Holt.Blue
Back To Class Notes Menu
The Hyperbolic Functions

Today, we learn more about the hyperbolic equivalent of the trigonometric (circular) functions.





























Definitions of Hyperbolic Sine and Cosine

$$\sinh x = \frac{e^x-e^{-x}}{2}$$ $$\cosh x = \frac{e^x+e^{-x}}{2}$$































The Graph of Hyperbolic Sine

$$\sinh x = \frac{e^x-e^{-x}}{2}$$































The Graph of Hyperbolic Cosine

$$\cosh x = \frac{e^x+e^{-x}}{2}$$































Relationship to Trig Functions































Definitions of the Other Four

$$\tanh x = \frac{\sinh x}{\cosh x}$$ $$\coth x = \frac{1}{\tanh x}$$ $$\mbox{sech } x = \frac{1}{\cosh x}$$ $$\mbox{csch } x = \frac{1}{\sinh x}$$































$y=\sinh x$ $y=\cosh x$ $y=\tanh x$
$y=\coth x$ $y=\mbox{sech } x$ $y=\mbox{csch } x$
































Some Hyperbolic Identities

1. $\cosh(-x) = \cosh x$

2. $\sinh(-x) = -\sinh x$

3. $\cosh^2 x - \sinh^2 x = 1$

4. $1 - \tanh^2 x = \mbox{sech}^2 x$

5. $\coth^2 x - 1 = \mbox{csch}^2 x$

6. $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$

7. $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$

8. $\cosh x + \sinh x = e^x$

9. $\cosh x - \sinh x = e^{-x}$































Derivatives of Hyperbolic Functions $$\frac{d}{dx}\sinh x=\cosh x$$ $$\frac{d}{dx}\cosh x=\sinh x$$ $$\frac{d}{dx}\tanh x=\mbox{sech}^2 x$$ $$\frac{d}{dx}\coth x=-\mbox{csch}^2 x$$ $$\frac{d}{dx}\mbox{sech } x= -\mbox{sech } x \tanh x$$ $$\frac{d}{dx}\mbox{csch } x=-\mbox{csch } x \coth x$$































Some Integrals of Hyperbolic Functions $$\int \cosh x \,dx = \sinh x +C$$ $$\int \sinh x \,dx =\cosh x +C$$ $$\int \mbox{sech}^2 x \,dx = \tanh x +C$$ $$\int \mbox{csch}^2 x \,dx =-\coth x +C$$ $$\int \mbox{sech } x \tanh x \,dx =-\mbox{sech } x +C$$ $$\int \mbox{csch } x \coth x \,dx = -\mbox{csch } x+C$$































Hyperbolic Cosine is a Catenary Curve































Hyperbolic Functions in Engineering and Architecture































Hyperbolic Functions in Engineering and Architecture

The Budapest Keleti Railway Station































Hyperbolic Functions in Engineering and Architecture

The Conde McCullough Memorial Bridge































Example

Find the derivative of the given function: $y=\ln ( \mbox{sech}(x) + \tanh(x) )$


$$ \begin{array}{lll} \displaystyle \frac{d}{dx}\ln ( \mbox{sech}(x) + \tanh(x) )&=\displaystyle \frac{1}{\mbox{sech}(x) + \tanh(x)}\frac{d}{dx}(\mbox{sech}(x) + \tanh(x))&\mbox{}\\ &=\displaystyle \frac{1}{\mbox{sech}(x) + \tanh(x)}(-\mbox{sech}(x) \tanh(x) + \mbox{sech}^2(x))&\mbox{}\\ &=\displaystyle \frac{\mbox{sech}^2(x)-\mbox{sech}(x) \tanh(x)}{\mbox{sech}(x) + \tanh(x)}&\mbox{}\\ &=\displaystyle \mbox{sech}(x) \frac{\mbox{sech}(x)-\tanh(x)}{\mbox{sech}(x) + \tanh(x)}&\mbox{}\\ \end{array} $$ We could stop here, but identities are great for making expressions neater. So, let's do some shenanigans! $$ \begin{array}{lll} \displaystyle \frac{d}{dx}\ln ( \mbox{sech}(x) + \tanh(x) )&=\displaystyle \mbox{sech}(x) \frac{\mbox{sech}(x)-\tanh(x)}{\mbox{sech}(x) + \tanh(x)}&\mbox{}\\ &=\displaystyle \mbox{sech}(x) \frac{\mbox{sech}(x)-\tanh(x)}{\mbox{sech}(x) + \tanh(x)}\cdot \frac{\cosh(x)}{\cosh(x)}&\mbox{}\\ &=\displaystyle \mbox{sech}(x) \frac{1-\sinh(x)}{1 + \sinh(x)}&\mbox{}\\ &=\displaystyle \frac{\mbox{sech}(x)-\tanh(x)}{1 + \sinh(x)}&\mbox{}\\ \end{array} $$





























