEs will be our main
application of Fourier series.

A PDE is said to be linear if the dependent variable and its derivatives appear at most to
the first power and in no functions. We will only talk about linear PDEs. Together with a
PDE, we usually specify some boundary conditions, where the value of the solution or its
derivatives is given along the boundary of a region, and/or some initial conditions where
the value of the solution or its derivatives is given for some initial time. Sometimes such
conditions are mixed together and we will refer to them simply as side conditions.

We will study three specific partial differential equations, each one representing a
general class of equations. First, we will study the heat equation, which is an example of a
parabolic PDE. Next, we will study the wave equation, which is an example of a hyperbolic
PDE. Finally, we will study the Laplace equation, which is an example of an elliptic PDE.
Each of our examples will illustrate behavior that is typical for the whole class.

4.6.1 Heat on an insulated wire

Let us start with the heat equation. Consider a wire (or a thin metal rod) of length L that is
insulated except at the endpoints. Let x denote the position along the wire and let ¢ denote
time. See Figure 4.15.

temperature u

v i

L «x

insulation

Figure 4.15: Insulated wire.

Let u(x, t) denote the temperature at point x at time t. The equation governing this
setup is the so-called one-dimensional heat equation:

du d%u

ot ox2’

where k > 0 is a constant (the thermal conductivity of the material). That is, the change in
heat at a specific point is proportional to the second derivative of the heat along the wire.
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This makes sense; if at a fixed t the graph of the heat distribution has a maximum (the
graph is concave down), then heat flows away from the maximum. And vice versa.
We generally use a more convenient notation for partial derivatives. We write u; instead

of ‘3—”;, and we write u,, instead of %. With this notation the heat equation becomes
U = kilyy.

For the heat equation, we must also have some boundary conditions. We assume that
the ends of the wire are either exposed and touching some body of constant heat, or the
ends are insulated. If the ends of the wire are kept at temperature 0, then the conditions are

u(0,t)=0 and u(L,t)=0.
If, on the other hand, the ends are also insulated, the conditions are
u(0,t) =0 and uy(L,t) =0.

Let us see why that is so. If u, is positive at some point xo, then at a particular time, u is
smaller to the left of xo, and higher to the right of xo. Heat is flowing from high heat to low
heat, that is to the left. On the other hand if u, is negative then heat is again flowing from
high heat to low heat, that is to the right. So when u, is zero, that is a point through which
heat is not flowing. In other words, 1,(0, t) = 0 means no heat is flowing in or out of the
wire at the point x = 0.

We have two conditions along the x-axis as there are two derivatives in the x direction.
These side conditions are said to be homogeneous (i.e., u or a derivative of u is set to zero).

We also need an initial condition—the temperature distribution at time ¢t = 0. That is,

u(x,0) = f(x),

for some known function f(x). This initial condition is not a homogeneous side condition.

4.6.2 Separation of variables

The heat equation is linear as u and its derivatives do not appear to any powers or in any
functions. Thus the principle of superposition still applies for the heat equation (without
side conditions): If u; and u; are solutions and ¢y, ¢ are constants, then u = ciuy + cpup is
also a solution.

Exercise 4.6.1: Verify the principle of superposition for the heat equation.

Superposition preserves some of the side conditions. In particular, if 1 and u; are
solutions that satisfy #(0,t) = 0and u(L, t) = 0, and ¢y, ¢; are constants, then u = cqu; +caup
is still a solution that satisfies u(0,t) = 0 and u(L, t) = 0. Similarly for the side conditions
uy(0,t) = 0 and uy(L,t) = 0. In general, superposition preserves all homogeneous side
conditions.
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The method of separation of variables is to try to find solutions that are products of
functions of one variable. For the heat equation, we try to find solutions of the form

u(x,t) = X(x)T(t).

That the desired solution we are looking for is of this form is too much to hope for. What is
perfectly reasonable to ask, however, is to find enough “building-block” solutions of the
form u(x,t) = X(x)T(t) using this procedure so that the desired solution to the PDE is
somehow constructed from these building blocks by the use of superposition.

Let us try to solve the heat equation

U = kiyy with u(0,t) =0, u(L,t)=0, and u(x,0)= f(x).

We guess u(x, t) = X(x)T(t). We will try to make this guess satisfy the differential equation,
u; = kilyy, and the homogeneous side conditions, u(0,t) = 0 and u(L,t) = 0. Then, as
superposition preserves the differential equation and the homogeneous side conditions,
we will try to build up a solution from these building blocks to solve the nonhomogeneous
initial condition u(x,0) = f(x).

First we plug u(x, t) = X(x)T(t) into the heat equation to obtain

X(x)T'(t) = kX" (x)T(¢).
We rewrite as
T'(t)  X"(x)
kT(t) X(x)°
This equation must hold for all x and all ¢. But the left-hand side does not depend on x

and the right-hand side does not depend on t. Hence, each side must be a constant. Let us
call this constant —A (the minus sign is for convenience later). We obtain the two equations

T X
0 X(x)

In other words,

X"(x) + AX(x) = 0,
T'(f) + AKT(t) = 0.

The boundary condition u(0, t) = 0 implies X(0)T(t) = 0. We are looking for a nontrivial

solution and so we can assume that T'(t) is not identically zero. Hence X(0) = 0. Similarly,

u(L,t) = 0 implies X(L) = 0. We are looking for nontrivial solutions X of the eigenvalue

problem X” + AX = 0, X(0) = 0, X(L) = 0. We have previously found that the only
. 2.2 . . . .

eigenvalues are A, = %, for integers n > 1, where eigenfunctions are sin (%x) Hence,

let us pick the solutions

Xn(x) = sin (nTnx) .
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The corresponding T,, must satisfy the equation

n2m

2
2 kT, (t) = 0.

T (8) +

This is one of our fundamental equations, and the solution is just an exponential:

=n2n2 iy
T,(t)y=e 12 "

It will be useful to note that T,,(0) = 1. Our building-block solutions are

ﬁkt

Un(x, 1) = X (X)To(£) = sin (”T"x) e

We note that u,(x,0) = sin (2%x). Let us write f(x) as the sine series

fx) = i b, sin (nTnx) :
n=1

That is, we find the Fourier series of the odd periodic extension of f(x). We used the
sine series as it corresponds to the eigenvalue problem for X(x) above. Finally, we use
superposition to write the solution as

S > —?127_[2
u(x,t) = E by (x,t) = E b, sin (%x) e 2 Kt
n=1 n=1

Why does this solution work? First note that it is a solution to the heat equation by
superposition. It satisfies #(0,t) = 0 and u(L, t) = 0, because x = 0 or x = L makes all the
sines vanish. Finally, plugging in ¢ = 0, we notice that T;,(0) = 1 and so

u(x,0) = i byu,(x,0) = i b, sin (nTnx) = f(x).
n=1 n=1

Example 4.6.1: Consider an insulated wire of length 1 whose ends are embedded in ice
(temperature 0). Let k = 0.003 and let the initial heat distribution be u(x,0) =50 x (1 — x).
See Figure 4.16 on the next page. Suppose we want to find the temperature function u(x, t).
Let us also suppose we want to find when (at what t) does the maximum temperature in
the wire drop to one half of the initial maximum of 12.5.

We are solving the following PDE problem:

ur = 0.003 tiyy,
u(0,t)=u(l1,t)=0,
u(x,0)=50x(1-x) for 0 <x < 1.
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0.00 0.25 0.50 0.75 1.00
T T T

Figure 4.16: Initial distribution of temperature in the wire.

We write f(x) =50x (1 — x) for 0 < x < 1 as a sine series. Thatis, f(x) = };7_; b, sin(nmx),
where

200 200(-1)" |0 if n even,
B3 73nd

1
b, =2 50x (1 — x)sin(nmx)dx = =
' /0 (1= )sintrree) L0 if 4 odd.

The solution u(x, t), plotted in Figure 4.17 on the facing page for 0 < ¢t < 100, is given
by the series:

o

400 )
u(x/ t) = Z 3.3 Sln(TZT(X)e 7127'(20.0031‘.

n=1
n odd

Finally, let us answer the question about the maximum temperature. It is relatively easy
to see that the maximum temperature at any fixed time is always at x = 0.5, in the middle
of the wire. The plot of u(x, t) confirms this intuition. If we plug in x = 0.5, we get

o 4
u(0.5,1) = Z nffs sin(n7 0.5) ¢~ 00031,

n=1
n odd

For n = 3 and higher (remember 7 is only odd), the terms of the series are insignificant
compared to the first term. The first term in the series is already a very good approximation
of the function. Hence

u(0.5,t) = 4;L30 o7 00031

The approximation gets better and better as t gets larger as the other terms decay much
faster. Let us plot the function 1(0.5, t), the temperature at the midpoint of the wire at time
t, in Figure 4.18 on the next page. The figure also plots the approximation by the first term.

After t = 5 or so it would be hard to tell the difference between the first term of the
series for u(x, t) and the real solution u(x, t). This behavior is a general feature of solving
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Figure 4.18: Temperature at the midpoint of the wire (the bottom curve), and the approximation of this
temperature by using only the first term in the series (top curve).

the heat equation. If you are interested in behavior for large enough ¢, only the first one or
two terms may be necessary.
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Let us get back to the question of when is the maximum temperature one half of the
initial maximum temperature. That is, when is the temperature at the midpoint 12.5/2 = 6.25.
We notice on the graph that if we use the approximation by the first term we will be close
enough. We solve

6.25 — 400 p~T20.003¢
3

That is,
In 8:25 s
=40 +245.
—7720.003

So the maximum temperature drops to half at about ¢ = 24.5.

We mention an interesting behavior of the solution to the heat equation. The heat

equation “smoothes” out the function f(x) as t grows. For a fixed t, the solution is a Fourier

)
series with coefficients bye 2 . If t > 0, then these coefficients go to zero faster than

any -1 for any power p. In other words, the Fourier series has infinitely many derivatives
everywhere. Thus even if the function f(x) has jumps and corners, then for a fixed t > 0,
the solution u(x, t) as a function of x is as smooth as we want it to be.

Example 4.6.2: When the initial condition is already a sine series, then there is no need to
compute anything, you just need to plug in. Consider

ur = 0.3 Uyy, u(,t) =u(,t)=0, u(x,0) = 0.1sin(mtt) + sin(27t).
The solution is then

u(x,t) = 0.1sin(ret)e 037t + sin(2mt)e 1271,

4.6.3 Insulated ends

Now suppose the ends of the wire are insulated. In this case, we are solving the equation
U = kilyy with  u,(0,t) =0, wuy(L,t)=0, and u(x,0)= f(x).

Yet again we try a solution of the form u(x, t) = X(x)T'(t). By the same procedure as before
we plug into the heat equation and arrive at the following two equations

X"(x)+AX(x)=0,
T'(t) + AkT(t) = 0.

At this point the story changes slightly. The boundary condition u,(0,t) = 0 implies

X'(0)T(t) = 0. Hence X’(0) = 0. Similarly, u,(L, t) = 0 implies X’(L) = 0. We are looking

for nontrivial solutions X of the eigenvalue problem X” + AX =0, X’(0) =0, X’(L) = 0. We
. . 2.2 .

have previously found that the only eigenvalues are A, = *5-, for integers n > 0, where
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eigenfunctions are cos (“£x) (we include the constant eigenfunction). Hence, let us pick
solutions

X, (x) = cos (nTnx) and Xo(x) =1.
The corresponding T,, must satisfy the equation

2,2
’
Tn

(t) = 0

For n > 1, as before,

Ty(t) = "7 ¥

For n = 0, we have T;(t) = 0 and hence To(t) = 1. Our building-block solutions are

up(x,t) = X, (x)T,(t) = cos (nTx) e_anﬂ “

and
up(x,t) =1.
We note that u,(x,0) = cos (“£x). Let us write f using the cosine series
ag
f(x) = > + Z; a, co ( ) .
n=

That is, we find the Fourier series of the even periodic extension of f(x).
We use superposition to write the solution as

a - a S nm —n?n?
u(x,t) = EO + Z Aty (x,t) = 70 + Zan cos (Tx) e 2 M
n=1

n=1

Example 4.6.3: Let us try the same equation as before, but for insulated ends. We are
solving the following PDE problem

ur = 0.003 tiyy,
ux(0,t) =u,(1,¢) =0
u(x,0)=50x(1-x) for 0 <x < 1.

For this problem, we must find the cosine series of u(x,0). For 0 < x < 1 we have

50x(1-x) = 23—5 + Z (_302) cos(nmx).
’n

n=2
n even
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Figure 4.19: Plot of the temperature of the insulated wire at position x at time t.

The calculation is left to the reader. Hence, the solution to the PDE problem, plotted in
Figure 4.19, is given by the series

25 < (-200 22
u(x,t) = — + Z (ﬁ) cos(nmx)e 7 0003t
3 - \m°n
n even

Note in the graph that as time goes on, the temperature evens out across the wire.
Eventually, all the terms except the constant die out, and you will be left with a uniform
temperature of % ~ 8.33 along the entire length of the wire.

Let us expand on the last point. The constant term in the series is

ap 1 L
?—Z/O f(X)dx

In other words, “2—0 is the average value of f(x), that is, the average of the initial temperature.
As the wire is insulated everywhere, no heat can get out, no heat can get in. So the
temperature tries to distribute evenly over time, and the average temperature must always
be the same, in particular it is always 3. As time goes to infinity, the temperature goes to
the constant 3 everywhere.
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4.6.4 Exercises

Exercise 4.6.2: Consider a wire of length 2, with k = 0.001 and an initial temperature distribution
u(x,0) = 50x. Both ends are embedded in ice (temperature 0). Find the solution as a series.

Exercise 4.6.3: Find a series solution of

U = Uyxy,
u0,t) =u(1,t) =0,
u(x,0)=100  for 0 <x <1.

Exercise 4.6.4: Find a series solution of

U = Uyx,
ux(0,t) = uy(m, t) =0,
u(x,0) =3cos(x) + cos(3x)  for 0 <x <.

Exercise 4.6.5: Find a series solution of

1
Uy = guxx/
ux(0,t) = ux(m, t) =0,
10x
u(x,O)z? for 0 <x <.

Exercise 4.6.6: Find a series solution of
Ut = Uyxy,
u(0,t) =0, wu(l,t)=100,
u(x,0) =sin(nx)  for 0 <x <1.

Hint: Use the fact that u(x, t) = 100x is a solution satisfying uy = uyy, u(0,t) =0, u(1,t) = 100.
Then use superposition.

Exercise 4.6.7: Find the steady state temperature solution as a function of x alone, by letting
t — oo in the solution from exercises 4.6.5 and 4.6.6. Verify that it satisfies the equation uy, = 0.

Exercise 4.6.8: Use separation variables to find a nontrivial solution to uyy + u,, = 0, where
u(x,0) =0and u(0,y) = 0. Hint: Try u(x,y) = X(x)Y(y).

Exercise 4.6.9 (challenging): Suppose that one end of the wire is insulated (say at x = 0) and the
other end is kept at zero temperature. That is, find a series solution of

up = kuyy,
ux(0,t) =u(L,t) =0,
u(x,0) = f(x)  for 0 <x <L.

Express any coefficients in the series by integrals of f(x).
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Exercise 4.6.10 (challenging): Suppose that the wire is circular and insulated, so there are no
ends. You can think of this as simply connecting the two ends and making sure the solution matches
up at the ends. That is, find a series solution of

up = ktyy,
u(0,t) =u(L,t), ux(0,t) = uy(L, t),
u(x,0)=f(x) for 0<x<L.

Express any coefficients in the series by integrals of f(x).
Exercise 4.6.11: Consider a wire insulated on both ends, L = 1, k = 1, and u(x,0) = cos>(nx).

a) Find the solution u(x, t). Hint: a trig identity.

b) Find the average temperature.

c) Initially the temperature variation is 1 (maximum minus the minimum). Find the time when
the variation is 1/2.

Exercise 4.6.101: Find a series solution of

U = 3lyy,
u(0,t) =u(n, t)=0,
u(x,0) =5sin(x) + 2sin(5x)  for 0 <x < .

Exercise 4.6.102: Find a series solution of

ut = O.luxx,
ux(0,t) = uy(mt, t) =0,
u(x,0)=1+2cos(x) for 0<x <m.

Exercise 4.6.103: Use separation of variables to find a nontrivial solution to tys = Uyy.

Exercise 4.6.104: Use separation of variables to find a nontrivial solution to uy + u; = u. Hint:
Try u(x, t) = X(x) + T(¢).

Exercise 4.6.105: Suppose that the temperature on the wire is fixed at 0 at theends, L=1, k =1,
and u(x,0) = 100 sin(27tx).

a) What is the temperature at x = 1/2 at any time.

b) What is the maximum and the minimum temperature on the wire at t = 0.

c) At what time is the maximum temperature on the wire exactly one half of the initial maximum
att = 0.
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4.7 One-dimensional wave equation

Note: 1 lecture, §9.6 in [EP], §10.7 in [BD]

Imagine we have a tensioned guitar string of length L. Let us only consider vibrations
in one direction. Let x denote the position along the string, let ¢t denote time, and let y
denote the displacement of the string from the rest position. See Figure 4.20.

T

T

0 L x

Figure 4.20: Vibrating string of length L, x is position, y is displacement.

The equation that governs this setup is the so-called one-dimensional wave equation:

2
Yir = A" Yxx,

for some constant a > 0. The intuition is similar to the heat equation, replacing velocity
with acceleration: the acceleration at a specific point is proportional to the second derivative
of the shape of the string. In other words when the string is concave down then u,, is
negative and the string wants to accelerate downwards, so u; should be negative. And
vice versa. The wave equation is an example of a hyperbolic PDE.

Assume that the ends of the string are fixed in place as on the guitar:

y(0,t)=0 and y(L,t)=0.

Note that we have two conditions along the x-axis as there are two derivatives in the x
direction.

There are also two derivatives along the ¢ direction and hence we need two further
conditions here. We need to know the initial position and the initial velocity of the string.
That is, for some known functions f(x) and g(x), we impose

y(x,0) = f(x) and ye(x,0) = g(x).

