In our first and second term of calculus, we could handle dynamic situations in only one dimension.
Today we learn how to handle the dynamics of curves in both $2$ and $3$-dimensional space!
Derivatives of Vector-Valued Functions
Let ${\bf r}(t)$ be a vector-valued function in either the plane or space.
Then the derivative of ${\bf r}(t)$ is $$ {\bf r}'(t)=\lim_{\Delta t \rightarrow 0} \frac{{\bf r}(t+\Delta t)-{\bf r}(t)}{\Delta t} $$ provided the limit exists.
Derivatives of Vector-Valued Functions
$\Delta {\bf r}$$=$${\bf r}(t+\Delta t)-{\bf r}(t)$
$,\,\,\,\,$
$\displaystyle \frac{\Delta {\bf r}}{\Delta t}=\frac{{\bf r}(t+\Delta t)-{\bf r}(t)}{\Delta t}$
Derivatives of Vector-Valued Functions
If ${\bf r}(t)$ is a vector-valued function in either the plane or space, then the geometric interpretation of its derivative, ${\bf r}'(t),$ is a tangent vector whose length is the rate of change of ${\bf r}(t)$ at a particular value of $t.$

If ${\bf r}(t)$ describes an object's position with respect to time, then ${\bf r}'(t),$ describes the object's velolcity.
Derivatives of Vector-Valued Functions
If ${\bf r}(t)$ is a vector-valued function in either the plane or space, then the geometric interpretation of its derivative, ${\bf r}'(t),$ is a tangent vector whose length is the rate of change of ${\bf r}(t)$ at a particular value of $t.$
If ${\bf r}(t)$ is a vector-valued function in either the plane or space, then the geometric interpretation of its derivative, ${\bf r}'(t),$ is a tangent vector whose length is the rate of change of ${\bf r}(t)$ at a particular value of $t.$
${\bf r}(t)$$, \,\,$
${\bf r}'(t)$
Example
Use the definition to calculate the derivative of the function $$ {\bf r}(t)=(2t^2+3){\bf i}+(5t-6){\bf j} $$
$$
\begin{array}{lll}
\displaystyle {\bf r}'(t) &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{{\bf r}(t+\Delta t)-{\bf r}(t)}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{(2(t+\Delta t)^2+3){\bf i}+(5(t+\Delta t)-6){\bf j}-((2t^2+3){\bf i}+(5t-6){\bf j})}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{(2(t^2+2t\Delta t+\Delta t^2)+3){\bf i}+(5t+5\Delta t-6){\bf j}-(2t^2+3){\bf i}-(5t-6){\bf j}}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{(2t^2+4t\Delta t+2\Delta t^2+3){\bf i}+(5t+5\Delta t-6){\bf j}-(2t^2+3){\bf i}-(5t-6){\bf j}}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{(2t^2+4t\Delta t+2\Delta t^2+3-(2t^2+3)){\bf i}+(5t+5\Delta t-6-(5t-6)){\bf j}}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \frac{(4t\Delta t+2\Delta t^2){\bf i}+(5\Delta t){\bf j}}{\Delta t}&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \left[\frac{4t\Delta t+2\Delta t^2}{\Delta t}{\bf i}+\frac{5\Delta t}{\Delta t}{\bf j}\right]&\mbox{}\\
\displaystyle &\displaystyle= \lim_{\Delta t \rightarrow 0} \left[(4t+2\Delta t){\bf i}+5{\bf j}\right]&\mbox{}\\
\displaystyle &\displaystyle= 4t\,{\bf i}+5\,{\bf j}&\mbox{}\\
\end{array}
$$
The above example strongly hints at the following result...