Examples

Find the following integrals:

$\displaystyle \int \cosh^2 (x)\sinh(x) \, dx$

$$ \begin{array}{lll} \displaystyle \int \cosh^2 (x)\sinh(x) \, dx&=\displaystyle \int u^2 du &\mbox{letting $u=\cosh(x)$ so that $du=\sinh(x)dx$}\\ &=\displaystyle \frac{1}{3}u^3+C&\mbox{}\\ &=\displaystyle \frac{1}{3}\cosh^3(x)+C &\mbox{}\\ \end{array} $$


$\displaystyle \int \tanh x \, dx$

$$ \begin{array}{lll} \displaystyle \int \tanh x \, dx&=\displaystyle \int \frac{\sinh x}{\cosh x} \, dx&\mbox{}\\ &=\displaystyle \int \frac{1}{u}\,du&\mbox{letting $u=\cosh(x)$ so that $du=\sinh(x)dx$}\\ &=\displaystyle \ln(u)+C &\mbox{}\\ &=\displaystyle \ln(\cosh x)+C &\mbox{}\\ \end{array} $$






























Inverse Hyperbolic Functions

Before looking at the graphs of the inverse hyperbolic functions, let's first take a look back at the graphs of the original hyperbolic functions.





























$y=\sinh^{-1} x$ $y=\cosh^{-1} x$ $y=\tanh^{-1} x$
$y=\coth^{-1} x$ $y=\mbox{sech}^{-1} x$ $y=\mbox{csch}^{-1} x$
































Derivatives of Inverse Hyperbolic Functions

Example

Find $\displaystyle \frac{d}{dx} \sinh^{-1} x.$

Note: A nice trick for remembering these derivatives is to write $y=\sinh^{-1} x$ and then implicitly differentiate $x=\sinh(y)$ with respect to $x.$

Suppose $x=\sinh(y).$ Then $$ \begin{array}{lcll} &\displaystyle \frac{d}{dx}x &=\displaystyle \frac{d}{dx}\sinh(y)&\mbox{}\\ \implies &\displaystyle 1 &=\displaystyle \cosh(y)\frac{dy}{dx}&\mbox{}\\ \implies &\displaystyle \frac{dy}{dx} &=\displaystyle \frac{1}{\cosh(y)}&\mbox{}\\ \implies &\displaystyle \frac{dy}{dx} &=\displaystyle \frac{1}{\cosh(\sinh^{-1} x)}&\mbox{}\\ \end{array} $$





But wait! There's more!