The equation is linear, so superposition works just as it did for the heat equation. And
again we will use separation of variables to find enough building-block solutions to get
the overall solution. There is one change however. It will be easier to solve two separate
problems and add their solutions.
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The two problems we will solve are

Wit = a*Wyy,
w(0,t) =w(L,t)=0,

w(x,0)=0 for 0<x <L, (4.11)
wi(x,0) = g(x) for 0<x <L,

and
Zt = 0% 2y,
z(0,t) =z(L,t) =0,
z(x,0) = f(x) for 0<x <L, (4.12)
zi(x,0)=0 for 0 <x < L.

The principle of superposition implies that y = w + z solves the wave equation and
furthermore y(x,0) = w(x,0) + z(x,0) = f(x) and y:(x,0) = ws(x,0) + z¢(x,0) = g(x).
Hence, y is a solution to

ytt = azyXXI

y(0,1) =y(L,t) =0,

y(x,0) = f(x) for 0 <x <L, (4.13)
yi(x,0) = g(x) for 0 <x < L.

The reason for all this complexity is that superposition only works for homogeneous
conditions such as y(0,t) = y(L,t) =0, y(x,0) = 0, or y;(x,0) = 0. Therefore, we can use
separation of variables to find many building-block solutions solving all the homogeneous
conditions. We can then use them to construct a solution satisfying the remaining
nonhomogeneous condition.

Let us start with (4.11). We try a solution of the form w(x, t) = X(x)T(t) again. We plug
into the wave equation to obtain

X()T"(t) = a®X"(x)T(t).
Rewriting we get
T//(t) _ X//(x)
a?T(t)  X(x)'

Again, left-hand side depends only on t and the right-hand side depends only on x. So
both sides equal a constant, which we denote by —A:

T//(t) _ - X//(x)
a?T()  — X(x)'

We solve to get two ordinary differential equations

X"(x) +AX(x) =0,
T”(t) + Aa®T(t) = 0.
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The condition 0 = w(0, t) = X(0)T(t) implies X(0) = 0 and w(L, t) = 0 implies that X(L) = 0.
Therefore, the only nontrivial solutions for the first equation are when A = A, = % and
they are

Xu(x) = sin (nTnx) .
The general solution for T for this particular A, is
T, (t) = Acos (nLﬂt) + Bsin (nLLat) :

We also have the condition that w(x,0) = 0 or X(x)T(0) = 0. This implies that T(0) = 0,

which in turn forces A = 0. It is convenient to pick B = - (you will see why in a moment)

and hence I
. (nma
Tn(t) = % sm (Tt) .
Our building-block solutions are
wy,(x,t) = ——sin (n_nx) in (@t)
n 7 S L S L
We differentiate in ¢:
%(x t) = sin (—x) cos (n—t)
PR
Hence,
8;(;” (x,0) = sin (—x)

We expand g(x) in terms of these sines as

g(x) = i b, sin (nTnx) .
n=1

Using superposition we write the solution to (4.11) as a series

N N L . (n¢ . (nma
ZU(X, t) - Z bnwn(x, t) = Z bﬂ@ sin (TX) SIn (Tt) .
n=1 n=1
Exercise 4.7.1: Check that w(x,0) = 0 and w(x,0) = g(x).

We solve (4.12) similarly. We again try z(x, y) = X(x)T(t). The procedure works exactly
the same at first. We obtain

X"(x)+AX(x)=0,
T"(t) + Aa®T(t) = 0,

and the conditions X(0) = 0, X(L) = 0. Soagain A = A, = % and

Xu(x) = sin (nTnx) .
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This time the condition on T is T’(0) = 0. Thus we get that B = 0 and we take
Ta(t) = cos (_nnat) .
L
Our building-block solution is

zn(x,t) = sin (n_nx) (@t)
n\A, =S I COS i3 .

As z,(x,0) = sin (2%x), we expand f(x) in terms of these sines as

(0]

. (nT
fx) = Z Cp Sin (Tx) :
n=1
And we write down the solution to (4.12) as a series

z(x,t) = Z Cnzn(x,t) = Z Cp Sin (n%x) cos (nLﬂt) .

n=1 n=1

Exercise 4.7.2: Fill in the details in the derivation of the solution of (4.12). Check that the solution
satisfies all the side conditions.

Putting these two solutions together, let us state the result as a theorem.

Theorem 4.7.1. Take the equation

Yit = azyxx/
y(0,t) =y(L,t) =0,
y(x,0) = f(x) for 0<x <L, (4.14)
yi(x,0) = g(x) for 0<x <L,
where N .
. (N _ _(nm
f(x)= HZ:; Cp Sin (Tx) and g(x) = WZ:; b, sm( T x) .

Then the solution y(x, t) can be written as a sum of the solutions of (4.11) and (4.12):
- L . (nn . (nma . (nT nmna
y(x,t) = ; bn% sin (Tx) sin (Tt) + ¢, Sin (Tx) cos (Tt)

= i sin (n_nx) b L sin (@t) + ¢, COS (@t)
= L "nma L " L /|

Example 4.7.1: Consider a string of length 2 plucked in the middle, it has an initial shape
given in Figure 4.21 on the facing page. That is,

0.1x if 0<x<1,
fx) = .
0.12-x) if 1<x<2.
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Figure 4.21: Initial shape of a plucked string from Example 4.7.1.

Let the string start at rest (¢(x) = 0), and let a = 1 for simplicity. In other words, we
wish to solve the problem:

Yt = Yxx,
y(0,1) =y(2,t) =0,
y(x,0) = f(x) and y(x,0)=0.
We leave it to the reader to compute the sine series of f(x). The series will be

f(x) = Z n(;.:z sin (n7n) sin (%Tx) :

n=1

Note that sin (%%) is the sequence 1,0,-1,0,1,0,-1,...forn =1,2,3,4, .. .. Therefore,

0.8 . (m 0.8 . (3m 0.8 . (571
f(x)=—251n(—x)——sm —x|+ sin | —x|—---
e

2 972 2 2572 2

The solution y(x, t) is given by

y(x, t) = Z ng.:z sin (%) sin (%x) cos (%t)
1

n=

[o0]

m+1
= Z ((;8(_11))2 . sin ((27’71 ; 1)7_(x) Cos ((Zm ; 1)7Tt)
m=1 &M — Tt

08 . (m yd 0.8 . (3m 3n
=2 sin (Ex) cos (Et) T o2 sin (TX) cos (Tt)
+ 08 sin (5—nx) cos (5_71 ) -
2572 2 2
See Figure 4.22 on the next page for a plot for 0 < t < 3. Notice that unlike the heat
equation, the solution does not become “smoother,” the “sharp edges” remain. We will see

the reason for this behavior in the next section where we derive the solution to the wave
equation in a different way.
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Figure 4.22: Shape of the plucked string for 0 <t < 3.

Make sure you understand what the plot, such as the one in the figure, is telling you.
For each fixed t, you can think of the function y(x, t) as just a function of x. This function
gives you the shape of the string at time t. See Figure 4.23 on the facing page for plots of at
y as a function of x at several different values of ¢. On this plot you can see the sharp edges
remaining much better.

One thing to take away from all this is how a guitar sounds. Notice that the (angular)
frequencies that come up in the solution are n*. That is, there is a certain base fundamental
frequency 7%, and then we also get all the multiples of this frequency, which in music are
called the overtones. Which overtones appear and with what amplitude is what musicians
call the timbre of the note. Mathematicians usually call this the spectrum. Because all the
frequencies are multiples of one frequency (the fundamental) we get a nice pleasing sound.

The fundamental frequency 7* increases as we decrease length L. That is, if we place a
finger on the fingerboard and then pluck a string we get a higher note. The constant a is
given by

where T is tension and p is the linear density of the string. Tightening the string (turning
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Figure 4.23: Plucked string fort =0,t =0.4,t =0.8,and t =1.2.

the tuning peg on a guitar) increases a and hence produces a higher fundamental frequency
(a higher note). On the other hand using a heavier string reduces a and produces a lower
fundamental frequency (a lower note). A bass guitar has longer thicker strings, while a
ukulele has short strings made of lighter material.

Something rather interesting is the almost symmetry between space and time. In its
simplest form we see this symmetry in the solutions

. (nm . (nma
sin (Tx) sin (Tt) .
Except for the a, time and space are just the same.

In general, the solution for a fixed x is a Fourier series in ¢, for a fixed t it is a Fourier
series in x, and the coefficients are related. If the shape f(x) or the initial velocity have
lots of corners, then the sound wave will have lots of corners. That is because the Fourier
coefficients of the initial shape decay to zero (as n — oo) at the same rate as the Fourier
coefficients of the wave in time (for some fixed x). So if you use a sharp object to pick the
string, you get a sharper sound with lots of high frequency components, while if you use
your thumb, you get a softer sound without so many high overtones. Similarly if you pluck
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close to the bridge, you are getting a pluck that looks more like the sawtooth, and you get
an even sharper sound.

In fact, if you look at the formula for the solution, you see that for any fixed x we get an
almost arbitrary Fourier series in ¢, everything except the constant term. You can essentially
obtain any sound you want by plucking the string in just the right way. Of course we are
considering an ideal string of no stiffness and no air resistance. Those variables clearly
impact the sound as well.

4.7.1 Exercises

Exercise 4.7.3: Solve

Yt = 9]/xx/

y(0,t)=y(1,t) =0,

y(x,0) = sin(3nx) + 1 sin(67x) for 0<x<1,
yi(x,0)=0 for 0 <x <1.

Exercise 4.7.4: Solve

Yir = 4]/xx/

y(O, t) = y(ll t) =0,

y(x,0) = sin(3mx) + § sin(67x) for 0<x<1,
yi(x,0) = sin(97x) for 0 <x <1

Exercise 4.7.5: Derive the solution for a general plucked string of length L and any constant a (in
the equation yi = a®yyy), where we raise the string some distance b at the midpoint and let go.

Exercise 4.7.6: Imagine that a stringed musical instrument falls on the floor. Suppose that the
length of the string is 1 and a = 1. When the musical instrument hits the ground the string was in
rest position and hence y(x,0) = 0. However, the string was moving at some velocity at impact
(t =0), say y+(x,0) = =1. Find the solution y(x, t) for the shape of the string at time t.

Exercise 4.7.7 (challenging): Suppose that you have a vibrating string and that there is air
resistance proportional to the velocity. That is, you have

Yir = a%Yxx — kyy,

y(ol t) = y(ll t) =0,

y(x,0) = f(x) for 0<x<1,
yi(x,0) =0 for 0 <x <1.

Suppose that 0 < k < 2na. Derive a series solution to the problem. Any coefficients in the series
should be expressed as integrals of f(x).

Exercise 4.7.8: Suppose you touch the guitar string exactly in the middle to ensure another condition
u(L/2,t) = 0 for all time. Which multiples of the fundamental frequency 5* show up in the solution?
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Exercise 4.7.101: Solve

Yt = Yxx,
y(0,t) = y(mt,t) =0,
y(x,0) = sin(x) for 0 <x<m,
yi(x,0) = sin(x) for 0 <x <.
Exercise 4.7.102: Solve
Y = 25yxx/
y(0,t) =y(2,t) =0,
y(x,0)=0 for 0 <x <2,

yi(x,0) = sin(rtt) + 0.1 sin(27t) for 0 <x <2.

Exercise 4.7.103: Solve

Y = 2yxxz

y(olt) = y(ﬂ/t) =0,

y(x,0) =x for 0 <x<m,
yi(x,0) =0 for 0<x <m.

Exercise 4.7.104: Let’s see what happens when a = 0. Find a solution to y = 0, y(0,t) =
y(m,t) =0, y(x,0) = sin(2x), y(x,0) = sin(x).
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4.8 D’Alembert solution of the wave equation

Note: 1 lecture, different from §9.6 in [EP], part of §10.7 in [BD]

We have solved the wave equation by using Fourier series. But it is often more convenient
to use the so-called d’Alembert solution to the wave equation*. While this solution can be
derived using Fourier series as well, it is really an awkward use of those concepts. It is
easier and more instructive to derive this solution by making a correct change of variables
to get an equation that can be solved by simple integration.

Suppose we wish to solve the wave equation

Yit = %Y xx (4.15)
subject to the side conditions

y(0,t) =y(L,t)=0 forallt,
y(x,0) = f(x) 0<x<L, (4.16)
ye(x,0) = g(x) 0<x<L.

4.8.1 Change of variables

We will transform the equation into a simpler form where it can be solved by simple
integration. We change variables to & = x — at, 1 = x + at. The chain rule says:

9 _9:9 ond _9 9
dx JxdE& dxdn  IE  In’
2 99 ma  d

ot T JtoE Taton "eg Tan

We compute

*y (8 8)(8_y+c9_y) Ay Py Py

]/xx:w= £+% I¢ (977 :352+2(95(917+8T]2’

823/_( aa + 9)(_aa_3/+aa_y) 297y 2 Py 297y

ytt:ﬁ_ aé 81«] =da 8—52—251 agan'i‘ﬂanz

2 2
In the computations above, we used the fact from calculus that Bacf_é’yn = ;7—35. We plug what

we got into the wave equation,

?*y
0= azyxx — Y = 4a2m = 4a2y5q.

*Named after the French mathematician Jean le Rond d’Alembert (1717-1783).


https://en.wikipedia.org/wiki/D%27Alembert
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Therefore, the wave equation (4.15) transforms into y¢;,; = 0. It is easy to find the general
solution to this equation by integrating twice. Keeping & constant, we integrate with respect
to 1) first* and notice that the constant of integration depends on &; for each £ we might get
a different constant of integration. We get ys = C(&). Next, we integrate with respect to &
and notice that the constant of integration depends on 1. Thus, y = f C(&) d& + B(n). The
solution must, therefore, be of the following form for some functions A(£) and B(7):

y=A(&) + B(n) = A(x — at) + B(x + at).

The solution is a superposition of two functions (waves) traveling at speed a in opposite
directions. The coordinates & and 7 are called the characteristic coordinates, and a similar
technique can be applied to more complicated hyperbolic PDE. In § 1.9 it is used to solve
tirst order linear PDE. Basically, to solve the wave equation (or more general hyperbolic
equations) we find certain characteristic curves along which the equation is really just an
ODE, or a pair of ODEs. In this case these are the curves where £ and 7 are constant.

4.8.2 D’Alembert’s formula

We know what any solution must look like, but we need to solve for the given side
conditions. We will just give the formula and see that it works. First let F(x) denote the odd
periodic extension of f(x), and let G(x) denote the odd periodic extension of g(x). Define

1 1 * 1 1 X
Ax) = EF(x) — E/o G(s)ds, B(x) = EF(x) + Z/o G(s)ds.

We claim this A(x) and B(x) give the solution. Explicitly, the solution is y(x,t) = A(x —
at) + B(x + at) or in other words:

1 1 x—at 1 1 x+at
y(x, t) = EF(x—at)—%/O G(s)ds +§F(x+at)+z/0 G(s)ds

t 4.17)
_ F(x—at)+F(x +at) +i/x+”

5 % G(s)ds.

x—at

Let us check that the d’Alembert formula really works.

y(x,0) = w + %/ G(s)ds = F(x).

So far so good. Assume for simplicity F is differentiable. And we use the first form of
(4.17) as it is easier to differentiate. By the fundamental theorem of calculus we have

—a_, 1 a._, 1
ye(x, t) = 71—“ (x —at)+ EG(x —at)+ EF (x +at) + 2G(x + at).

*There is nothing special about 7, you can integrate with & first, if you wish.
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So
y(x,0) = S F () + %G(x) 5P () + %G(x) ~ G().

Yay! We're smoking now. OK, now the boundary conditions. Note that F(x) and G(x) are

odd. So
_ F(-at)+F(at) 1 /“f _ —F(at) +F(at) =1 /“f
y(0,t) = > oy » G(s)ds = > + 5 i

Now F(x) is odd and 2L-periodic, so
F(L—at)+ F(L+at)=F(—-L—at)+ F(L+at)=—-F(L+at)+F(L+at)=0.

G(s)ds=0+0=0.

at

Next, G(s) is odd and 2L-periodic, so we change variables v = s — L. We then notice that
G(v+L)=G(v—-L)=-G(-v+L),so G(v + L) is odd as a function of v:

L+at at
/ G(s)ds = / G+ L)dv =0.
L —

—at at
Hence

F(L—at)+F(L+at) 1 /““f
L

y(Lt) = 2 24

And voila, it works.

G(s)ds=0+0=0.

—at

Example 4.8.1: D’Alembert says that the solution is a superposition of two functions
(waves) moving in the opposite direction at “speed” a. To get an idea of how it works, let
us work out an example. Consider the simpler setup

Yit = Yxx,

y(0,t) =y(1,t) =0,

y(x,0) = f(x),

yi(x,0) = 0.
Here f(x) is an impulse of height 1 centered at x = 0.5:

0 if  0<x<0.45,
20 (x — 0.45) if 0.45 < x < 0.5,
20(0.55—x) if 0.5<x <0.55,
0 if 0.55<x <1.

flx) =

The graph of this impulse is the top left plot in Figure 4.24 on the next page.

Let F(x) be the odd periodic extension of f(x). Then (4.17) says that the solution is
F(x —t)+ F(x +1)

5 .

It is not hard to compute specific values of y(x,t). For example, to compute y(0.1, 0.6)
we notice x —t = —=0.5and x +t = 0.7. Now F(-0.5) = —f(0.5) = -20(0.55-0.5) = -1
and F(0.7) = f(0.7) = 0. Hence y(0.1,0.6) = %JFO = —0.5. As you can see the d’Alembert
solution is much easier to actually compute and to plot than the Fourier series solution.
See Figure 4.24 on the facing page for plots of the solution y for several different ¢.

y(x, t) =
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Figure 4.24: Plot of the d’Alembert solution fort =0,t =0.2,t =0.4,and t = 0.6.

4.8.3 Another way to solve for the side conditions

It is perhaps easier and more useful to memorize the procedure rather than the formula
itself. The important thing to remember is that a solution to the wave equation is a
superposition of two waves traveling in opposite directions. That is,

y(x,t) = A(x —at) + B(x + at).