Derivatives of Vector-Valued Functions
If ${\bf r}(t)=f(t)\,{\bf i}+g(t)\,{\bf j}=\langle f(t),g(t)\rangle,$ then $${\bf r}'(t)=f'(t)\,{\bf i}+g'(t)\,{\bf j}=\langle f'(t),g'(t)\rangle$$
If ${\bf r}(t)=f(t)\,{\bf i}+g(t)\,{\bf j}+h(t)\,{\bf k}=\langle f(t),g(t),h(t)\rangle,$ then $${\bf r}'(t)=f'(t)\,{\bf i}+g'(t)\,{\bf j}+h'(t)\,{\bf k}=\langle f'(t),g'(t),h'(t)\rangle$$
Example
Use the above result to calculate the derivative of the vector-valued function $$ {\bf r}(t)=3\cos t\,{\bf i}+2\sin t\,{\bf j} $$
$$
{\bf r}(t)=-3\sin t\,{\bf i}+2\cos t\,{\bf j}
$$
${\bf r}(t)=3\cos t\,{\bf i}+2\sin t\,{\bf j}$$, \,\,$
${\bf r}'(t)=-3\sin t\,{\bf i}+2\cos t\,{\bf j}$
Example
Calculate the derivative of the vector-valued function $$ {\bf r}(t)=e^t\sin t\,{\bf i}+e^t\cos t\,{\bf j}-e^{2t}\,{\bf k} $$
$$
\begin{array}{lll}
\displaystyle {\bf r}'(t)&\displaystyle= \left(\frac{d}{dt}e^t\sin t\right)\,{\bf i}+ \left(\frac{d}{dt}e^t\cos t\right)\,{\bf j}- \left(\frac{d}{dt}e^{2t}\right)\,{\bf k}&\mbox{}\\
\displaystyle &\displaystyle= (e^t\sin t+e^t\cos t)\,{\bf i}+(e^t\cos t-e^t\sin t)\,{\bf j}-2e^{2t}\,{\bf k}&\mbox{}\\
\displaystyle &\displaystyle= e^t(\sin t+\cos t)\,{\bf i}+e^t(\cos t-\sin t)\,{\bf j}-2e^{2t}\,{\bf k}&\mbox{}\\
\end{array}
$$
Properties of the Derivative of Vector-Valued Functions
$$ \begin{array}{ll} \displaystyle \frac{d}{dt}[c{\bf r}(t)]=c{\bf r}'(t)&\\ \displaystyle \frac{d}{dt}[{\bf r}(t)\pm{\bf s}(t)]={\bf r}'(t)\pm{\bf s}'(t)&\\ \displaystyle \frac{d}{dt}[f(t){\bf r}(t)]=f(t){\bf r}'(t)+f'(t){\bf r}(t)&\mbox{Derivative of Scalar Product}\\ \displaystyle \frac{d}{dt}[{\bf r}(t)\cdot{\bf s}(t)]={\bf r}'(t)\cdot{\bf s}(t)+{\bf r}(t)\cdot{\bf s}'(t)&\mbox{Derivative of Dot Product}\\ \displaystyle \frac{d}{dt}[{\bf r}(t)\times{\bf s}(t)]={\bf r}'(t)\times{\bf s}(t)+{\bf r}(t)\times{\bf s}'(t)&\mbox{Derivative of Cross Product}\\ \displaystyle \frac{d}{dt}[{\bf r}(f(t))]={\bf r}'(f(t))f'(t)&\mbox{Chain Rule}\\ \end{array} $$
Corollary: If $\Vert{\bf r}(t)\Vert=c$ for all $t,$ then ${\bf r}(t)\cdot {\bf r}'(t)=0$
Proof:
$$
\begin{array}{lrll}
&\displaystyle \Vert {\bf r}(t)\Vert&\displaystyle=c &\mbox{}\\
\implies&\displaystyle \Vert {\bf r}(t) \Vert^2&\displaystyle= c^2 &\mbox{}\\
\implies&\displaystyle {\bf r}(t)\cdot {\bf r}(t)&\displaystyle= c^2 &\mbox{}\\
\implies&\displaystyle \frac{d}{dt}[{\bf r}(t)\cdot {\bf r}(t)]&\displaystyle= \frac{d}{dt}c^2 &\mbox{}\\
\implies&\displaystyle {\bf r}'(t)\cdot{\bf r}(t)+{\bf r}(t)\cdot{\bf r}'(t)&\displaystyle=0 &\mbox{}\\
\implies&\displaystyle 2{\bf r}'(t)\cdot{\bf r}(t)&\displaystyle=0 &\mbox{}\\
\implies&\displaystyle {\bf r}'(t)\cdot{\bf r}(t)&\displaystyle=0 &\mbox{}\\
\end{array}
$$
Notice that this says that if ${\bf r}(t)$ is a circle in $\mathbb{R}^2$ or sphere in $\mathbb{R}^3,$ then
${\bf r}(t)$ and ${\bf r}'(t)$ are orthogonal!