Let's recall the identity $\cosh^2(y)-\sinh^2(y)=1.$

Since this identity is valid for any input $y,$ let's suppose $y=\sinh^{-1} x.$ Then $$ \begin{array}{lcll} &\displaystyle \cosh^2(\sinh^{-1} x)-\sinh^2(\sinh^{-1} x) &=\displaystyle 1&\mbox{}\\ \implies &\displaystyle \cosh^2(\sinh^{-1} x)-x^2 &=\displaystyle 1&\mbox{}\\ \implies &\displaystyle \cosh^2(\sinh^{-1} x) &=\displaystyle 1+x^2&\mbox{}\\ \implies &\displaystyle \cosh(\sinh^{-1} x) &=\displaystyle \sqrt{1+x^2}&\mbox{take positive root since $\cosh x \gt 0$ for all $x$}\\ \end{array} $$ Thus, from our previous calculations, we have $$ \begin{array}{lcll} &\displaystyle \frac{dy}{dx} &=\displaystyle \frac{1}{\cosh(\sinh^{-1} x)}&\mbox{}\\ \implies &\displaystyle \frac{dy}{dx} &=\displaystyle \frac{1}{\sqrt{1+x^2}}&\mbox{}\\ \end{array} $$ In conclusion, we have shown that $\displaystyle \frac{d}{dx} \sinh^{-1} x=\frac{1}{\sqrt{1+x^2}}$




























Derivatives of Inverse Hyperbolic Functions $$\frac{d}{dx} \sinh^{-1} x=\frac{1}{\sqrt{1+x^2}}$$ $$\frac{d}{dx} \cosh^{-1} x=\frac{1}{\sqrt{x^2-1}}$$ $$\frac{d}{dx} \tanh^{-1} x=\frac{1}{1-x^2}$$ $$\frac{d}{dx} \coth^{-1} x=\frac{1}{1-x^2}$$ $$\frac{d}{dx} \mbox{sech}^{-1} x=-\frac{1}{x\sqrt{1-x^2}}$$ $$\frac{d}{dx} \mbox{csch}^{-1} x=-\frac{1}{|x|\sqrt{1+x^2}}$$





























Some Sweet Integrals $$\int \frac{1}{\sqrt{1+x^2}} \, dx = \sinh^{-1} x+C$$ $$\int \frac{1}{\sqrt{x^2-1}} \, dx = \cosh^{-1} x+C$$ $$\int \frac{1}{1-x^2} \, dx = \tanh^{-1} x+C, \mbox{ if } |x| \lt 1$$ $$\int \frac{1}{1-x^2} \, dx = \coth^{-1} x+C, \mbox{ if } |x| \gt 1$$ $$\int\frac{1}{x\sqrt{1-x^2}} \, dx = -\mbox{sech}^{-1} |x|+C$$ $$\int \frac{1}{|x|\sqrt{1+x^2}} \, dx = -\mbox{csch}^{-1} |x|+C$$





























Examples

Find the following integrals:

$\displaystyle \int \frac{dx}{4-x^2}$ if $|x| \lt 2.$

$$ \begin{array}{lll} \displaystyle \int \frac{dx}{4-x^2}&=\displaystyle \int \frac{1}{4}\frac{dx}{1-\frac{x^2}{4}}&\mbox{}\\ &=\displaystyle \displaystyle \frac{1}{4} \int \frac{dx}{1-\left(\frac{x}{2}\right)^2}&\mbox{}\\ &=\displaystyle \displaystyle \frac{1}{4} \int \frac{2\,du}{1-u^2}&\mbox{letting $u=\frac{x}{2}$ so that $dx=2\,du$}\\ &=\displaystyle \displaystyle \frac{1}{2} \int \frac{\,du}{1-u^2}&\mbox{}\\ &=\displaystyle \displaystyle \frac{1}{2} \tanh^{-1} u + C&\mbox{since $|x| \lt 2,$ we have $|u|=\left|\frac{x}{2}\right|\lt 1$}\\ &=\displaystyle \displaystyle \frac{1}{2} \tanh^{-1} \left(\frac{x}{2}\right) + C&\mbox{}\\ \end{array} $$


$\displaystyle \int \frac{e^x}{\sqrt{e^{2x}-1}}\, dx$

Let $u=e^x.$ Then $du=e^x\,dx$ so that $$ \begin{array}{lll} \displaystyle \int \frac{e^x}{\sqrt{e^{2x}-1}}\, dx&=\displaystyle \int \frac{du}{\sqrt{u^2-1}}&\mbox{}\\ &=\displaystyle \cosh^{-1}(u)+C&\mbox{}\\ &=\displaystyle \cosh^{-1}(e^x)+C&\mbox{}\\ \end{array} $$