If you think about it, the exact formulas for A and B are not hard to guess once you realize
what kind of side conditions y(x, t) is supposed to satisfy. Let us find the formula again,
but slightly differently. Best approach is to do it in stages. When g(x) = 0 (and hence
G(x) = 0) the solution is
F(x —at) + F(x + at)
5 .
On the other hand, when f(x) = 0 (and hence F(x) = 0), we let

H(x)=/OxG(s)ds.
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The solution in this case is

x+at _ _
i/ G(s) ds = H(x at)+H(x+at)'
2a J._u 2a

By superposition we get a solution for the general side conditions (4.16) (when neither f(x)
nor g(x) are identically zero).

y(x ) = F(x - at)erF(x + at) N ~H(x - at)zz H(x + at).

Do note the minus sign before the H, and the a in the second denominator.

(4.18)

Exercise 4.8.1: Check that the new formula (4.18) satisfies the side conditions (4.16).

Warning: Make sure you use the odd periodic extensions F(x) and G(x), when you
have formulas for f(x) and g(x). The thing is, those formulas in general hold only for
0 < x < L, and are not usually equal to F(x) and G(x) for other x.

4.8.4 Some remarks

Let us remark that the formula y(x, t) = A(x —at) + B(x + at) is the reason why the solution
of the wave equation doesn’t get “nicer” as time goes on, that is, why in the examples
where the initial conditions had corners, the solution also has corners at every time ¢.

The corners bring us to another interesting remark. Nobody ever notices at first that
our example solutions are not even differentiable (they have corners): In Example 4.8.1
above, the solution is not differentiable whenever x =t + 0.5 or x = —t + 0.5 for example.
Really to be able to compute uyy or 1, you need not one, but two derivatives. Fear not, we
could think of a shape that is very nearly F(x) but does have two derivatives by rounding
the corners a little bit, and then the solution would be very nearly w
would notice the switch.

and nobody

One final remark is what the d’Alembert solution tells us about what part of the initial
conditions influence the solution at a certain point. We can figure this out by “traveling
backwards along the characteristics.” Let us suppose that the string is very long (perhaps
infinite) for simplicity. Since the solution at time ¢ is

F(x — at) + F(x + at) N i/“”t
2 2a [,

y(x, t) = G(s)ds,

—at

we notice that we have only used the initial conditions in the interval [x — at, x + at]. These
two endpoints are called the wavefronts, as that is where the wave front is given an initial
(t = 0) disturbance at x. So if a = 1, an observer sitting at x = 0 at time ¢t = 1 has only seen
the initial conditions for x in the range [-1, 1] and is blissfully unaware of anything else.
This is why for example we do not know that a supernova has occurred in the universe
until we see its light, millions of years from the time when it did in fact happen.



4.8. D’ALEMBERT SOLUTION OF THE WAVE EQUATION 257

4.8.5 Exercises

Exercise 4.8.2: Using the d’Alembert solution solve yy = 4yyxy, 0 < x <71, t >0, y(0,t) =
y(m,t) =0, y(x,0) = sinx, and y;(x,0) = sinx. Hint: Note that sinx is the odd periodic
extension of y(x,0) and y:(x,0).

Exercise 4.8.3: Using the d’Alembert solution solve yi = 2yxx, 0 < x < 1,t >0, y(0,t) =
y(1,t) = 0, y(x,0) = sin’(nx), and y;(x, 0) = sin®(1x).

Exercise 4.8.4: Take yy = 4yxy, 0 <x <m, t >0,y(0,t) = y(rr,t) =0, y(x,0) = x(n — x), and
yi(x,0) =0.

a) Solve using the d’Alembert formula. Hint: You can use the sine series for y(x, 0).

b) Find the solution as a function of x for a fixedt =0.5,t =1, and t = 2. Do not use the sine
series here.

Exercise 4.8.5: Derive the d’Alembert solution for yu = azyxx, O<x<mt>0y01) =
y(m, t) =0, y(x,0) = f(x), and y¢(x,0) = 0, using the Fourier series solution of the wave equation,
by applying an appropriate trigonometric identity. Hint: Do it first for a single term of the Fourier
series solution, in particular do it when y is sin (%Ex) sin (2£2t).

Exercise 4.8.6: The d’Alembert solution still works if there are no boundary conditions and the
initial condition is defined on the whole real line. Suppose that y;+ = yxx (for all x on the real line
and t > 0), y(x,0) = f(x), and y;(x,0) = 0, where

0 if x < -1,
x+1 if -1<x<0,
-x+1 if 0<x<1,
0 if 1<ux.

flx) =

Solve using the d’Alembert solution. That is, write down a piecewise definition for the solution.
Then sketch the solution fort =0,t =1/2,t =1, and t = 2.

Exercise 4.8.101: Using the d’Alembert solution solve yi = 9yxx, 0 < x <1,t >0, y(0,t) =
y(1,t) =0, y(x,0) = sin(2nx), and y;(x,0) = sin(37x).

Exercise 4.8.102: Take yi+ = 4yxy, 0 <x <1,t>0,y(0,t) =y(1,t) =0, y(x,0) = x — x2, and
yi(x,0) = 0. Using the d’Alembert solution find the solution at

a) t =0.1, b) t =1/2, c)t=1
You may have to split your answer up by cases.

Exercise 4.8.103: Take y;+ = 100yy,, 0 <x <4,t >0, y(0,t) = y(4,t) =0, y(x,0) = F(x), and
yi(x,0) = 0. Suppose that F(0) = 0, F(1) = 2, F(2) = 3, F(3) = 1. Using the d’Alembert solution
find

a) y(1,1), b) y(4,3), c) y(3,9).
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4.9 Steady state temperature and the Laplacian

Note: 1 lecture, §9.7 in [EP], §10.8 in [BD]

Consider an insulated wire, a plate, or a 3-dimensional object. We apply certain
tixed temperatures on the ends of the wire, the edges of the plate, or on all sides of the
3-dimensional object. We wish to find out what is the steady state temperature distribution.
That is, we wish to know what will be the temperature after long enough period of time.

We are really looking for a solution to the heat equation that is not dependent on time.
Let us first solve the problem in one space variable. We are looking for a function u that
satisfies

up = kiyy,

but such that u; = 0 for all x and ¢. Hence, we are looking for a function of x alone that
satisfies uy, = 0. It is easy to solve this equation by integration and we see that u = Ax + B
for some constants A and B.

Consider an insulated wire where we apply constant temperature T; at one end (say
where x = 0) and T, on the other end (at x = L where L is the length of the wire). Our
steady state solution is

T, — T
u(x) = 2L Ly +T.

This solution agrees with our common sense intuition with how the heat should be
distributed in the wire. So in one dimension, the steady state solutions are basically just
straight lines.

Things are more complicated in two or more space dimensions. Let us restrict to two
space dimensions for simplicity. The heat equation in two space variables is

up = k(uxx + tyy), 4.19)

or more commonly written as uy = kAu or u; = kV2u. Here the A and V? symbols mean

2 2 . . . .
% + 3‘9—}/2. We will use A from now on. The reason for using such a notation is that you

can define A to be the right thing for any number of space dimensions and then the heat
equation is always u; = kAu. The operator A is called the Laplacian.

OK, now that we have notation out of the way, let us see what does an equation for the
steady state solution look like. We are looking for a solution to (4.19) that does not depend
on t, or in other words u; = 0. Hence we are looking for a function u(x, y) such that

Au = tyy + uyy = 0. ’

This equation is called the Laplace equation®, and is an example of an elliptic equation.
Solutions to the Laplace equation are called harmonic functions and have many nice
properties and applications far beyond the steady state heat problem.

*Named after the French mathematician Pierre-Simon, marquis de Laplace (1749-1827).


https://en.wikipedia.org/wiki/Laplace
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Harmonic functions in two variables are no longer just linear (plane graphs). For
example, you can check that the functions x> — y2 and xy are harmonic. However, note
that if u,, is positive, u is concave up in the x direction, then u,, must be negative and u
must be concave down in the y direction. A harmonic function can never have any “hilltop”
or “valley” on the graph. This observation is consistent with our intuitive idea of steady
state heat distribution; the hottest or coldest spot will not be inside.

Commonly the Laplace equation is part of a so-called Dirichlet problem*. That is, we
have a region in the xy-plane and we specify certain values along the boundaries of the
region. We then try to find a solution u to the Laplace equation defined on this region such
that u agrees with the values we specified on the boundary.

In this section we consider a rectangular region. For simplicity we specify boundary
values to be zero at 3 of the four edges and only specify an arbitrary function at one edge.
As we still have the principle of superposition, we can use this simpler solution to derive
the general solution for arbitrary boundary values by solving 4 different problems, one for
each edge, and adding those solutions together. This setup is left as an exercise.

We wish to solve the following problem. Let & and w be the height and width of our
rectangle, with one corner at the origin and lying in the first quadrant.

(0, h) u=0 (w, h)
Au =0, (4.20)
u©,y)=0 forO <y <h, (4.21)
u(x,h)=0 forO0<x <w, (4.22) u=0 Au=0 u=0
u(w,y)=0 forO0 <y <h, (4.23)
u(x,0) = f(x) forO0O<x <w. (4.24)

(0,0) u = f(x) (w,0)

The method we apply is separation of variables. Again, we will come up with
enough building-block solutions satisfying all the homogeneous boundary conditions (all
conditions except (4.24)). We notice that superposition still works for the equation and all
the homogeneous conditions. Therefore, we can use the Fourier series for f(x) to solve the
problem as before.

We try u(x,y) = X(x)Y(y). We plug u into the equation to get
X"Y + XY" =0.
We put the Xs on one side and the Y's on the other to get

X// Y//
XY

*Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805-1859).


https://en.wikipedia.org/wiki/Dirichlet
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The left-hand side only depends on x and the right-hand side only depends on y. Therefore,

there is some constant A such that A = %" = YTH And we get two equations
X"+AX =0,
Y” - AY =0.

Furthermore, the homogeneous boundary conditions imply that X(0) = X(w) = 0 and

Y(h) = 0. Taking the equation for X we have already seen that we have a nontrivial solution
n’n?
w?

ifandonlyif A = A, = and the solution is a multiple of

Xu(x) = sin (ﬂx) .
w
For these given A,, the general solution for Y (one for each 1) is
Y, (y) = A, cosh (%y) + B, sinh (%y) . (4.25)

There is only one condition on Y}, and hence we can pick one of A, or B, to be something
convenient. It will be useful to have Y;,(0) = 1, so let A, = 1. Setting Y;,(%) = 0 and solving
for B, we get

w

—cosh (@)
By, = ———.
sinh (”wﬂ)
After we plug the A, and B, we into (4.25) and simplify by using the identity sinh(a — ) =
sinh(a) cosh(p) — cosh(a) sinh(f), we find

sinh (—nn(:;y))

sinh (@)

w

Yn(y) =

We define u,(x, y) = X, (x)Y,(y). And note that u, satisfies (4.20)—(4.23). Observe
. (NT
Un(x,0) = X (x)Y,(0) = sin (?x) .

Then we get a solution of (4.20)—(4.24) of the following form.

u(x,y) = i buun(x,y) = i b, sin (%x)
n=1 n=1

As u, satisfies (4.20)—(4.23) and any linear combination (finite or infinite) of u,, also satisfies
(4.20)—(4.23), then u satisfies (4.20)—(4.23). We plug in y = 0 to see u satisfies (4.24) as well.

w

sinh (M)

sinh (@)

w
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Example 4.9.1: Take w = h = 7w and let f(x) = m. Let us compute the sine series for the
function 7t (same as the series for the square wave). For 0 < x < 7, we have

o0

f(x)= Z %sin(nx).
nno:dld

The solution u(x, y), see Figure 4.25, to the corresponding Dirichlet problem is given as

(o) . h _
u(x,y) = Z %sin(nx) (Smsig;fgm)y))) .

n=1
n odd

00 0.0 05 y
0.5 1.0
15
2.0
T % a0
\K\N\ B uixy)
N \k 30
80 T T 3.142
S T T s 2.828
Tl T 2.514
>0 el T T 2.199
S [ S A e 2 1.885
25 0 e S 1,571
= A % T 0.628
‘ QNN S [ SR A I W R B 0.314
( VAN SN N e =
1.5 " “(‘ng&&@\\\\: - \'\\ 0.000
}1“‘)‘)#‘%‘*‘&? \ | 05
10 4’»‘ N L[
V}Vgﬁ'ﬁvgﬁ S 0.0
05 4"%}“)’%}'5&(‘“ oo
0.0
0.0

25

3.0

Figure 4.25: Steady state temperature of a square plate, three sides held at zero and one side held at .

This scenario corresponds to the steady state temperature on a square plate of width 7t
with 3 sides held at 0 degrees and one side held at © degrees. If we have arbitrary initial
data on all sides, then we solve four problems, each using one piece of nonhomogeneous
data. Then we use the principle of superposition to add up all four solutions to have a
solution to the original problem.
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A different way to visualize solutions of the Laplace equation is to take a wire and bend
it so that it corresponds to the graph of the temperature above the boundary of your region.
Cut a rubber sheet in the shape of your region—a square in our case—and stretch it fixing
the edges of the sheet to the wire. The rubber sheet is a good approximation of the graph
of the solution to the Laplace equation with the given boundary data.

4.9.1 Exercises

Exercise 4.9.1: Let R be the region described by 0 < x < mand 0 < y < m. Solve the problem
Au =0, u(x,0)=sinx, u(x,7)=0, u,y)=0, u(r,y)=0.
Exercise 4.9.2: Let R be the region described by 0 < x < 1and 0 < y < 1. Solve the problem

Uyx + Uyy =0,
u(x,0) = sin(ntx) —sin(2nx), u(x,1) =0,
u©,y)=0, u(l,y)=0.

Exercise 4.9.3: Let R be the region described by 0 < x < 1and 0 <y < 1. Solve the problem

Uyx + Uyy =0,
u(x,0) =u(x,1) =u@,y) =u(l,y) =C.

for some constant C. Hint: Guess, then check your intuition.
Exercise 4.9.4: Let R be the region described by 0 < x < mand 0 < y < m. Solve
Au=0, u(x,00=0, ulkx,n)=n, u@,y)=y, u(my =y.

Hint: Try a solution of the form u(x,y) = X(x) + Y(y) (different separation of variables).
Exercise 4.9.5: Use the solution of Exercise 4.9.4 to solve

Au =0, u(x,0)=sinx, u(x,m)=n, u@,y)=y, u(m,y)=y.
Hint: Use superposition.
Exercise 4.9.6: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

Uxx + Uyy = 0,
u(x,0)=0, u(x, h)=f(x),
u©0,y)=0, wu(w,y)=0.

The solution should be in series form using the Fourier series coefficients of f(x).
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Exercise 4.9.7: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

Uxx + Uyy =0,
u(x,0)=0, wu(x,h)=0,
u(O, ]/) = f(y)/ u(w/ y) =0.

The solution should be in series form using the Fourier series coefficients of f(y).

Exercise 4.9.8: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

Uxx + Uyy =0,
u(x,0)=0, wu(x,h)=0,
u@,y)=0, u(w,y) = f(y).

The solution should be in series form using the Fourier series coefficients of f(y).

Exercise 4.9.9: Let R be the region described by 0 < x < 1and 0 <y < 1. Solve the problem

Uyx + Uyy =0,
u(x,0) =sin(9nx), wu(x,1) =sin(2mx),
u©0,y)=0, u(l,y)=0.

Hint: Use superposition.

Exercise 4.9.10: Let R be the region described by 0 < x < 1and 0 < y < 1. Solve the problem

Uyx + Uyy =0,
u(x,0) =sin(nx), u(x,1) = sin(nx),

u(0,y) =sin(ny), u(l,y) = sin(ny).
Hint: Use superposition.

Exercise 4.9.11 (challenging): Using only your intuition find u(1/2,1/2), for the problem Au = 0,
where u(0,y) = u(l,y) =100 for 0 <y < 1, and u(x,0) = u(x,1) =0 for 0 < x < 1. Explain.

Exercise 4.9.101: Let R be the region described by 0 < x < 1and 0 < y < 1. Solve the problem

Au=0, u(x,0)= Z %sin(nnx), u(x,1)=0, u(,y)=0, u(l,y)=0.

n=1

Exercise 4.9.102: Let R be the region described by 0 < x < 1and 0 < y < 2. Solve the problem

Au =0, u(x,0)=0.1sin(nx), wu(x,2)=0, u(,y)=0, u(l,y)=0.
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4.10 Dirichlet problem in the circle and the Poisson kernel

Note: 2 lectures, §9.7 in [EP], §10.8 in [BD]

4.10.1 Laplace in polar coordinates

A more natural setting for the Laplace equation Au = 0 is a circle rather than a rectangle.
On the other hand, what makes the problem somewhat more difficult is that we need polar
coordinates.
Recall that the polar coordinates for the (x, y)-plane are (r, 0): .9
r,

x=rcost, y=rsin0, r
0

where r > 0 and -7t < 6 < m. So the point (x, y) is distance r from the |
origin at an angle 0 from the positive x-axis.

Now that we know our coordinates, let us give the problem we wish to solve. We have
a circular region of radius 1, and we are interested in the Dirichlet problem for the Laplace
equation for this region. Let u(r, 0) denote the temperature at the point (r, ) in polar
coordinates.

We have the problem:
u(1,0) = g(0)

Au =0, for r <1,

(4.26)
u(1,0)=g(0), for -n <6 <m.