For example...
For example...

Example
If $ {\bf r}(t)=\cos t\,{\bf i}+\sin t \,{\bf j}-e^{2t}\,{\bf k} $ and $ {\bf s}(t)=t\,{\bf i}+\sin t\,{\bf j}+\cos t\,{\bf k}, $ find
(a) $\displaystyle \frac{d}{dt}[{\bf r}(t)\cdot {\bf r}'(t)]$
$$
\begin{array}{lll}
\displaystyle \frac{d}{dt}[{\bf r}(t)\cdot {\bf r}'(t)]&\displaystyle={\bf r}'(t)\cdot{\bf r}'(t)+{\bf r}(t)\cdot{\bf r}''(t) &\mbox{}\\
\displaystyle &\displaystyle=\langle-\sin t,\cos t,-2e^{2t}\rangle\cdot\langle-\sin t,\cos t,-2e^{2t}\rangle+\langle\cos t, \sin t,-e^{2t}\rangle\cdot\langle-\cos t,-\sin t,-4e^{2t}\rangle &\mbox{}\\
\displaystyle &\displaystyle=\sin^2 t+\cos^2t+4e^{4t}-\cos^2 t-\sin^2 t+4e^{4t} &\mbox{}\\
\displaystyle &\displaystyle=8e^{4t} &\mbox{}\\
\end{array}
$$
$$
\begin{array}{lll}
\displaystyle \frac{d}{dt}[{\bf s}(t)\times {\bf r}(t)]&\displaystyle= {\bf s}'(t)\times{\bf r}(t)+{\bf s}(t)\times{\bf r}'(t)&\mbox{}\\
\displaystyle &\displaystyle= \langle 1,\cos t,-\sin t \rangle\times\langle\cos t, \sin t,-e^{2t}\rangle+\langle t,\sin t,\cos t \rangle\times\langle -\sin t, \cos t,-2e^{2t}\rangle&\mbox{}\\
\displaystyle &\displaystyle=\left|\begin{array}{ccc}{\bf i}&{\bf j}&{\bf k}\\ 1&\cos t&-\sin t \\ \cos t&\sin t&-e^{2t} \\ \end{array}\right| + \left|\begin{array}{ccc}{\bf i}&{\bf j}&{\bf k}\\ t&\sin t&\cos t \\ -\sin t&\cos t&-2e^{2t} \\ \end{array}\right| &\mbox{}\\
\displaystyle &\displaystyle=(-e^{2t}\cos t+\sin^2 t){\bf i}-(-e^{2t}+\sin t\cos t){\bf j}+(\sin t -\cos^2 t){\bf k}+(-2e^{2t}\sin t-\cos^2 t){\bf i}-(-2te^{2t}+\sin t \cos t){\bf j}+(t\cos t+\sin^2 t){\bf k} &\mbox{}\\
\displaystyle &\displaystyle=\langle-e^{2t}\cos t+\sin^2 t,-(-e^{2t}+\sin t\cos t),\sin t -\cos^2 t\rangle+\langle-2e^{2t}\sin t-\cos^2 t,-(-2te^{2t}+\sin t \cos t),t\cos t+\sin^2 t\rangle &\mbox{}\\
\displaystyle &\displaystyle=\langle-e^{2t}\cos t+\sin^2 t,e^{2t}-\sin t\cos t,\sin t -\cos^2 t\rangle+\langle-2e^{2t}\sin t-\cos^2 t,2te^{2t}-\sin t \cos t,t\cos t+\sin^2 t\rangle &\mbox{}\\
\displaystyle &\displaystyle=\langle-e^{2t}\cos t+\sin^2 t-2e^{2t}\sin t-\cos^2 t,e^{2t}-\sin t\cos t+2te^{2t}-\sin t \cos t,\sin t -\cos^2 t+t\cos t+\sin^2 t\rangle &\mbox{}\\
\displaystyle &\displaystyle=\langle -e^{2t}(\cos t+2\sin t)-\cos^2 t+\sin^2 t,(2t+1)e^{2t}-2\sin t \cos t,\sin t +t\cos t-\cos^2 t+\sin^2 t\rangle &\mbox{}\\
\displaystyle &\displaystyle=\langle -e^{2t}(\cos t+2\sin t)-\cos(2t),(2t+1)e^{2t}-2\sin (2t),\sin t +t\cos t-\cos(2t)\rangle &\mbox{}\\
\displaystyle &\displaystyle= (-e^{2t}(\cos t+2\sin t)-\cos(2t)){\bf i}+((2t+1)e^{2t}-2\sin (2t)){\bf j}+(\sin t +t\cos t-\cos(2t)){\bf k} &\mbox{}\\
\displaystyle &\displaystyle= -(e^{2t}(\cos t+2\sin t)+\cos(2t)){\bf i}+((2t+1)e^{2t}-2\sin (2t)){\bf j}+(\sin t +t\cos t-\cos(2t)){\bf k} &\mbox{}\\
\end{array}
$$
Alternatively, we could have calculated ${\bf s}(t)\times {\bf r}(t)$ first, and then taken the derivative.
Unit Tangent Vectors
Let ${\bf r}(t)$ be a vector-valued function in either the plane or space.
Then the principal unit tangent vector, ${\bf T}(t)$ is defined to be $$ {\bf T}(t)=\frac{{\bf r}'(t)}{\Vert{\bf r}'(t)\Vert} $$ provided $\Vert{\bf r}'(t)\Vert \gt 0$
Example
For $${\bf r}(t)=3\cos t\,{\bf i}+2\sin t\,{\bf j},$$ find $${\bf T}(t)=\displaystyle \frac{{\bf r}'(t)}{\Vert{\bf r}'(t)\Vert}.$$
Since ${\bf r}'(t)=-3\sin t\,{\bf i}+2\cos t\,{\bf j},$ we have
$$
\begin{array}{lll}
\displaystyle {\bf T}(t)&\displaystyle= \frac{{\bf r}'(t)}{\Vert{\bf r}'(t)\Vert}&\mbox{}\\
\displaystyle &\displaystyle=\frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\sqrt{(-3\sin t)^2+(2\cos t)^2}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\sqrt{9\sin^2 t+4\cos^2 t}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\sqrt{5\sin^2 t+4\sin^2 t+4\cos^2 t}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\sqrt{5\sin^2 t+4}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{-3\sin t}{\sqrt{5\sin^2 t+4}}\,{\bf i}+\frac{2\cos t}{\sqrt{5\sin^2 t+4}}\,{\bf j} &\mbox{}\\
\end{array}
$$
${\bf r}(t)=3\cos t\,{\bf i}+2\sin t\,{\bf j}$$, \,\,$
${\bf T}(t)
%=\displaystyle \frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\Vert -3\sin t\,{\bf i}+2\cos t\,{\bf j} \Vert}
%=\displaystyle \frac{-3\sin t\,{\bf i}+2\cos t\,{\bf j}}{\sqrt{5\sin^2 t+4}}
=\displaystyle \frac{-3\sin t}{\sqrt{5\sin^2 t+4}}\,{\bf i}+\frac{2\cos t}{\sqrt{5\sin^2 t+4}}\,{\bf j}
$
Example
Find the unit tangent vector for the vector-valued function $$ {\bf r}(t)=(t^2-3)\,{\bf i}+(2t+1)\,{\bf j}+(t-2)\,{\bf k} $$
Since ${\bf r},(t)=2t\,{\bf i}+2\,{\bf j}+\,{\bf k}$
$$
\begin{array}{lll}
\displaystyle {\bf T}(t)&\displaystyle= \frac{{\bf r}'(t)}{\Vert{\bf r}'(t)\Vert}&\mbox{}\\
\displaystyle &\displaystyle=\frac{2t\,{\bf i}+2\,{\bf j}+\,{\bf k}}{\sqrt{(2t)^2+(2)^2+(1)^2}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{2t\,{\bf i}+2\,{\bf j}+\,{\bf k}}{\sqrt{4t^2+5}} &\mbox{}\\
\displaystyle &\displaystyle=\frac{2t}{\sqrt{4t^2+5}}\,{\bf i}+\frac{2}{\sqrt{4t^2+5}}\,{\bf j}+\frac{1}{\sqrt{4t^2+5}}\,{\bf k} &\mbox{}\\
\end{array}
$$
Integration of Vector-Valued Functions
We now turn our attention to what it means to integrate vector-valued functions.