The first issue we face is that we do not know the
Laplacian in polar coordinates. Normally we would
find uy, and u,,, in terms of the derivatives in r and 6.
We would need to solve for r and 0 in terms of x and y.
In this case it is more convenient to work in reverse. We
compute derivatives in r and 0 in terms of derivatives
in x and y and then we solve. The computations are
easier this way. First

X, =cosf, xg=-rsing,

Yr =sin0, yg=rcosO.
Next by chain rule we obtain
Uy = UpXy + UyY, = cos(0)uy + sin(0)uy,

Ury = cos(0)(txx Xy + UxyYy) + siN(O) Uy Xy + 1hyyYr)
= c0s%(0)1txx + 2 cos(0) sin(0)uy, + sin2(6)uyy.
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Similarly for the 0 derivative. Note that we have to use the product rule for the second
derivative.
Ug = UyXg + tyyg = —rsin(0)uy + r cos(0)uy,
ugg = —1 cos(0)uy — rsin(0)(uxxXg + txyYg) — r sin(O)uy, + 1 cos(0)(uyxXg + tyyYo)
= —rcos(0)uy — rsin(0)u, + 12 sin?(6)uxx — r*2sin(6) cos(0)uyy + r? cosz(G)uyy.
Let us now try to solve for u,y + u,,. We start with rlzu@@ to get rid of those pesky r2. If we
add u,, and use the fact that cos?(0) + sin*(0) = 1, we get

1 1 1 .
U0 + trr = Uxx + Uy — ~ cos(0)uy — - sin(0)uy.
p

We're not quite there yet, but all we are lacking is 11,. Adding it we obtain the Laplacian in
polar coordinates:

1 1
Au = uxx + uyy = r_quQ + ;ur + urr.

Notice that the Laplacian in polar coordinates no longer has constant coefficients.

4.10.2 Series solution

Let us separate variables as usual. That is let us try u(r, 8) = R(r)©(60). Then
]' 144 1 ’ 144
0=Au=—2R® + -R'® + R"0O.
r r

Let us put R on one side and © on the other and conclude that both sides must be constant.

1 1
—ZRG‘)" = - (—R' + R") C)
r r

e R’ + ZR//
_rRErR 4

® R
We get two equations:

®” +10 =0,
r?R” +rR' = AR = 0.

Let us first focus on ®@. We know that u(r, 0) ought to be 2n-periodic in 0, that is,
u(r,0) = u(r, 0 + 2m). Therefore, the solution to ®” + A® = 0 must be 2n-periodic. We
have seen such a problem in Example 4.1.5. We conclude that A = n? for a nonnegative
integern =0,1,2,3,.... The equation becomes ©®” + n?20® = 0. When n = 0 the equation
is just ®” = 0, so we have the general solution A0 + B. As © is periodic, A = 0. For
convenience we write this solution as

@0:?
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for some constant ag. For positive 7, the solution to ®” + n?® =01is
®, = a, cos(nb) + b, sin(nH),

for some constants a, and b,,.
Next, we consider the equation for R,

2R” + ¥R’ — n*R = 0.

This equation appeared in exercises before—we solved it in Exercise 2.1.6 and Exercise 2.1.7
on page 83. The idea is to try a solution r° and if that does not give us two solutions, also
try a solution of the form r° Inr. Let us name the solution for R,,. When n = 0 we obtain

Ro=Ar" +Br’Inr = A+ Blnr,

and if n > 0, we get
R, = Ar" + Br ",

The function u(r, 0) must be finite at the origin, that is, when r = 0. So B = 0 in both cases.
Set A =1 in both cases as well; the constants in ©,, will pick up the slack so nothing is lost.
Let

Ro=1, and R, =71".

Hence our building block solutions are
uo(r, 0) = 612—0, uy(r,0) = a,r" cos(nd) + b, r" sin(nb).

Putting everything together our solution is:

u(r,0) = % + Z ayr" cos(nB) + b,r" sin(no).

n=1

We look at the boundary condition in (4.26),

g0)=u(1,0) = 112—0 + Z a, cos(n@) + b, sin(n0).

n=1

Therefore, to solve (4.26) we expand g(0), which is a 2r-periodic function, as a Fourier
series, and then multiply the nth term by r". To find the a, and the b, we compute

a, = %/ 2(0)cos(n0) do, and b, = %/ g(0)sin(n0) do.

Example 4.10.1: Suppose we wish to solve

Au =0, 0<r<l1, -nmw<0O<m,
u(1,0) = cos(100), -n1< 60 <m.



4.10. DIRICHLET PROBLEM IN THE CIRCLE AND THE POISSON KERNEL 267

The solution is
u(r, 0) = r' cos(10 9).

See the plot in Figure 4.26. The thing to notice in this example is that the effect of a high
frequency is mostly felt at the boundary. In the middle of the disc, the solution is very
close to zero. That is because r1° is rather small when r is close to 0.

1.0 -1.0 X

| u(r.theta)

1.200
0.900
0.600
0.300
0.000
-0.300
-0.600
-0.900
-1.200
-1.500

Figure 4.26: The solution of the Dirichlet problem in the disc with cos(10 0) as boundary data.

Example 4.10.2: Let us solve a more difficult problem. Consider a long rod with circular
cross section of radius 1. Suppose we wish to solve the steady state heat problem in
the rod. If the rod is long enough, we simply need to solve the Laplace equation in two
dimensions. Let us put the center of the rod at the origin and we have exactly the region
we are currently studying—a circle of radius 1. For the boundary conditions, suppose in
Cartesian coordinates x and y, the temperature on the boundary is 0 when y < 0, and it is
2y when y > 0.

Let us set the problem up. As y = rsin(60), then on the circle of radius 1, that is, where
r =1, we have 2y = 2sin(0). So

Au =0, 0<r<l1, -m<6O<m,

u(l, 0) = 2sin(0) if 0<0<m,
"7 o if —-m<06<0.
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We must now compute the Fourier series for the boundary condition. By now the
reader has plentiful experience in computing Fourier series and so we simply state that

cos(2n0).

2 o 4
u(l, 6) = E + Sln(@) + Z m
n=1

Exercise 4.10.1: Compute the series for u(1, ) and verify that it really is what we have just claimed.
Hint: Be careful, make sure not to divide by zero.

We now simply write the solution (see Figure 4.27) by multiplying by 7" in the right
places.

2 S
u(r,0) = = +rsin(6) + > 71(4”—2_1) cos(2n0).
n=1

7 ] u(r,theta)

2.000
1.800
1.600
1.400
1.200
1.000
0.800
0.600
0.400
0.200
0.000

2.0

0.5

0.0

Figure 4.27: The solution of the Dirichlet problem with boundary data 0 for y < 0 and 2y for y > 0.
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4.10.3 Poisson kernel

There is another way to solve the Dirichlet problem with the help of an integral kernel.
That is, we will find a function P(r, 0, «) called the Poisson kernel* such that

u(r,0) = % /_n P(r,0,a)g(a)da.

While the integral will generally not be solvable analytically, it can be evaluated numerically.
In fact, unless the boundary data is given as a Fourier series already, it may be much easier
to numerically evaluate this formula as there is only one integral to evaluate.

The formula also has theoretical applications. For instance, as P(r, 6, @) will have
infinitely many derivatives, then via differentiating under the integral we find that the
solution u(r, 0) has infinitely many derivatives, at least when inside the circle, r < 1. By
“having infinitely many derivatives,” what you should think of is that u(r, ©) has “no
corners” and all of its partial derivatives of all orders exist and also have “no corners.”

We will compute the formula for P(r, 0, @) from the series solution, and this idea can be
applied anytime you have a convenient series solution where the coefficients are obtained
via integration. Hence you can apply this reasoning to obtain such integral kernels for other
equations, such as the heat equation. The computation is long and tedious, but not overly
difficult. Since the ideas are often applied in similar contexts, it is good to understand how
this computation works.

What we do is start with the series solution and replace the coefficients with the integrals
that compute them. Then we try to write everything as a single integral. We must use a
different dummy variable for the integration and hence we use a instead of 0.

u(r,0) = % + Z a,r" cos(nf) + b, r" sin(n0O)

- (% /_n g(a) da) + i (% [: g(a)cos(na) da) r" cos(nO)+

n=1

=

[

+ (% /_n g(a)sin(na) doz) r" sin(n0)

by

n=1

- Zi [“ (8(01) +2 i g(a)cos(na)r" cos(n0) + g(a)sin(na) r" sin(n@)) da

1+2 i 1" (cos(na) cos(n6) + sin(na) sin(n 6))) g(a) da

n=1

P(rlela)

*Named for the French mathematician Siméon Denis Poisson (1781-1840).


https://en.wikipedia.org/wiki/Sim%C3%A9on_Denis_Poisson
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OK, so we have what we wanted, the expression in the parentheses is the Poisson kernel,
P(r, 0, a). However, we can do a lot better. It is still given as a series, and we would really
like to have a nice simple expression for it. We must work a little harder. The trick is to
rewrite everything in terms of complex exponentials. Let us work just on the kernel.

P(r,0,a)=1+2 i " (cos(na) cos(n0) + sin(na) sin(n0))

M8i

+2 r” cos(n(6 — a))

1+

=1+ Z (60— CY) + i G a)
n=1 n=1

In the expression above, we recognize the geometric series. Recall from calculus that if z is a
complex number where |z| < 1, then

SEMM

L (ein(G—a) + e—in(@—a))

o
5

n=1

Note that 7 starts at 1 and that is why we have the z in the numerator. It is the standard
geometric series multiplied by z. We can use z = re?®~%), as 1o and behold |re’®~%)| = r < 1.
Let us continue with the computation.

P(r,0,a)=1+ Z (re'@=) "y Z ~i(6-a)
n=1 n=1

rei(@—a) —i(6-a)
=1+

- + -
1—reil0-a) 71— re—l(e—‘)‘)
(1= re =) (1 = re=i0=0)) 4 (1 — re=i0-0))eil0=0) 4 (1 — yi(0-0))p=i0-a)
(1 —rei0-a))(1 — re~i(0-a))

1-1r?
1= rei0-a) — pe-i(0-a) 4 42
_ 1-172
~ 1-2rcos(@ —a)+r2

That’s a formula we can live with. The solution to the Dirichlet problem using the Poisson

kernel is
1 [7 1-1r2
0) = da.
‘ u(r, 0) = 21 / 1 —2rcos(6 — a)+r2g(a) !
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Sometimes the formula for the Poisson kernel is given together with the constant 5-, in
which case we should of course not leave it in front of the integral. Also, often the limits
of the integral are given as 0 to 27t; everything inside is 2m-periodic in «, so this does not
change the integral.

Let us not leave the Poisson kernel without explaining
its geometric meaning. Let s be the distance from (7, 0) to (1, 2)
(1, @). You may recall from calculus that this distance s in
polar coordinates is given precisely by the square root of
1 —2rcos(0 — &) + r%. That is, the Poisson kernel is really
the formula

1-r2

52

One final note we make about the formula is that it is
really a weighted average of the boundary values. First let
us look at what happens at the origin, that is when r = 0.

(0 0)—i/n 1-07 (@) da
" 2m _n1—2(0)cos(6—a)+02g
1 Tt
= E[n g(O() da.

So u(0, 0) is precisely the average value of g(0) and therefore the average value of u on the
boundary. This is a general feature of harmonic functions, the value at some point p is
equal to the average of the values on a circle centered at p.

What the formula says is that the value of the solution at any point in the circle is a
weighted average of the boundary data g(6). The kernel is bigger when (1, ) is closer to
(r, 0). Therefore when computing u(r, 0) we give more weight to the values g(a) when
(1, @) is closer to (r, 0) and less weight to the values g(a) when (1, ) far from (r, 0).

4.10.4 Exercises

Exercise 4.10.2: Using series solve Au =0, u(1,0) = |0, for -m < 0 < 7.

Exercise 4.10.3: Using series solve Au = 0, u(1, 0) = g(0) for the following data. Hint: trig
identities.

a) g(0) =1/2+ 3sin(0) + cos(30) b) g(0) = 3cos(30) + 3sin(30) + sin(99)
c) g(0) =2cos(0 +1) d) g(0) = sin?(0)

Exercise 4.10.4: Using the Poisson kernel, give the solution to Au = 0, where u(1, 0) is zero for 0
outside the interval [—7/4, /4] and u(1, 0) is 1 for O on the interval [—7/4, /4]
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Exercise 4.10.5:

a) Draw a graph for the Poisson kernel as a function of « when r = 1/2and 6 = 0.
b) Describe what happens to the graph when you make r bigger (as it approaches 1).

c) Knowing that the solution u(r, 0) is the weighted average of g(0) with Poisson kernel as the
weight, explain what your answer to part b) means.

Exercise 4.10.6: Let g(0) be the function xy = cos O sin 0 on the boundary. Use the series solution
to find a solution to the Dirichlet problem Au = 0, u(1, 0) = g(0). Now convert the solution to
Cartesian coordinates x and y. Is this solution surprising? Hint: use your trig identities.

Exercise 4.10.7: Carry out the computation we needed in the separation of variables and solve
r?R” +rR' —=n?R=0,forn=0,1,2,3,....

Exercise 4.10.8 (challenging): Derive the series solution to the Dirichlet problem if the region is a
circle of radius p rather than 1. That is, solve Au = 0, u(p, ) = g(0).

Exercise 4.10.9 (challenging):

a) Find the solution for Au = 0, u(1,0) = x?>y> + 5x2. Write the answer in Cartesian
coordinates.

b) Now solve Au = 0, u(1, 0) = x*y*. Write the solution in Cartesian coordinates.

c) Suppose you have a polynomial P(x,y) = Z;”ZO Moo Cixlyk, solve Au =0, u(1,0) =
P(x,y) (that is, write down the formula for the answer). Write the answer in Cartesian
coordinates.

Notice the answer is again a polynomial in x and y. See also Exercise 4.10.6.
Exercise 4.10.101: Using series solve Au =0, u(1,0) =1+ # sin(n6).
n=1

Exercise 4.10.102: Using the series solution find the solution to Au = 0, u(1,0) = 1 — cos(60).
Express the solution in Cartesian coordinates (that is, using x and y).

Exercise 4.10.103:

a) Try and guess a solution to Au = =1, u(1, 0) = 0. Hint: try a solution that only depends on
r. Also first, don’t worry about the boundary condition.

b) Now solve Au = -1, u(1, 0) = sin(20) using superposition.

Exercise 4.10.104 (challenging): Derive the Poisson kernel solution if the region is a circle of
radius p rather than 1. That is, solve Au = 0, u(p, 6) = g(0).



Chapter 5

More on eigenvalue problems

5.1 Sturm-Liouville problems

Note: 2 lectures, §10.1 in [EP], §11.2 in [BD]

5.1.1 Boundary value problems

In chapter 4 we encountered several different eigenvalue problems such as:
X"(x)+AX(x)=0,

with different boundary conditions

X(0)=0 X(L)=0 (Dirichlet), or
X'(0)=0 X’(L)=0 (Neumann), or
X'0)=0 X(L)=0 (Mixed), or
X0)=0 X' (L)=0 (Mixed),...

For example, these boundary problems came up in the study of the heat equation u; = ki,
when we were trying to solve the equation by the method of separation of variables in § 4.6.
Dirichlet conditions correspond to applying a zero temperature at the ends, Neumann
means insulating the ends, etc. Other types of endpoint conditions also arise naturally,
such as the Robin boundary conditions

hX(0)- X'(0)=0, hX(L)+X'(L)=0,

for some constant h. These conditions come up when the ends are immersed in some
medium.

In the separation of variables computation we encountered an eigenvalue problem and
found the eigenfunctions X, (x). We then found the eigenfunction decomposition of the initial
temperature f(x) = u(x,0),

o

f() =D enXa(2).

n=1
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Once we had this decomposition and found suitable T,(¢) such that T,,(0) = 1 and such
that T,,(f) X, (x) were solutions to the heat equation, we wrote the solution to the original
problem, including the initial condition, as

(o]

u(x,t) = Z cnTa(£) X ().

n=1

To study more general problems with this method, we must study more general
eigenvalue problems. First, we study second order linear equations of the form

d
dd—x (p(x)%) —q(x)y + Ar(x)y = 0. (5.1)

Essentially any second order linear equation of the form a(x)y” +b(x)y’ +c(x)y+Ad(x)y =0
can be written as (5.1) after multiplying by a proper factor.

Example 5.1.1 (Bessel): Put the following equation into the form (5.1):

>y +xy’ + (/\x2 - nz) y =0.

Multiply both sides by % to obtain
l( 2y”+xy’+(Ax2—n2)y) =xy" +y + Ax—n—z y
x

X
d ( dy\ n?
= _dx (x_dx) - 7y + /\xy =0.

The Bessel equation turns up for example in the solution of the two-dimensional wave
equation. If you want to see how one solves the equation, you can look at subsection 7.3.3.

The so-called Sturm—Liouuville problem* is to seek nontrivial solutions to

d dy _
Ix (p(x)a) —q(x)y +Ar(x)y =0, a<x<pb,

ay(a) —azxy’(a) =0, (5.2)

pry(b) + B2y’ (b) = 0.

In particular, we seek As that allow for nontrivial solutions. The As that admit nontrivial
solutions are called the eigenvalues and the corresponding nontrivial solutions are called
eigenfunctions. The constants a1 and a; should not be both zero, same for 1 and f;.

*Named after the French mathematicians Jacques Charles Frangois Sturm (1803-1855) and Joseph Liouville
(1809-1882).
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Theorem 5.1.1. Suppose p(x), p’(x), q(x) and r(x) are continuous on [a, b] and suppose p(x) > 0
and r(x) > O for all x in [a, b]. Then the Sturm—Liouville problem (5.2) has an increasing sequence
of eigenvalues

AM<A<Az<---

such that
im A, = 400

n—oo

and such that to each A, there is (up to a constant multiple) a single eigenfunction y,(x).
Moreover, if g(x) > 0and a1, a3, p1,B2 = 0, then A, > 0 for all n.

Problems satisfying the hypothesis of the theorem (including the “Moreover”) are called
regular Sturm—Liouville problems, and we will only consider such problems here. That is, a
regular problem is one where p(x), p’(x), g(x) and r(x) are continuous, p(x) > 0, r(x) > 0,
g(x) > 0, and a1, az, f1, B2 = 0, where neither a1 and a; are both zero, nor $; and f; are
both zero. Note: Be careful about the signs. Also be careful about the inequalities for » and
p, they must be strict for all x in the interval [a, b], including the endpoints!

When zero is an eigenvalue, we usually start labeling the eigenvalues at 0 rather than at
1 for convenience. That is we label the eigenvalues g < A1 <Ay <---.

Example 5.1.2: The problem y” + Ay, 0 < x < L, y(0) = 0, and y(L) = 0 is a regular
Sturm-Liouville problem: p(x) =1, g(x) = 0, r(x) = 1, and we have p(x) = 1 > 0 and
r(x) =1>0. Wealsohavea =0,b =L, a1 = 1 =1, ax = f2 = 0. The eigenvalues are

_ n?n? : . — i (BT : .
An = 3~ and eigenfunctions are y,(x) = sin(%2x). All eigenvalues are nonnegative as

predicted by the theorem.
Exercise 5.1.1: Find eigenvalues and eigenfunctions for
vy +Ay=0, y'(0)=0, y'(1)=0.

Identify the p, q,r, a;j, Bj. Can you use the theorem above to make the search for eigenvalues easier?
Hint: Consider the condition —y’(0) = 0.

Example 5.1.3: Find eigenvalues and eigenfunctions of the problem

y'+Ay=0, 0<x<l1,
hy(0)-y'(0)=0, y'(1)=0, h>0.

These equations give a regular Sturm-Liouville problem.
Exercise 5.1.2: Identify p,q,r, a;, B in the example above.

By Theorem 5.1.1, A > 0. So the general solution (without boundary conditions) is

y(x)=A cos(VA x) + Bsin(VA x) if A>0,
y(x)=Ax+B if A=0.
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Let us see if A = 0 is an eigenvalue: We must satisfy 0 = hB — A and A =0, hence B =0
(as h > 0). Therefore, 0 is not an eigenvalue (no nonzero solution, so no eigenfunction).
Now let us try A > 0. We plug in the boundary conditions:

0=hA-VAB,
0 = —AVA sin(VA) + BVA cos(VD).

If A =0, then B = 0 and vice versa, hence both are nonzero. So B = %, and 0 =
—AVA sin(VA) + % A cos(VA). As A # 0 we get

0 = —=VA sin(VA) + I cos(VA),

or

h
— =tan VA.
VA

We use a computer to find A,. There are tables available, though using a computer
or a graphing calculator is far more convenient nowadays. Easiest method is to plot the
functions #/x and tan x and see for which x they intersect. There is an infinite number of
intersections. Denote the first intersection by VA1, the second intersection by VA, etc. For
example, when i = 1, we get VA1 ~ 0.86, VA, ~ 3.43,.... Thatis Ay ~ 0.74, A ~ 11.73, ...
A plot for h = 1is given in Figure 5.1 on the next page. The appropriate eigenfunction (let
A =1 for convenience, then B = 1/V}) is

Yn(x) = cos(y/A, 1) + \Z_ sin(yT %).

When h = 1 we get (approximately)

1 1
y1(x) = cos(0.86 x) + 086 sin(0.86 x), y2(x) = cos(3.43 x) + EWE] sin(3.43 x),

5.1.2 Orthogonality

We have seen the notion of orthogonality before. For example, we have shown that sin(nx)
are orthogonal for distinct n on [0, ]. For general Sturm-Liouville problems we need
a more general setup. Let r(x) be a weight function (any function, though generally we
assume it is positive) on [a,b]. Two functions f(x), g(x) are said to be orthogonal with
respect to the weight function r(x) when

b
/ f(x)g(x)r(x)dx = 0.
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Figure 5.1: Plot of 1 and tan x.

In this setting, we define the inner product as

b
o)X / £(x) () rlx) d,

and then say f and g are orthogonal whenever (f, g¢) = 0. The results and concepts are
again analogous to finite-dimensional linear algebra.

The idea of the given inner product is that those x where r(x) is greater have more
weight. Nontrivial (nonconstant) r(x) arise naturally, for example from a change of variables.
Hence, you could think of a change of variables such that & = r(x) dx.

Eigenfunctions of a regular Sturm-Liouville problem satisfy an orthogonality property,
just like the eigenfunctions in § 4.1. Its proof is very similar to the analogous Theorem 4.1.1
on page 193.

Theorem 5.1.2. Suppose we have a reqular Sturm—Liouville problem

d
. (p(x)%) - q(x)y + Ar)y = 0,

ary(a) — azy’(a) =0,
pry(b) + B2y’ (b) = 0.

Let y;j and yy be two distinct eigenfunctions for two distinct eigenvalues A; and Ag. Then

b
/ yj(x) ye(x) r(x) dx = 0,

that is, y; and yy are orthogonal with respect to the weight function r.
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5.1.3 Fredholm alternative

The Fredholm alternative theorem we talked about before (Theorem 4.1.2 on page 194) holds
for all regular Sturm-Liouville problems. We state it here for completeness.

Theorem 5.1.3 (Fredholm alternative). Suppose that we have a reqular Sturm—Liouville problem.
Then either

d
- (p(x)%) - qx)y + Ar()y = 0,

a1y(a) — azy’(a) =0,
p1y(b) + B2y’ (b) = 0,

has a nonzero solution (A is an eigenvalue), or

d
% (p(x)%) —q(x)y + Ar(x)y = f(x),

ary(a) — azy’(a) =0,
pry(b) + B2y’ (b) = 0,

has a unique solution for any f(x) continuous on [a, b].

This theorem is used in much the same way as we did before in § 4.4. It is used when
solving more general nonhomogeneous boundary value problems. The theorem does not
help us solve the problem, but it tells us when a unique solution exists, so that we know
when to spend time looking for it. To solve the problem we decompose f(x) and y(x) in
terms of eigenfunctions of the homogeneous problem, and then solve for the coefficients of
the series for y(x).

5.1.4 Eigenfunction series

What we want to do with the eigenfunctions once we have them is to compute the
eigenfunction decomposition of an arbitrary function f(x). That is, we wish to write

o

f() =D cnyn(x), (53)

n=1

where y,(x) are eigenfunctions. We wish to find out if we can represent any function f(x)
in this way, and if so, we wish to calculate c,, (and of course we would want to know if the
sum converges). OK, so imagine we could write f(x) as (5.3). We will assume convergence
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and the ability to integrate the series term by term. Because of orthogonality we have

(o]

b b
frm) = [y de= [ (chynm) Yon) 0) dx

n=1

-3, /  u(2) Y0 )

n=1 a
b
= o / Yon(2) Yo () 7)1 = Con O, Yo

Hence,

_ oym :/abf(x)]/m(x)r(x)dx
") [ ()P e dx

(5.4)

Note that y,, are known up to a constant multiple, so we could have picked a scalar
multiple of an eigenfunction such that (v, y») = 1 (if we had an arbitrary eigenfunction

Jm, divide it by \{§m, Tm)). When (Y, y) = 1 we have the simpler form ¢, = (f, Ym)-
The following theorem holds more generally, but the statement given is enough for our

purposes.

Theorem 5.1.4. Suppose f is a piecewise smooth continuous function on [a, b]. If y1, 2, ... are
eigenfunctions of a regular Sturm—Liouville problem, one for each eigenvalue, then there exist real
constants c1, c2, . . . given by (5.4) such that (5.3) converges and holds fora < x < b.

Example 5.1.4: Consider

yY'+Ay=0, 0<x<7n/,
y(0)=0, y'(%/2)=0.

The above is a regular Sturm-Liouville problem, and Theorem 5.1.1 on page 275 says that
if A is an eigenvalue then A > 0.

Suppose A = 0. The general solution is y(x) = Ax + B. We plug in the initial conditions
to get 0 = y(0) = B, and 0 = y’(7/2) = A. Hence A = 0 is not an eigenvalue.

So let us consider A > 0, where the general solution is

y(x) = Acos(VA x) + Bsin(VA x).

Plugging in the boundary conditions we get 0 = y(0) = A and 0 = y'(7/2) = YA Bcos(VA Z).
Since A is zero, then B cannot be zero. Hence cos(\/x %) = 0. This means that VA % is an
odd integral multiple of 7/2,i.e. 2n — 1)} = VA, 3. Solving for A,, we get

Ap = (21 = 1)%.
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We can take B = 1. Our eigenfunctions are
yn(x) = sin((2n — 1)x).

A little bit of calculus shows

/0% (sin((Zn - 1)x))2dx = %

So any piecewise smooth function f(x) on [0, 7/2] can be written as

[o0]

f(x) = Z sin((2n - 1)x),

where

_ (f,yn) /0 f(x) sin((2n — 1)x) dx
Wuryn) fo (sm (2n - 1)x))

/ f(x) sin((2n — 1)x) dx

Note that the series converges to an odd 27-periodic extension of f(x). With the regular
sine series we would expect a function with period 2 5 = m.

Exercise 5.1.3 (challenging): In the example above, the function is defined on 0 < x < 7/2, yet the
series with respect to the eigenfunctions sin((2n — 1)x) converges to an odd 2m-periodic extension
of f(x). Find out how is the extension defined for /2 < x < .

Let us compute an example. Consider f(x) = x for 0 < x < 7/2. Some calculus later we
find
n+1
/ f(x) sin((2n — 1)x) dx &
n(2n — 1)

and so for x in [0, 7/2],

(o]

B 4(_1)n+1 ' ~
f(x) = ; —71(211 1y sin((2n — 1)x).

This is different from the m-periodic regular sine series which can be computed to be

s n+1
f(x) = Z (_17)1 sin(2nx).
n=1

Both sums converge are equal to f(x) for 0 < x < 7/2, but the eigenfunctions involved come
from different eigenvalue problems.
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5.1.5 Exercises

Exercise 5.1.4: Find eigenvalues and eigenfunctions of
y"+Ay=0, y0)-y'(0)=0, y(1)=0.
Exercise 5.1.5: Expand the function f(x) = x on 0 < x < 1 using eigenfunctions of the system
y"+Ay=0, y'(0)=0, y(1)=0.

Exercise 5.1.6: Suppose that you had a Sturm—Liouville problem on the interval [0, 1] and came
up with y,(x) = sin(ynx), where y > 0 is some constant. Decompose f(x) = x,0 < x < 1in
terms of these eigenfunctions.

Exercise 5.1.7: Find eigenvalues and eigenfunctions of
yPrAy=0, y(0)=0, y'(0)=0, y(1)=0, v'(1)=0.
This problem is not a Sturm—Liouville problem, but the idea is the same.

Exercise 5.1.8 (more challenging): Find eigenvalues and eigenfunctions for

d v x
%(exy )+Ae*y =0, y(0)=0, y(1)=0.

Hint: First write the system as a constant coefficient system to find general solutions. Do note that
Theorem 5.1.1 on page 275 guarantees A > 0.

Exercise 5.1.101: Find eigenvalues and eigenfunctions of
vy +Ay =0, y(-1)=0, y()=0.

Exercise 5.1.102: Put the following problems into the standard form for Sturm—Liouville problems,
that s, find p(x), q(x), r(x), a1, az, B1, and Ba, and decide if the problems are regular or not.

a) xy” +Ay=0 for0<x<1, y(0)=0, y(1)=0.
b) 1+x2)y” +2xy’ +(A=x2)y =0 for-1<x<1, y(-1)=0, y(1)+y'(1)=0."

*In an earlier version of this book, a typo rendered the equation as (1 + x?)y” — 2xy’ + (A —x2)y = 0 ending
up with something harder than intended. Try this equation for a further challenge.
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5.2 Higher order eigenvalue problems

Note: 1 lecture, §10.2 in [EP], exercises in §11.2 in [BD]

The eigenfunction series can arise even from higher order equations. Consider an
elastic beam (say made of steel). We will study the transversal vibrations of the beam. That
is, suppose the beam lies along the x-axis and let y(x, t) measure the displacement of the
point x on the beam at time ¢. See Figure 5.2.

Figure 5.2: Transversal vibrations of a beam.

The equation that governs this setup is

484]/ azy

+—=—=0,
“ ot T o

for some constant a > 0, let us not worry about the physics®.
Suppose the beam is of length 1 simply supported (hinged) at the ends. The beam is
displaced by some function f(x) at time t = 0 and then let go (initial velocity is 0). Then y

satisfies:
a4yxxxx+ytt:0 (O<x<1, t>0),

y(0,1) = yxx(0,£) =0,
y(ll t) = ]/xx(ll t) =0,
y(x,0) = f(x),  yi(x,0)=0.

Again we try y(x,t) = X(x)T(t) and plug in to get a*X¥T + XT” = 0 or

(5.5)

X(4) _T”
e =A
X a4T

The equations are
T” + Aa*T =0, X®W_AX =0.

*If you are interested, at = %, where E is the elastic modulus, I is the second moment of area of the cross
section, and p is linear density.
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The boundary conditions y(0, ) = yx(0,) = 0and y(1,t) = yxx(1,t) = 0 imply
X(0)=X"(0)=0, and X(1)=X"(1)=0.
The initial homogeneous condition y;(x,0) = 0 implies
T'(0) = 0.

As usual, we leave the nonhomogeneous y(x,0) = f(x) for later.

Considering the equation for T, that is, T” + Aa*T = 0, and physical intuition leads us
to the fact that if A is an eigenvalue then A > 0: We expect vibration and not exponential
growth nor decay in the ¢ direction (there is no friction in our model for instance). So there
are no negative eigenvalues. Similarly A = 0 is not an eigenvalue.

Exercise 5.2.1: Justify A > O just from the equation for X and the boundary conditions.

Letw = (4/%, that is w* = A, to avoid writing the fourth root all the time. Notice w > 0.
The general solution to X @ _w*X =0is

X(x) = Ae®* + Be™®* + Csin(wx) + D cos(wx).
Now 0 = X(0) = A+ B+ D, 0= X"(0) = w*(A+ B - D). Solving, D =0 and B = —A. So
X(x) = Ae®* — Ae™ " + C sin(wx).

Also 0 = X(1) = A(e® —e @) + Csinw, and 0 = X”(1) = Aw?(e® — e™¥) — Cw? sin w. This
means that Csinw = 0 and A(e” —e ) =2Asinhw = 0. If > 0, then sinh w # 0 and so
A =0. Thus C # 0, otherwise A is not an eigenvalue. Also, w must be an integer multiple
of n. Hence w = nmand n > 1 (as w > 0). We can take C = 1. So the eigenvalues are
An = n*r* and corresponding eigenfunctions are sin(n7mx).

Now T” + n*r*a*T = 0. The general solution is T(t) = A sin(n?m?a®t) + B cos(n’m?a’t).
But T’(0) = 0 and hence A = 0. We take B = 1 to make T(0) = 1 for convenience. So our
solutions are T;,(t) = cos(n?n?a’t).

The eigenfunctions are just the sines, so we decompose the function f(x) using the sine
series. That is, we find numbers b,, such that for0 < x <1,

flx) = Z by sin(nmx).
n=1
Then the solution to (5.5) is

y(x, 1) = Z b X ()T (t) = Z b, sin(nmx) cos(n®m2at).
n=1 n=1
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The point is that X, T, is a solution that satisfies all the homogeneous conditions (all
conditions except the initial position). And since T,,(0) = 1,

y(x,0) = i by Xn(x)T0(0) = i by Xn(x) = i by sin(nmx) = f(x).
n=1 n=1 n=1

So y(x, t) solves (5.5).

The natural (angular) frequencies of the system are n’na?. These frequencies are
all integer multiples of the fundamental frequency 7242, so we get a nice musical note.
The exact frequencies and their amplitude are what musicians call the timbre of the note
(outside of music it is called the spectrum).

The timbre of a beam is different than for a vibrating string where we get “more” of
the lower frequencies since we get all integer multiples, 1,2,3,4,5, .. .. For a steel beam
we get only the square multiples 1,4,9, 16,25, .... That is why when you hit a steel beam
you hear a very pure sound. The sound of a xylophone or vibraphone is, therefore, very
different from a guitar or piano.

Example 5.2.1: Consider f(x) = x(’lcal). On 0 < x < 1 (you know how to do this by now)
f(x)= i Lsin(nmc).
5m3n3

n=1
n odd

Hence, the solution to (5.5) with the given initial position f(x) is

o0

4
y(x,t) = Z Wsin(nnx)cos(nznzazt).

n=1
n odd

There are other boundary conditions than just hinged ends. There are three basic
possibilities: hinged, free, or fixed. Let us consider the end at x = 0. For the other end, it is
the same idea. If the end is hinged, then

u(0,t) = uy(0,¢) = 0.
If the end is free, that is, it is just floating in air, then
Uxx(0,1) = u,2x(0, 1) = 0.

And finally, if the end is clamped or fixed, for example it is welded to a wall, then

(0, £) = (0, ) = 0.
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5.2.1 Exercises

Exercise 5.2.2: Suppose you have a beam of length 5 with free ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 5). You know that the constants are such
that this satisfies the equation yi + 4Yxxxx = 0. Suppose you know that the initial shape of the
beam is the graph of x(5 — x), and the initial velocity is uniformly equal to 2 (same for each x) in the
positive y direction. Set up the equation together with the boundary and initial conditions. Just set
up, do not solve.

Exercise 5.2.3: Suppose you have a beam of length 5 with one end free and one end fixed (the
fixed end is at x = 5). Let u be the longitudinal deviation of the beam at position x on the beam

(0 < x <5). You know that the constants are such that this satisfies the equation uy = 4uiyy.
Suppose you know that the initial displacement of the beam is x5—"05, and the initial velocity is _(1x065)

in the positive u direction. Set up the equation together with the boundary and initial conditions.
Just set up, do not solve.

Exercise 5.2.4: Suppose the beam is L units long, everything else kept the same as in (5.5). What is
the equation and the series solution?

Exercise 5.2.5: Suppose you have

*Yerxx + Y =0 (0 <x<1,t>0),
y(0,t) = y2x(0,£) =0,

y(1,t) = yxx(1,£) =0,

y(x,0) = f(x),  yi(x,0) = g(x).

That is, you have also an initial velocity. Find a series solution. Hint: Use the same idea as we did
for the wave equation.