As we shall see later, what we cover here is only the beginning of a topic that vastly generalizes the the notion integration.
We begin with a straightforward generalization of the definite integral we covered in second-term calculus.
Integration of Vector-Valued Functions in the Plane
If ${\bf r}(t)=f(t)\,{\bf i}+g(t)\,{\bf j}=\langle f(t),g(t)\rangle,$ then the indefinite integral of ${\bf r}(t)$ is given by $$\int {\bf r}(t)\, dt=\left(\int f(t)\,dt\right){\bf i}+\left(\int g(t)\,dt\right){\bf j}=\left\langle \int f(t)\,dt,\int g(t)\,dt\right\rangle$$ and the definite integral is given by $$\int_{a}^{b} {\bf r}(t)\, dt=\left(\int_{a}^{b} f(t)\,dt\right){\bf i}+\left(\int_{a}^{b} g(t)\,dt\right){\bf j}=\left\langle \int_{a}^{b} f(t)\,dt,\int_{a}^{b} g(t)\,dt\right\rangle$$
Integration of Vector-Valued Functions in Space
If ${\bf r}(t)=f(t)\,{\bf i}+g(t)\,{\bf j}+h(t)\,{\bf k}=\langle f(t),g(t),h(t)\rangle,$ then the indefinite integral of ${\bf r}(t)$ is given by $$\int {\bf r}(t)\, dt=\left(\int f(t)\,dt\right){\bf i}+\left(\int g(t)\,dt\right){\bf j}+\left(\int h(t)\,dt\right){\bf k}=\left\langle \int f(t)\,dt,\int g(t)\,dt,\int h(t)\,dt\right\rangle$$ and the definite integral is given by $$\int_{a}^{b} {\bf r}(t)\, dt=\left(\int_{a}^{b} f(t)\,dt\right){\bf i}+\left(\int_{a}^{b} g(t)\,dt\right){\bf j}+\left(\int_{a}^{b} h(t)\,dt\right){\bf k}=\left\langle \int_{a}^{b} f(t)\,dt,\int_{a}^{b} g(t)\,dt,\int_{a}^{b} h(t)\,dt\right\rangle$$
Example
For ${\bf r}(t)=\sin(2t)\,{\bf i}+\tan t\,{\bf j},$ find $$\int {\bf r}(t)\, dt$$
$$
\begin{array}{lll}
\displaystyle \int {\bf r}(t)\, dt&\displaystyle= \int [\sin(2t)\,{\bf i}+\tan t\,{\bf j}]\, dt&\mbox{}\\
\displaystyle &\displaystyle=\left( \int \sin(2t)\,dt\right) \,{\bf i}+\left(\int \tan t\, dt\right)\,{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\left(-\frac{1}{2}\cos(2t)+C_1\right) \,{\bf i}+\left(\ln|\sec t|+C_2\right)\,{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\left(-\frac{1}{2}\cos(2t)\right) \,{\bf i}+\left(\ln|\sec t|\right)\,{\bf j}+C_1{\bf i}+C_2{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\left(-\frac{1}{2}\cos(2t)\right) \,{\bf i}+\left(\ln|\sec t|\right)\,{\bf j}+{\bf C}&\mbox{}\\
\end{array}
$$
$$\int_{0}^{\pi/3} {\bf r}(t)\, dt$$
From the above, we have
$$
\begin{array}{lll}
\displaystyle \int_{0}^{\pi/3} {\bf r}(t)\, dt&\displaystyle= \int_{0}^{\pi/3} [\sin(2t)\,{\bf i}+\tan t\,{\bf j}]\, dt&\mbox{}\\
\displaystyle &\displaystyle=\left[-\frac{1}{2}\cos(2t)\right]_{0}^{\pi/3} \,{\bf i}+\left[\ln|\sec t|\right]_{0}^{\pi/3}\,{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\left[-\frac{1}{2}\cos\left(2\cdot \frac{\pi}{3}\right)-\left(-\frac{1}{2}\cos(2\cdot 0)\right)\right] \,{\bf i}+\left[\ln\left|\sec \frac{\pi}{3}\right|-\ln\left|\sec 0\right|\right]\,{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\left[-\frac{1}{2}\left(-\frac{1}{2}\right)+\frac{1}{2}\right] \,{\bf i}+\left[\ln\left|2\right|-\ln|1|\right]\,{\bf j}&\mbox{}\\