Exercise 5.2.101: Suppose you have a beam of length 1 with hinged ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 1). You know that the constants are such
that this satisfies the equation Y +4Yxxxx = 0. Suppose you know that the initial shape of the beam
is the graph of sin(mx), and the initial velocity is 0. Solve for y.

Exercise 5.2.102: Suppose you have a beam of length 10 with two fixed ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 10). You know that the constants are such
that this satisfies the equation Yt + 9Yxxxx = 0. Suppose you know that the initial shape of the beam
is the graph of sin(mtx), and the initial velocity is uniformly equal to x(10 — x). Set up the equation
together with the boundary and initial conditions. Just set up, do not solve.
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5.3 Steady periodic solutions

Note: 1-2 lectures, §10.3 in [EP], not in [BD]

5.3.1 Forced vibrating string

Consider a guitar string of length L. We studied this setup in § 4.7. Let x be the position
on the string, t the time, and y the displacement of the string. See Figure 5.3.

T

T

0 L x

Figure 5.3: Vibrating string.

The problem is governed by the wave equation

Vit = A% Yxx,
y(0,t) =0, y(L,t)=0, (5.6)
y(x,0) = f(x), yi(x,0) = g(x).

We found that the solution is of the form

y= Z (A COS( ) + B, sin (@t))sin (n—nx),
= L L
where A, and B, are determined by the initial conditions. The natural frequencies of the
system are the (angular) frequencies “* for integers n > 1.

But these are free vibrations. What 1f there is an external force acting on the string. Let
us assume say air vibrations (noise), for example from a second string. Or perhaps a jet
engine. For simplicity, assume nice pure sound and assume the force is uniform at every
position on the string. Let us say F(t) = Fo cos(wt) as force per unit mass. Then our wave
equation becomes (remember force is mass times acceleration)

Y = azyxx + Fy cos(wt), (5.7)

with the same boundary conditions of course.
We want to find the solution here that satisfies the equation above and

y(0,t) =0, y(L,t)=0, y(x,0) =0, yi(x,0) = 0. (5.8)
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That is, the string is initially at rest. First we find a particular solution y, of (5.7) that
satisfies y(0, t) = y(L, t) = 0. We define the functions f and g as

0
f(x)=-yp(x,0),  gx)= —%(x,O).

We then find solution y. of (5.6). If we add the two solutions, we find that y = y. + y,
solves (5.7) with the initial conditions.

Exercise 5.3.1: Check that y = y. + y, solves (5.7) and the side conditions (5.8).

So the big issue here is to find the particular solution y,. We look at the equation and
we make an educated guess
yp(x,t) = X(x) cos(wt).
We plug in to get
—w?X cos(wt) = a2X"” cos(wt) + Fo cos(wt),
or —w?X = a?X"” + F after canceling the cosine. We know how to find a general solution to

this equation (it is a nonhomogeneous constant coefficient equation). The general solution
is

F
X(x) = Acos (gx) + Bsin (Ex) — —02.
a a )
The endpoint conditions imply X(0) = X(L) = 0. So
0=X0)=A- fo
orA = %, and also
F L L F
0=X(L) = —Ozcos (a)_) + Bsin (a)_) — —g.
w a a w

Assuming that sin(“%) is not zero we can solve for B to get

(5.9)

Therefore,

w2

X(x) = L) (cos (%x) - w sin (Qx) - 1) .

The particular solution y, we are looking for is

yp(x, t) = % (cos (%x) - COS(’(I# sin (%x) - 1) cos(wt).




288 CHAPTER 5. MORE ON EIGENVALUE PROBLEMS

Exercise 5.3.2: Check that y, works.

Now we get to the point that we skipped. Suppose sin(%L) = 0. What this means is
that w is equal to one of the natural frequencies of the system, i.e. a multiple of 7*. We
notice that if w is not equal to a multiple of the base frequency, but is very close, then the
coefficient B in (5.9) seems to become very large. But let us not jump to conclusions just
yet. When w = 2 for n even, then cos(“%) = 1 and hence we really get that B = 0. So

resonance occurs only when both cos(%L) = -1 and sin(2k) = 0. That is when @ = 2 for

odd n.

We could again solve for the resonance solution if we wanted to, but it is, in the right
sense, the limit of the solutions as w gets close to a resonance frequency. In real life, pure
resonance never occurs anyway.

The calculation above explains why a string begins to vibrate if the identical string is
plucked close by. In the absence of friction this vibration would get louder and louder
as time goes on. On the other hand, you are unlikely to get large vibration if the forcing
frequency is not close to a resonance frequency even if you have a jet engine running close
to the string. That is, the amplitude does not keep increasing unless you tune to just the
right frequency.

Similar resonance phenomena occur when you break a wine glass using human voice
(yes this is possible, but not easy*) if you happen to hit just the right frequency. Remember
a glass has much purer sound, i.e. it is more like a vibraphone, so there are far fewer
resonance frequencies to hit.

When the forcing function is more complicated, you decompose it in terms of the
Fourier series and apply the result above. You may also need to solve the problem above if
the forcing function is a sine rather than a cosine, but if you think about it, the solution is
almost the same.

Example 5.3.1: Let us do the computation for specific values. Suppose Fp =land w =1
and L =1and a = 1. Then

cos(l) -1

yp(x, t) = COS(X) - Sln—(l)

sin(x) — 1) cos(t).

Write B = C(:r(ll()lgl for simplicity.

Then plugin t = 0 to get

f(x) =-yp(x,0) = —cosx + Bsinx +1,

and after differentiating in t we see that g(x) = —%(x, 0) =0.

*Muythbusters, episode 31, Discovery Channel, originally aired may 18th 2005.
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Hence to find y. we need to solve the problem

Yir = Yxx,

y(0,¢)=0, y(1,t)=0,
y(x,0) = —cosx + Bsinx + 1,
yi(x,0) =0.

The formula that we use to define y(x, 0) is not odd, hence it is not a simple matter of
plugging in the expression for y(x, 0) to the d’Alembert formula directly! You must define
F to be the odd, 2-periodic extension of y(x,0). Then our solution is

F(x+t)+ F(x—t)

y(x,t) = 5 + | cos(x)

cos(1) -1
~ sin(1)

sin(x) — 1| cos(t). (5.10)

It is not hard to compute specific values for an odd periodic extension of a function and
hence (5.10) is a wonderful solution to the problem. For example, it is very easy to have a
computer do it, unlike a series solution. A plot is given in Figure 5.4.

0.240
10 0.148

‘ 0.099

0.20 } g ; 0.049

\[ 77 0.000

‘ﬁ;’fr"g{(n -0.049

0.10 ,M/@é\g 4 ‘ _ -0.099
IJ’\\\\‘\Q}‘ & -0.148

) -0.197

>  0.00 -0.254

-0.10

-0.20

Figure 5.4: Plot of y(x,t) = w + (cos(x) - C(;fr(ll()lgl sin(x) — 1) cos(t).
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5.3.2 Underground temperature oscillations

Let u(x, t) be the temperature at a certain location at depth x underground at time ¢. See
Figure 5.5.

The temperature u satisfies the heat equation
uy = kuyy, where k is the diffusivity of the soil. We %
know the temperature at the surface u(0, ) from
weather records. Let us assume for simplicity that

u(0,t) = To + Ag cos(wt), depth x

where Tj is the yearly mean temperature, and t = 0
is midsummer (you can put negative sign above to | Figure 5.5: Underground temperature.
make it midwinter if you wish). Ag gives the typical
variation for the year. That is, the hottest temperature is Ty + Ap and the coldest is Ty — Ao.
For simplicity, we assume that Tp = 0. The frequency w is picked depending on the units of
t, such that when t = 1year, then wt = 2. For example if ¢ is in years, then w = 2.

It seems reasonable that the temperature at depth x also oscillates with the same
frequency. This, in fact, is the steady periodic solution, a solution independent of the initial
conditions. So we are looking for a solution of the form

u(x,t) = V(x)cos(wt) + W(x) sin(wt)
for the problem
U = ktyy, u(0,t) = Ag cos(wt). (5.11)

We employ the complex exponential here to make calculations simpler. Suppose we
have a complex-valued function

h(x,t) = X(x) e,

We look for an / such that Re h = u. To find an &, whose real part satisfies (5.11), we look
for an h such that _
he = khyy, h(0,t) = Age'™". (5.12)

Exercise 5.3.3: Suppose h satisfies (5.12). Use Euler’s formula for the complex exponential to check
that u = Re h satisfies (5.11).

Substitute & into (5.12).
iwXe' @ = kX",

Hence,
kX" —iwX =0,

or
X" -a’X =0,



5.3. STEADY PERIODIC SOLUTIONS 291

where a = +,/%. Note that +Vi = J_r%i so you could simplify to a = +(1 + i){/2. Hence
the general solution is

X(x) = Ae~+IVEx | Bo+iVEx

We assume that an X(x) that solves the problem must be bounded as x — oo since u(x, t)
should be bounded (we are not worrying about the earth core!). If you use Euler’s formula
to expand the complex exponentials, note that the second term is unbounded (if B # 0),
while the first term is always bounded. Hence B = 0.

Exercise 5.3.4: Use Euler’s formula to show that e IVET is ynbounded as x — oo, while
e~ UIVE s bounded as x — oo.

Furthermore, X(0) = Ag since h(0, t) = Ape'®t. Thus A = Ap. This means that
h(x,t) = Age LFIVE ¥ pict _ Aoe—(1+z’)\/§x+iwt _ Aoe—\/gxei(wt—\/gx).

We need to get the real part of /1, so we apply Euler’s formula to get
4 Ex @ . |
h(x,t) = Ape” Y& " [cos | wt % x| +isin|wt % x||.

u(x,t) =Reh(x,t) = Aoe_‘/%x cos (a)t - 26()_k x) .

Then finally

Yay!
Notice the phase is different at different depths. At depth x the phase is delayed by

x4/Z%. For example in cgs units (centimeters-grams-seconds) we have k = 0.005 (typical

21 _ 21
seconds ina year ~ 31,557,341

phase shift x/3f = 7 we find the depth in centimeters where the seasons are reversed.
That is, we get the depth at which summer is the coldest and winter is the warmest. We
get approximately 700 centimeters, which is approximately 23 feet below ground.

Be careful not to jump to conclusions. The temperature swings decay rapidly as you

value for soil), w = ~1.99 x 1077 Then if we compute where the

@

dig deeper. The amplitude of the temperature swings is Aoe_‘/;x . This function decays
very quickly as x (the depth) grows. Let us again take typical parameters as above. We
also assume that our surface temperature swing is +15° Celsius, that is, Ag = 15. Then the
maximum temperature variation at 700 centimeters is only +0.66° Celsius.

You need not dig very deep to get an effective “refrigerator,” with nearly constant
temperature. That is why wines are kept in a cellar; you need consistent temperature. The
temperature differential could also be used for energy. A home could be heated or cooled
by taking advantage of the fact above. Even without the earth core you could heat a home
in the winter and cool it in the summer. The earth core makes the temperature higher the
deeper you dig, although you need to dig somewhat deep to feel a difference. We did not
take that into account above.
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5.3.3 Exercises

Exercise 5.3.5: Suppose that the forcing function for the vibrating string is Fosin(wt). Derive the
particular solution y,.

Exercise 5.3.6: Tuke the forced vibrating string. Suppose that L = 1, a = 1. Suppose that the
forcing function is the square wave that is 1 on the interval 0 < x < 1 and -1 on the interval
—1 < x < 0. Find the particular solution. Hint: You may want to use result of Exercise 5.3.5.

Exercise 5.3.7: The units are cgs (centimeters-grams-seconds). For k = 0.005, v = 1.991 x 1077,
Ao = 20. Find the depth at which the temperature variation is half (+10 degrees) of what it is on the
surface.

Exercise 5.3.8: Derive the solution for underground temperature oscillation without assuming that
To = 0.

Exercise 5.3.101: Take the forced vibrating string. Suppose that L = 1, a = 1. Suppose that
the forcing function is a sawtooth, that is |x| — 3 on =1 < x < 1 extended periodically. Find the
particular solution.

Exercise 5.3.102: The units are cgs (centimeters-grams-seconds). For k = 0.01, w = 1.991x 1077,
Ao = 25. Find the depth at which the summer is again the hottest point.



Chapter 6

The Laplace transform

6.1 The Laplace transform

Note: 1.5-2 lectures, §10.1 in [EP], §6.1 and parts of §6.2 in [BD]

6.1.1 The transform

In this chapter we will discuss the Laplace transform'. The Laplace transform is a very
efficient method to solve certain ODE or PDE problems. The transform takes a differential
equation and turns it into an algebraic equation. If the algebraic equation can be solved,
applying the inverse transform gives us our desired solution. The Laplace transform also has
applications in the analysis of electrical circuits, NMR spectroscopy, signal processing, and
elsewhere. Finally, understanding the Laplace transform will also help with understanding
the related Fourier transform, which, however, requires more understanding of complex
numbers. We will not cover the Fourier transform.

The Laplace transform also gives a lot of insight into the nature of the equations we are
dealing with. It can be seen as converting between the time and the frequency domain. For
example, take the standard equation

mx"(t) + cx'(t) + kx(t) = f(t).

We can think of ¢ as time and f(#) as incoming signal. The Laplace transform will convert
the equation from a differential equation in time to an algebraic (no derivatives) equation,
where the new independent variable s is the frequency.

We can think of the Laplace transform as a black box. It eats functions and spits out
functions in a new variable. We write L{ f (t)} = F(s) for the Laplace transform of f(t).
It is common to write lower case letters for functions in the time domain and upper case
letters for functions in the frequency domain. We use the same letter to denote that one

fJust like the Laplace equation and the Laplacian, the Laplace transform is also named after Pierre-Simon,
marquis de Laplace (1749-1827).
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function is the Laplace transform of the other. For example F(s) is the Laplace transform of
f(t). Let us define the transform.

L{f(t)} = P()def/ e~SLE(t) dt.

We note that we are only considering ¢ > 0 in the transform. Of course, if we think of ¢
as time there is no problem, we are generally interested in finding out what will happen
in the future (Laplace transform is one place where it is safe to ignore the past). Let us
compute some simple transforms.

Example 6.1.1: Suppose f(t) = 1, then

o5t —st1h —sh
L£{1} = / st gt = l l = lim | ] - lim (e —i) _ L
=0 h—oo | —S -0 h—co \ —S§ —s S

t=

The limit (the improper integral) only exists if s > 0. So L{1} is only defined for s > 0.
Example 6.1.2: Suppose f(t) = e™, then

0 0

The limit only exists if s + a > 0. So L{e™} is only defined for s + a > 0.

e—(s +a)t

B 1
s+a

—(s+a)l,,

Example 6.1.3: Suppose f(t) = t, then using integration by parts

L{t} = / et dt
l t_St

S

1—st
=

5175 li=0

/ e =St dt
0

Again, the limit only exists if s > 0.

Example 6.1.4: A common function is the unit step function, which is sometimes called the
Heaviside function*. This function is generally given as

0 if t<0O,
u(t) = .
1 if t>0.

*The function is named after the English mathematician, engineer, and physicist Oliver Heaviside
(1850-1925). Only by coincidence is the function “heavy” on “one side.”
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Let us find the Laplace transform of u(t — a), where a > 0 is some constant. That is, the
function thatis O fort < aand 1 fort > a.

o ot © et e st o e~ 4s
L{u(t —a)} :/0 e u(t—a)dt:/ et dt = = ,
a t=a

—S S

where of course s > 0 (and a4 > 0 as we said before).

By applying similar procedures we can compute the transforms of many elementary
functions. Many basic transforms are listed in Table 6.1.

f6) L{f®)} f(®) L{ft)}
C % sin(wt) =P

t le cos(wt) i

t2 S% sinh(wt) &%

t3 s% cosh(wt) ==

¢ S,’ﬁl u(t—a) -

et L

Table 6.1: Some Laplace transforms (C, w, and a are constants).

Exercise 6.1.1: Verify Table 6.1.

Since the transform is defined by an integral. We can use the linearity properties of the
integral. For example, suppose C is a constant, then

L{Cft) = /Oooe‘Sth(t)dt - C/Owe‘”f(t)dt = CL{f(1)}.

So we can “pull out” a constant out of the transform. Similarly we have linearity. Since
linearity is very important we state it as a theorem.

Theorem 6.1.1 (Linearity of the Laplace transform). Suppose that A, B, and C are constants,
then

‘ L{Af(t)+Bg(t)} = AL{f(t)} + BL{g(t)}, ]

and in particular

L{Cf} =cL{ft)}.
Exercise 6.1.2: Verify the theorem. That is, show that L{Af(t)+Bg(t)} = AL{f()}+BL{g(t)}.
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These rules together with Table 6.1 on the preceding page make it easy to find the
Laplace transform of a whole lot of functions already. But be careful. It is a common
mistake to think that the Laplace transform of a product is the product of the transforms.
In general

L{f (g0} # L{F O} L{z0)}-

It must also be noted that not all functions have a Laplace transform. For example, the

function 1 does not have a Laplace transform as the integral diverges for all s. Similarly,

tant or e!” do not have Laplace transforms.

6.1.2 Existence and uniqueness

When does the Laplace transform exist? A function f(t) is of exponential order as t goes to
infinity if

f(B)] < Me*,
for some constants M and c, for sufficiently large t (say for all t > ty for some tp). The
simplest way to check this condition is to try and compute

lim )

t—00 eCt

If the limit exists and is finite (usually zero), then f(t) is of exponential order.

Exercise 6.1.3: Use L'Hopital’s rule from calculus to show that a polynomial is of exponential order.
Hint: Note that a sum of two exponential order functions is also of exponential order. Then show
that t" is of exponential order for any n.

For an exponential order function we have existence and uniqueness of the Laplace
transform.

Theorem 6.1.2 (Existence). Let f(t) be continuous and of exponential order for a certain constant
c. Then F(s) = L{f(t)} is defined for all s > c.

The existence is not difficult to see. Let f(t) be of exponential order, that is | f (t)| < Me®!
for all t > O (for simplicity tp = 0). Lets > c, or in other words (s — c) > 0. By the
comparison theorem from calculus, the improper integral defining L{f(t)} exists if the
following integral exists

o0 co —(s—c)t 1%
/ e (Me®")dt = M/ e Ot dt = M l ‘ l - M
0 0 —(S - C) =0 Ss—¢C

The transform also exists for some other functions that are not of exponential order,
but that will not be relevant to us. Before dealing with uniqueness, let us note that for
exponential order functions we obtain that their Laplace transform decays at infinity:

lim F(s) = 0.

S§—00
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Theorem 6.1.3 (Uniqueness). Let f(t) and g(t) be continuous and of exponential order. Suppose
that there exists a constant C, such that F(s) = G(s) forall s > C. Then f(t) = g(t) forall t > 0.

Both theorems hold for piecewise continuous functions as well. Recall that piecewise
continuous means that the function is continuous except perhaps at a discrete set of points,
where it has jump discontinuities like the Heaviside function. Uniqueness, however, does
not “see” values at the discontinuities. So we can only conclude that f(t) = g(t) outside of
discontinuities. For example, the unit step function is sometimes defined using u(0) = 1/2.
This new step function, however, has the exact same Laplace transform as the one we
defined earlier where u(0) = 1.

6.1.3 The inverse transform

As we said, the Laplace transform will allow us to convert a differential equation into an
algebraic equation. Once we solve the algebraic equation in the frequency domain we will
want to get back to the time domain, as that is what we are interested in. Given a function
F(s), we wish to find a function f(t) such that L{ f (t)} = F(s). Theorem 6.1.3 says that the
solution f(t) is unique. So we can without fear make the following definition.

Suppose F(s) = L{f(t)} for some function f(t). Define the inverse Laplace transform as

L) E F).

There is an integral formula for the inverse, but it is not as simple as the transform itself—it
requires complex numbers and path integrals. For us it will suffice to compute the inverse
using Table 6.1 on page 295.

Example 6.1.5: Take F(s) = _s-lrl' Find the inverse Laplace transform.
We look at the table to find
1
-1 _ t
£ {s + 1} -

As the Laplace transform is linear, the inverse Laplace transform is also linear. That is,

L {AF(S) + BG(S)} = AL‘l{F(s)} + BL‘l{G(s)}.

Of course, we also have L71{AF(s)} = AL7'{F(s)}. Let us demonstrate how linearity can
be used.

Example 6.1.6: Take F(s) = 52;3’%“ Find the inverse Laplace transform.
First we use the method of partial fractions to write F in a form where we can use Table 6.1

on page 295. We factor the denominator as s(s? + 1) and write

s2+s+1 A Bs+C
- =Ty .
s3+s 5 s2+1
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Putting the right-hand side over a common denominator and equating the numerators
we get A(s? + 1) + s(Bs + C) = s® + s + 1. Expanding and equating coefficients we obtain
A+B=1,C=1,A =1, and thus B = 0. In other words,

s2+s+1 1 1
Fs)=2 1572 -~y .
(5) s34+ s s2+1

By linearity of the inverse Laplace transform we get

24541 1 1
oS eIy e —1+sint.
s3+s 5 s2+1

Another useful property is the so-called shifting property or the first shifting property

‘ L{e™f(t)} = F(s +a), ]

where F(s) is the Laplace transform of f(¢).
Exercise 6.1.4: Derive the first shifting property from the definition of the Laplace transform.

The shifting property can be used, for example, when the denominator is a more
complicated quadratic that may come up in the method of partial fractions. We complete
the square and write such quadratics as (s + a)* + b and then use the shifting property.

Example 6.1.7: Find £ {52+4s+8}

First we complete the square to make the denominator (s + 2)2 + 4. Next we find

£ { ! } = %sin(Zt).

s2 +4

Putting it all together with the shifting property, we find

-1 1 _ -1 1 I T

In general, we want to be able to apply the Laplace transform to rational functions, that

is functions of the form
F(s)

G(s)

where F(s) and G(s) are polynomials. Since normally, for the functions that we are
considering, the Laplace transform goes to zero as s — oo, it is not hard to see that the
degree of F(s) must be smaller than that of G(s). Such rational functions are called proper
rational functions and we can always apply the method of partial fractions. Of course this
means we need to be able to factor the denominator into linear and quadratic terms, which
involves finding the roots of the denominator.
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6.1.4 Exercises

Exercise 6.1.5: Find the Laplace transform of 3 + t> + sin(mt).

Exercise 6.1.6: Find the Laplace transform of a + bt + ct? for some constants a, b, and c.
Exercise 6.1.7: Find the Laplace transform of A cos(wt) + B sin(wt).

Exercise 6.1.8: Find the Laplace transform of cos?(wt).

Exercise 6.1.9: Find the inverse Laplace transform of ﬁ.

Exercise 6.1.10: Find the inverse Laplace transform of SZZf 7.

Exercise 6.1.11: Find the inverse Laplace transform of m

toift>1,

Exercise 6.1.12: Find the Laplace transform of f(t) =
p sform of f(t) {0 el

Exercise 6.1.13: Find the inverse Laplace transform of m.

Exercise 6.1.14: Find the Laplace transform of sin(w(t — a)).

Exercise 6.1.15: Find the Laplace transform of t sin(wt). Hint: Several integrations by parts.
Exercise 6.1.101: Find the Laplace transform of 4(t + 1)%.

Exercise 6.1.102: Find the inverse Laplace transform of ﬁ.

Exercise 6.1.103: Find the Laplace transform of te™'. Hint: Integrate by parts.

Exercise 6.1.104: Find the Laplace transform of sin(t)e™'. Hint: Integrate by parts.
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6.2 Transforms of derivatives and ODEs

Note: 2 lectures, §7.2—7.3 in [EP], §6.2 and §6.3 in [BD]

6.2.1 Transforms of derivatives

Let us see how the Laplace transform is used for differential equations. First let us try to
find the Laplace transform of a function that is a derivative. Suppose g(t) is a differentiable
function of exponential order, that is, |g(t)| < Me® for some M and c. So L{ g(t)} exists,
and what is more, lim;_,o, ¢! ¢(¢) = 0 when s > ¢. Then
Li{g®)} = / gyt = g ‘/ (s)e ' g(t)dt = ~g(0) + s L{g(D)}.
0 = 0
We repeat this procedure for higher derivatives. The results are listed in Table 6.2. The

procedure also works for piecewise smooth functions, that is functions that are piecewise
continuous with a piecewise continuous derivative.

f&)  L{f()} = F(s)

g'(t)  sG(s) - g(0)

g"(t)  s*G(s) —sg(0) - g'(0)

§"(t) s°G(s) - s?g(0) - 58'(0) - " (0)

Table 6.2: Laplace transforms of derivatives (G(s) = L{g(t)} as usual).

Exercise 6.2.1: Verify Table 6.2.

6.2.2 Solving ODEs with the Laplace transform

Notice that the Laplace transform turns differentiation into multiplication by s. Let us see
how to apply this fact to differential equations.

Example 6.2.1: Take the equation
x”(t) + x(t) = cos(2t), x(0)=0, x'(0)=1.

We will take the Laplace transform of both sides. By X(s) we will, as usual, denote the
Laplace transform of x(t).

L{x"(t) + x(t)} = L{cos(2t)},

$2X(s) = sx(0) — '(0) + X(s) = S2S+ -
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We plug in the initial conditions now—this makes the computations more streamlined—to
obtain

2
X(s) -1+ X(s) = :
S2X(5) =1+ X(s) = o

We solve for X(s),
s 1

+ .
(s24+1)(s2+4) s2+1
We use partial fractions (exercise) to write

1 S _1 S N 1
T 3s2+1 382+4 s2+1°

Now take the inverse Laplace transform to obtain

X(s) =

x(t) = %cos(t) - %cos(2t) + sin(t).

The procedure for linear constant coefficient equations is as follows: Take an ordinary
differential equation in the time variable t. Apply the Laplace transform to transform the
equation into an algebraic (non differential) equation in the frequency domain. All the x(t),
x’(t), x”(t), and so on, will be converted to X(s), sX(s) — x(0), s>X(s) — sx(0) — x’(0), and
so on. Solve the equation for X(s). Then taking the inverse transform, if possible, find x(f).

It should be noted that since not every function has a Laplace transform, not every
equation can be solved in this manner. Also if the equation is not a linear constant coefficient
ODE, then by applying the Laplace transform we may not obtain an algebraic equation.

6.2.3 Using the Heaviside function

Before we move on to more general equations than those we could solve before, we want to
consider the Heaviside function. See Figure 6.1 on the next page for the graph.

0 if t<0O,
u(t) = .
1 if t>0.

This function is useful for putting together functions, or cutting functions off. Most
commonly it is used as u(t — a) for some constant a. This just shifts the graph to the right
by a. That is, it is a function that is 0 when t < a and 1 when t > a. Suppose for example
that f(t) is a “signal” and you started receiving the signal sint at time t = 7. The function
f(t) should then be defined as

f(t):{o if <,

sint if t > m.
Using the Heaviside function, f(¢) can be written as

f(t) = u(t —m) sint.
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1.00 | 1.00

0.50 | - 0.50

-1.0 -0.5 0.0 0.5 1.0

Figure 6.1: Plot of the Heaviside (unit step) function u(t).

Similarly the step function that is 1 on the interval [1,2) and zero everywhere else can be
written as
u(t —1)—u(t - 2).

The Heaviside function is useful to define functions defined piecewise. If you want to
define f(t) such that f(t) = t whentisin [0,1], f(t) = =t +2when tisin[1,2],and f(t) =0
otherwise, then you can use the expression

f&) =t (u(t)—u(t—1)) + (-t +2) (u(t - 1) —u(t - 2)).
Hence it is useful to know how the Heaviside function interacts with the Laplace
transform. We have already seen that

e—llS

L{u(t - a)} =

S .

This can be generalized into a shifting property or second shifting property.

 L{fe-aut-a} = L{fn). | (6.1)

Example 6.2.2: The forcing function in our setup need not be periodic. Consider the
mass-spring system

X(t) +x(t) = £(t), x(0)=0, x(0)=0,

where f(t) = 1if 1 <t < 5 and zero otherwise. Imagine a rocket attached to the mass
is fired for 4 seconds starting at t = 1. Or perhaps imagine an RLC circuit, where the
voltage is raised at a constant rate for 4 seconds starting at t = 1, and then held steady
again starting at t = 5.
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We can write f(t) = u(t — 1) — u(t — 5). We transform the equation and we plug in the
initial conditions as before to obtain

-5 —5s
s2X(s) + X(s) = eT _¢

s
We solve for X(s) to obtain

e~s 6_55

X(s) = s(s2+1) s(s2+1)

We leave it as an exercise to the reader to show that

.£_1 {8(52;4_1)} =1-cost.

In other words £{1 — cost} = ——. So using (6.1) we find

s(s2+1) "

£ {s(s_ez_j 1)} = L7 {7 L{1 - cost}} = (1 - cos(t = 1)) u(t - 1).

Similarly

L= e e L - costh} = (1= costt - 5) e - 5),

Hence, the solution is
x(t) = (1 —cos(t = 1)) u(t = 1) — (1 — cos(t — 5)) u(t —5).

The plot of this solution is given in Figure 6.2 on the following page.

6.2.4 Transfer functions

The Laplace transform leads to the following useful concept for studying the steady state
behavior of a linear system. Consider an equation of the form

Lx = f(b),

where L is a linear constant coefficient differential operator. Then f(t) is usually thought of
as input of the system and x(¢) is thought of as the output of the system. For example, for
a mass-spring system the input is the forcing function and the output is the behavior of
the mass. We would like to have a convenient way to study the behavior of the system for
different inputs.

Let us suppose that all the initial conditions are zero and take the Laplace transform of
the equation, we obtain the equation

A(s)X(s) = F(s).
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Figure 6.2: Plot of x(t).

Solving for the ratio X(s)/F(s) we obtain the so-called transfer function H(s) = 1/A.s), that is,

_ X(s)

H(s) = )’

In other words, X(s) = H(s)F(s). We obtain an algebraic dependence of the output of the
system based on the input. We can now easily study the steady state behavior of the system
given different inputs by simply multiplying by the transfer function.

Example 6.2.3: Given x” + a)gx = f(t), let us find the transfer function (assuming the initial
conditions are zero).
First, we take the Laplace transform of the equation.

s2X(s) + a)SX(s) = F(s).
Now we solve for the transfer function X(s)/F(s).

_ X(s) 1

H(s) = ) 52+w3.

Let us see how to use the transfer function. Suppose we have the constant input f(t) = 1.
Hence F(s) = 1/s, and
1 1

52+a)35

X(s) = H(s)F(s) =

Taking the inverse Laplace transform of X(s) we obtain

1 — cos(wot)
= Lmcosany)
Wy
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6.2.5 Transforms of integrals

A feature of Laplace transforms is that it is also able to easily deal with integral equations.
That is, equations in which integrals rather than derivatives of functions appear. The basic
property, which can be proved by applying the definition and doing integration by parts, is

‘ .l:{/otf(’()d’c}zélf(s). |

It is sometimes useful (e.g. for computing the inverse transform) to write this as

/tf(T) dt = L7} {lF(s)} .
0 s

Example 6.2.4: To compute L~ {S (52+1)} we could proceed by applying this integration

L1 1 ! —/tL_l 1 dT_/tSianT—l—COSt
SSZ+1 B 0 Sz+1 B 0 B '

Example 6.2.5: An equation containing an integral of the unknown function is called an
integral equation. Consider
t
t? = / e*x(7) dr,
0

where we wish to solve for x(t). We apply the Laplace transform and the shifting property
to get

rule.

2 <L) = 1XG6 1),

where X(s) = L{x(t)}. Thus

X(s-1)= s% or X(s) = (s+1)2.

We use the shifting property again
x(t) =2e~"t

6.2.6 Exercises

Exercise 6.2.2: Using the Heaviside function write down the piecewise function that is 0 for t <0,
t2 for t in [0,1] and t for t > 1.

Exercise 6.2.3: Using the Laplace transform solve
mx” +cx’+kx=0, x(0)=a, x'(0)=

wherem > 0,¢ >0,k >0, and c?> — 4km > 0 (system is overdamped).
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Exercise 6.2.4: Using the Laplace transform solve
mx” +cx’+kx =0, x(0)=a, x'(0)=0,
wherem > 0,¢ >0,k >0, and c? — 4km < 0 (system is underdamped).
Exercise 6.2.5: Using the Laplace transform solve
mx" +cx"+kx =0, x(0)=a, x'(0)=0,
wherem > 0,¢ >0,k >0, and c? = 4km (system is critically damped).
Exercise 6.2.6: Solve x” + x = u(t — 1) for initial conditions x(0) = 0 and x’(0) = 0.

Exercise 6.2.7: Show the differentiation of the transform property. Suppose L{f(t)} = F(s), then
show

L{-tf(t)} =F(s).
Hint: Differentiate under the integral sign.

Exercise 6.2.8: Solve x"" + x = t3u(t — 1) for initial conditions x(0) = 1 and x’(0) = 0, x”(0) = 0.
Exercise 6.2.9: Show the second shifting property: L{f(t —a)u(t —a)} = e™ L{f(t)}.

Exercise 6.2.10: Let us think of the mass-spring system with a rocket from Example 6.2.2. We
noticed that the solution kept oscillating after the rocket stopped running. The amplitude of the
oscillation depends on the time that the rocket was fired (for 4 seconds in the example).

a) Find a formula for the amplitude of the resulting oscillation in terms of the amount of time the
rocket is fired.

b) Is there a nonzero time (if so what is it?) for which the rocket fires and the resulting oscillation
has amplitude O (the mass is not moving)?

Exercise 6.2.11: Define
(t-17% if1<t<2,
f(t)=43-t if 2<t<3,
0 otherwise.

a) Sketch the graph of f(t).
b) Write down f(t) using the Heaviside function.
c) Solve x” + x = f(t), x(0) = 0, x’(0) = 0 using Laplace transform.

Exercise 6.2.12: Find the transfer function for mx” + cx’ + kx = f(t) (assuming the initial
conditions are zero).
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Exercise 6.2.101: Using the Heaviside function u(t), write down the function

0 if t<1,
fH=43t-1 if1<t<2,
1 if 2<t.

Exercise 6.2.102: Solve x” — x = (t> — 1)u(t — 1) for initial conditions x(0) = 1, x'(0) = 2 using
the Laplace transform.

Exercise 6.2.103: Find the transfer function for x’ + x = f(t) (assuming the initial conditions are
zero).
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6.3 Convolution

Note: 1 or 1.5 lectures, §7.2 in [EP], §6.6 in [BD]

6.3.1 The convolution

The Laplace transformation of a product is not the product of the transforms. All hope is
not lost however. We simply have to use a different type of a “product.” Take two functions
f(t) and g(t) defined for t > 0, and define the convolution* of f(t) and g(t) as

t
( (f*g)(t)dgf/O f(0)g(t =) dr. 1 (6.2)

As you can see, the convolution of two functions of ¢ is another function of ¢.

Example 6.3.1: Take f(t) = ¢’ and g(t) = ¢ for t > 0. Then

(f*g)(t)=/OteT(t—T)dT:et—t—1.

To solve the integral we did one integration by parts.

Example 6.3.2: Take f(t) = sin(wt) and g(t) = cos(wt) for t > 0. Then

(f *8)t) = /O | sin(w1) cos(w(t - 1)) dr.
Apply the identity
cos(6) sin(y) = 3 (sin(6 + ) —sin(6 - ),
to get

t
(f *8)(t) = /0 % (sin(wt) — sin(wt — 2w1)) dt

t
1 1
= [z Tsin(wt) + — cosRwT — wt)
2 4w =0

1
= Etsin(a)t).

The formula holds only for ¢t > 0. The functions f, g, and f * g are undefined for ¢t < 0.