\displaystyle &\displaystyle=\frac{3}{4} \,{\bf i}+\ln 2\,{\bf j}&\mbox{}\\
\end{array}
$$
Example
Find $$\int \langle t,t^2,t^3\rangle \times \langle t^3,t^2,t\rangle \, dt$$
First we note that
$$
\begin{array}{lll}
\displaystyle \langle t,t^2,t^3\rangle \times \langle t^3,t^2,t\rangle &\displaystyle= \left|\begin{array}{ccc}{\bf i}&{\bf j}&{\bf k}\\ t&t^2&t^3 \\ t^3&t^2&t \\ \end{array}\right|&\mbox{}\\
\displaystyle &\displaystyle= (t^3-t^5){\bf i}-(t^2-t^6){\bf j}+(t^3-t^5){\bf k}&\mbox{}\\
\displaystyle &\displaystyle= (t^3-t^5){\bf i}+(t^6-t^2){\bf j}+(t^3-t^5){\bf k}&\mbox{}\\
\end{array}
$$
Then
$$
\begin{array}{lll}
\displaystyle \int \langle t,t^2,t^3\rangle \times \langle t^3,t^2,t\rangle \, dt&\displaystyle= \int \left[(t^3-t^5){\bf i}+(t^6-t^2){\bf j}+(t^3-t^5){\bf k}\right] \, dt&\mbox{}\\
\displaystyle &\displaystyle= \left(\frac{t^4}{4}-\frac{t^6}{6}\right){\bf i}+\left(\frac{t^7}{7}-\frac{t^3}{3} \right){\bf j}+\left(\frac{t^4}{4}-\frac{t^6}{6}\right){\bf k}+{\bf C}&\mbox{}\\
\end{array}
$$
Applications of Vector-Valued Integration
We have seen that the definite integral of a velocity function is a displacement.
With the language of vectors we can now track a change in an object's position in $2$-dimensional and $3$-dimensional space.
Application: A low-flying plane is dropping off a supply package to a remote Alaskan village. At the moment the package is released, the plane's altitude is $250$ meters and its speed is $50$ meters per second. Ignoring air resistance, the velocity ${\bf v}(t)$ the package is modelled by the vector-valued function ${\bf v}(t)=50\,{\bf i}-9.8t\,{\bf j}.$ If the initial position of the package is given by ${\bf s}(0)=250\,{\bf j},$ find the position vector ${\bf s}$ of the object after $3$ seconds.
${\bf s}($$t$$)=$$x(t)$$\,{\bf i}$$+y(t)$$\,{\bf j}$
Integrating the velocity function, we obtain the position function ${\bf s}(t).$
$${\bf s}(t)=\int (50\,{\bf i}-9.8t\,{\bf j})\, dt=50t\,{\bf i}-4.9t^2\,{\bf j}+{\bf s}_0$$
where ${\bf s}_0$ is an initial position vector.
From the given information, ${\bf s}_0={\bf s}(0)=250{\bf j}.$ Thus, $${\bf s}(t)=50t\,{\bf i}-4.9t^2\,{\bf j}+250{\bf j}=50t\,{\bf i}+(250-4.9t^2)\,{\bf j}$$ It follows that $${\bf s}(3)=50\cdot 3\,{\bf i}+(250-4.9\cdot 3^2)\,{\bf j}=150{\bf i}+205.9{\bf j}$$
From the given information, ${\bf s}_0={\bf s}(0)=250{\bf j}.$ Thus, $${\bf s}(t)=50t\,{\bf i}-4.9t^2\,{\bf j}+250{\bf j}=50t\,{\bf i}+(250-4.9t^2)\,{\bf j}$$ It follows that $${\bf s}(3)=50\cdot 3\,{\bf i}+(250-4.9\cdot 3^2)\,{\bf j}=150{\bf i}+205.9{\bf j}$$