*For those that have seen convolution before, you may have seen it defined as (f *¢)(t) = /_ 0; f(r)g(t—1)dr.
This definition agrees with (6.2) if you define f(f) and g(t) to be zero for t < 0. When discussing the Laplace
transform the definition we gave is sufficient. Convolution does occur in many other applications, however,
where you may have to use the more general definition with infinities.
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Convolution has many properties that make it behave like a product. Let ¢ be a constant
and f, g, and h be functions. Then

frg=8+f,
(cf)eg=f*(cg)=c(f*g),
(f*g)xh=f=x(g*h).

The most interesting property for us is the following theorem.

Theorem 6.3.1. Let f(t) and g(t) be of exponential order, then

L{(f ) = £ { [ rosie-o df} _ 2O} L{g®).

In other words, the Laplace transform of a convolution is the product of the Laplace
transforms. The simplest way to use this result is in reverse.

Example 6.3.3: Suppose we have the function of s defined by

111
(s+1)s2  s+1s2

We recognize the two entries of Table 6.2. That is,

L—l{sil}w—f and 1:—1{812}=t.

o) 11 -y —t
L (= Te dt=e "+t -1.

The calculation of the integral involved an integration by parts.

Therefore,

6.3.2 Solving ODEs

The next example demonstrates the full power of the convolution and the Laplace transform.
We can give the solution to the forced oscillation problem for any forcing function as a
definite integral.

Example 6.3.4: Find the solution to
x” + a)gx = f(), x(0)=0, x'(0)=0,

for an arbitrary function f(t).
We first apply the Laplace transform to the equation. Denote the transform of x(t) by
X(s) and the transform of f(t) by F(s) as usual. We get

s2X(s) + a)(z)X(s) = F(s),
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or in other words

1
X(s) = F(s) > 5
s + Wy
We know
I 1 _ sin(a)ot).
2 + w? @o
Therefore,

) - /Otf(T)sin(a)o(t - 1)) it

wo

or if we reverse the order

x(t) = /Ot %a;m)f(t ~ 1) dr.

Notice one more feature of this example. We can now see how Laplace transform
handles resonance. Suppose that f(t) = cos(wogt). Then

x(t) = /Ot %a;or) cos(wo(t — 7)) dt = a)io /Ot sin(wot) cos(wo(t — 1)) dr.

We have computed the convolution of sine and cosine in Example 6.3.2. Hence

x(t) = (i) (%t sin(a)ot)) = 2%)0t sin(wot).

@o

Note the t in front of the sine. The solution, therefore, grows without bound as ¢ gets large,
meaning we get resonance.

Similarly, we can solve any constant coefficient equation with an arbitrary forcing
function f(t) as a definite integral using convolution. A definite integral, rather than a
closed form solution, is usually enough for most practical purposes. It is not hard to
numerically evaluate a definite integral.

6.3.3 Volterra integral equation

A common integral equation is the Volterra integral equation*

t
x(t) = f(t) + /0 gt —1)x(7) dt,

where f(t) and g(t) are known functions and x(t) is an unknown we wish to solve for. To
find x(t), we apply the Laplace transform to the equation to obtain

X(s) = F(s) + G(s)X(s),

*Named for the Italian mathematician Vito Volterra (1860-1940).
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where X(s), F(s), and G(s) are the Laplace transforms of x(t), f(t), and g(t) respectively.
We find

__F(s)
X(s) = 1-Ge)"

To find x(t) we now need to find the inverse Laplace transform of X(s).

Example 6.3.5: Solve
t
x(t)=e '+ / sinh(t — 7)x(7) dr.
0
We apply Laplace transform to obtain
1

1
X(s) = — + X
S L R
or :

ey -1 S 1
XS: s+1 :S — _ ]
(s) - s2-2 s2-2 s2-2

s4—1

It is not hard to apply Table 6.1 on page 295 to find

x(t) = cosh(V2t) - % sinh(\/it).

6.3.4 Exercises
Exercise 6.3.1: Let f(t) = t* fort > 0, and g(t) = u(t — 1). Compute f = g.
Exercise 6.3.2: Let f(t) =t fort >0, and g(t) = sint fort > 0. Compute f * g.
Exercise 6.3.3: Find the solution to

mx” +cx"+kx = f(t), x(0)=0, x'(0)=0,

for an arbitrary function f(t), where m > 0, ¢ > 0, k > 0, and ¢* — 4km > O (the system is
overdamped). Write the solution as a definite integral.

Exercise 6.3.4: Find the solution to
mx” +cx’+kx = f(t), x(0)=0, x'(0)=0,

for an arbitrary function f(t), where m > 0, ¢ > 0, k > 0, and ¢*> — 4km < O (the system is
underdamped). Write the solution as a definite integral.

Exercise 6.3.5: Find the solution to
mx” +cx"+kx = f(t), x(0)=0, x'(0)=0,

for an arbitrary function f(t), where m > 0, c > 0, k > 0, and ¢* = 4km (the system is critically
damped). Write the solution as a definite integral.
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Exercise 6.3.6: Solve

x(t)=e '+ /t cos(t — 7)x(7) d.
0

Exercise 6.3.7: Solve ,
x(t) = cost + / cos(t — 7)x(7) dt.
0

Exercise 6.3.8: Compute £ {( - i4)2} using convolution.
S

Exercise 6.3.9: Write down the solution to x” — 2x = e, x(0) = 0, x’(0) = 0 as a definite
integral. Hint: Do not try to compute the Laplace transform of et

Exercise 6.3.101: Let f(t) = cost for t > 0, and g(t) = e™". Compute f + g.

Exercise 6.3.102: Compute L' {25} using convolution.

Exercise 6.3.103: Solve x” + x = sint, x(0) = 0, x’(0) = 0 using convolution.

Exercise 6.3.104: Solve x"’" + x” = f(t), x(0) =0, x’(0) = 0, x”(0) = 0 using convolution. Write
the result as a definite integral.



6.4. DIRAC DELTA AND IMPULSE RESPONSE 313

6.4 Dirac delta and impulse response

Note: 1 or 1.5 lecture, §7.6 in [EP], §6.5 in [BD]

6.4.1 Rectangular pulse

Often we study a physical system by putting in a short pulse and then seeing what the
system does. The resulting behavior is often called impulse response, and understanding it
tells us how the system responds to any input. Let us see what we mean by a pulse. The
simplest kind of a pulse is a simple rectangular pulse defined by

0 if t<a,
p(t)y={M if a<t<b,
0 if b<t.

See Figure 6.3 for a graph.
Notice that

@(t) = M(u(t —a) —u(t - b)), S R

where u(t) is the unit step function.
Let us take the Laplace transform of a
square pulse,

L{pt)} = L{M (u(t - a) - u(t - b))}
—as _ e—bs

e
= M _— 0.0 : i : ! ! 00

S 0.0 0.5 1.0 1.5 20 25 3.0

For simplicity, let 2 = 0. It is also conve- | Figure 6.3: Sample square pulse with a = 0.5,
nient to set M = 1/b so that b=1,and M = 2.

/Ooo(p(t)dt =1.

That is, to have the pulse have “unit mass.” For such a pulse,

3 u(t)—u(t->b)| _ 1—ebs
L{qo(t)}—L{ - }— -

We want b to be very small; we wish to have the pulse be very short and very tall. By
letting b go to zero we arrive at the concept of the Dirac delta function.
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6.4.2 The delta function

The Dirac delta function™ is not exactly a function; it is sometimes called a generalized function.
We avoid unnecessary details and simply say that it is an object that does not really make
sense unless we integrate it. The motivation is that we would like a “function” 6(t) such
that for any continuous function f(t),

‘ [ ewraar = o

The formula should hold if we integrate over any interval that contains 0, not just (oo, c0).
So 6(t) is a “function” with all its “mass” at the single point t = 0. For any interval' [c, d],

/d 5(t) dt = 1 if the in.terval [c,d] contains 0,1.e.c <0 < d,
c 0 otherwise.

Unfortunately there is no such function in the classical sense. You could informally think
that 6(t) is zero for t # 0 and somehow infinite at t = 0.

A good way to think about 6(t) is as a limit of short pulses whose integral is 1.
For example, consider a square pulse ¢(t) as above with a = 0 and M = 1/p, that is,

P(t) = —”(t)_z(t_b). Compute

© 00 _ _ b
[ (P(t)f(t)dt=[ u(t) Z(t mf(t)dt:%/o f(t)dt.

o0

If f(t) is continuous at t = 0, then for very small b, the function f(t) is approximately equal
to f(0) on the interval [0, b]. We approximate the integral

b b
s [ roasg [ o= 5o,
Hence, )
e 1
tim [ g =tim g [ rwae = g0

Let us therefore accept 0(t) as an object that is possible to integrate. We often want to
shift 6 to another point, for example 6(f — a). In that case,

[ et-nsea= s,

Note that 6(a — t) is the same object as 6(t — a). In other words, the convolution of 6(¢) with

f(t)is again f(t), t
(f +6)(t) = / 5(t — s)f(s)ds = £().
0

*Named after the English physicist and mathematician Paul Adrien Maurice Dirac (1902-1984).

It is important that we consider ¢ and d as part of the interval. One could write this integral as fc _+.
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As we can integrate 6(t), we compute its Laplace transform:

L{é(t - a)} = [)OO e SIS(t —a)dt = e,

In particular,

L{s(} =1.

Remark 6.4.1: The Laplace transform of 6(f — a) would be the Laplace transform of the
derivative of the Heaviside function u(t — a), if the Heaviside function had a derivative.
First,

e—(lS

L{u(t-a)} =

S

To obtain what the Laplace transform of the derivative would be, we multiply by s, to obtain
e~"®, which is the Laplace transform of 6(t — a). We see the same thing using integration,

/té(s—a)ds =u(t —a).
0

So in a certain sense J
E[u(t - a)] = 5(t - a).

This line of reasoning allows us to talk about derivatives of functions with jump discontinu-
ities. We can think of the derivative of the Heaviside function u(t — a) as being somehow
infinite at a2, which is precisely our intuitive understanding of the delta function.

Example 6.4.1: Let us compute £ {f’sil} So far we only computed the inverse transform
of proper rational functions in the s variable. That is, the numerator was of lower degree
than the denominator. Not so with Ssi We can use the delta function to compute,

L {%} =Lt {1 + é} =L Y1} + £ {%} = 5(t) + 1.

The resulting object is a generalized function and only makes sense when put underneath
an integral.

6.4.3 Impulse response

As we said before, in the differential equation Lx = f (), we think of f(¢) as input, and x(t)
as the output. We think of the delta function as an impulse, and so to find the response to
an impulse, we use the delta function in place of f(t). The solution to

Lx = 06(t)

is called the impulse response.
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Example 6.4.2: Solve (find the impulse response)
X’ +wix =6(t), x(0)=0, x'(0)=0. (6.3)
Apply the Laplace transform to the equation, and denote the transform of x(t) by X(s):

1

s2X(s) + a)SX(s) =1, and so X(s) = 5
52 + W

The inverse Laplace transform produces (for ¢ > 0)

sin(wot)

x(t) = .

wo

Remark 6.4.2: Perhaps an astute reader will notice that it does not seem like x’(0) = 0.
However, we really want to think of as x(t) = 0 for t < 0, so x(t) has a “corner” att = 0, so
x” has a jump discontinuity there, which is what produces the 6(f) when we take x”, see
Remark 6.4.1. The initial condition really is x’(0—) = lim;s x’(0) = 0.

Let us notice something about the example above. In Example 6.3.4, we found that
when the input is f(t), the solution to Lx = f(t) is given by

x(t) = /0 f (T)Si“(‘”zf; ~) 4

That is, the solution for an arbitrary input is given as convolution with the impulse response. Let
us see why. The key is to notice that for functions x(t) and f(t),

ey =4 i @t - |- [ FOR(E -7y dr = (7 )D).

We simply differentiate twice under the integral®, the details are left as an exercise. If we
convolve the entire equation (6.3), the left-hand side becomes

(x” + cugx) # f=(x"*f)+ a)g(x #f)=(x*f)"+ w%(x * f).

The right-hand side becomes
(6= f)(t) = f(b).

Therefore, y(t) = (x * f)(t) is the solution to

vy’ + wéy = f(t).

This procedure works in general for other linear equations Lx = f(t). If you determine
the impulse response, you also know how to obtain the output x(t) for any input f(t) by
simply convolving the impulse response and the input f(t).

“You should really think of the integral going over (—co, o) rather than over [0, t] and simply assume that
f(t) and x(t) are continuous and zero for negative t.
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6.4.4 Three-point beam bending

Let us give another quite different example where the delta function turns up: Representing
point loads on a steel beam. Consider a beam of length L, resting on two simple supports
at the ends. Let x denote the position on the beam, and let y(x) denote the deflection of the
beam in the vertical direction. The deflection y(x) satisfies the Euler—Bernoulli equation®,

d*y
EI@ = F(.X'),

where E and I are constants” and F(x) is the force applied per unit length at position x. The
situation we are interested in is when the force is applied at a single point as in Figure 6.4.

Figure 6.4: Three-point bending.

The equation becomes
E1d4—y =-Fd(x —a)
dxt '
where x = g is the point where the mass is applied. The constant F is the force applied and
the minus sign indicates that the force is downward, that is, in the negative y direction.

The end points of the beam satisfy the conditions,

y(0)=0, ¥y 0)=0,

y(L) =0, y”(L) = 0.
See § 5.2 for further information about endpoint conditions applied to beams.
Example 6.4.3: Suppose that length of the beam is 2, and EI = 1 for simplicity. Further
suppose that the force F = 1 is applied at x = 1. That is, we have the equation

d*y
i —6(x - 1),

and the endpoint conditions are

y(O) =0, y”(O) =0, y(Z) =0, y//(Z) =0.

*Named for the Swiss mathematicians Jacob Bernoulli (1654-1705), Daniel Bernoulli (1700-1782), the
nephew of Jacob, and Leonhard Paul Euler (1707-1783).

*E is the elastic modulus and I is the second moment of area. Let us not worry about the details and
simply think of these as some given constants.



https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Euler
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We could integrate, but using the Laplace transform is even easier. We apply the
transform in the x variable rather than the t variable. Let us again denote the transform of
y(x) as Y(s).

s¥Y(s) — s3y(0) — s2y’(0) — sy”(0) — y"(0) = —e™°.
We notice that y(0) = 0 and y”(0) = 0. Let us call C; = y’(0) and C; = y"”(0). We solve for

Y(s),
- C1 (G
$2 st

Y(s) =

We take the inverse Laplace transform utilizing the second shifting property (6.1) to take
the inverse of the first term.

(e 13
Mu(x -1)+ Cix + 2x?’.

6 6

We still need to apply two of the endpoint conditions. As the conditions are at x =2 we
can simply replace u(x — 1) = 1 when taking the derivatives. Therefore,

y(x) =

o —2-1 Cay -1 4
0=vy(2) = 3 + C1(2) + 62 =3 +2C1+3C2,
and 3-2-(2-1 C
0:y”(2):_ 2-(2- )+_23.2.2:—1+2C2.

6 6

Hence C; = 1 and solving for C; using the first equation we obtain C; = 3L. Our solution
for the beam deflection is

23

~(x - 1)°

y(x) = g

u(x—l)—£+

6.4.5 Exercises
Exercise 6.4.1: Solve (find the impulse response) x” + x" + x = 6(t), x(0) = 0, x’(0) = 0.
Exercise 6.4.2: Solve (find the impulse response) x” +2x" + x = 6(t), x(0) = 0, x’(0) = 0.

Exercise 6.4.3: A pulse can come later and can be bigger. Solve x” + 4x = 45(t — 1), x(0) = 0,
x’(0) = 0.

Exercise 6.4.4: Suppose that f(t) and g(t) are differentiable functions and suppose that f(t) =
g(t)=0forallt <0. Show that

(f &) (t) = (f" = &)(t) = (f = &')(¥).

Exercise 6.4.5: Suppose that Lx = 6(t), x(0) = 0, x’(0) = 0, has the solution x(t) = te™" for
t > 0. Find the solution to Lx = 2, x(0) = 0, x’(0) = 0 for t > 0.

Exercise 6.4.6: Compute L™ {522—3“}
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Exercise 6.4.7 (challenging): Solve Example 6.4.3 via integrating 4 times in the x variable.

Exercise 6.4.8: Suppose we have a beam of length 1 simply supported at the ends and suppose that
force F =1 is applied at x = 2 in the downward direction. Suppose that EI = 1 for simplicity. Find
the beam deflection y(x).

Exercise 6.4.101: Solve (find the impulse response) x” = 6(t), x(0) = 0, x’(0) = 0.
Exercise 6.4.102: Solve (find the impulse response) x’ + ax = 6(t), x(0) = 0, x’(0) = 0.

Exercise 6.4.103: Suppose that Lx = 6(t), x(0) = 0, x’(0) = 0, has the solution x(t) = e’ sin(t)
fort > 0. Find (in closed form) the solution to Lx = e*, x(0) = 0, x’(0) = 0 for t > 0.

Exercise 6.4.104: Compute £ { i}

s2+1

Exercise 6.4.105: Compute L1 {352’;#}
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6.5 Solving PDEs with the Laplace transform

Note: 1-1.5 lecture, can be skipped

The Laplace transform comes from the same family of transforms as does the Fourier
series*, which we used in chapter 4 to solve partial differential equations (PDEs). It is
therefore not surprising that we can also solve PDEs with the Laplace transform.

Given a PDE in two independent variables x and t, we use the Laplace transform on
one of the variables (taking the transform of everything in sight), and derivatives in that
variable become multiplications by the transformed variable s. The PDE becomes an ODE,
which we solve. Afterwards we invert the transform to find a solution to the original
problem. It is best to see the procedure on an example.

Example 6.5.1: Consider the first order PDE
Vi = =Yy, forx >0, t>0,

with side conditions
y(0,t) =C, y(x,0) =0.

This equation is called the convection equation or sometimes the transport equation, and it
already made an appearance in § 1.9, with different conditions. See Figure 6.5 for a diagram
of the setup.

A physical setup of this equation is a river
of solid goo, as we do not want anything to t
diffuse. The function vy is the concentration of
some toxic substance’. The variable x denotes
position where x = 0 is the location of a = ¥ =C Yt = —QYx
factory spewing the toxic substance into 