Holt.Blue
Back To Class Notes Menu
Derivatives of Exponential and Logarithmic Functions

We now develop techniques for finding derivatives of another class of transcendental functions.

Exponential and logarithmic functions are good at modelling growth.































A Very Fundamental Derivative: We shall begin by considering the derivative of the function $f(x)=e^x.$ Using the limit definition of the derivative, $$ \begin{array}{lll} \displaystyle \frac{d}{dx}e^x &\displaystyle=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}&\mbox{definition of the derivative}\\ &\displaystyle=\lim_{h \rightarrow 0}\frac{e^{x+h}-e^x}{h}&\mbox{}\\ &\displaystyle=\lim_{h \rightarrow 0}\frac{e^{x}e^{h}-e^x}{h}&\\ &\displaystyle=\lim_{h \rightarrow 0}\frac{(e^{h}-1)e^x}{h}&\\ &\displaystyle=\lim_{h \rightarrow 0}\frac{e^{h}-1}{h}e^x&\\ \end{array} $$ Thus, finding $\displaystyle \frac{d}{dx}e^x$ amounts to evaluating the limit $\displaystyle \lim_{h \rightarrow 0}\frac{e^{h}-1}{h}.$





























A Very Fundamental Derivative $$\lim_{h \rightarrow 0}\frac{e^{h}-1}{h}$$

$h$$\displaystyle \frac{e^h-1}{h}$






























A Very Fundamental Derivative

$$\frac{d}{dx} e^x = e^x$$































Example

$$\frac{d}{dx} 3^x$$

$$ \begin{array}{lll} \displaystyle \frac{d}{dx}3^x &\displaystyle=\displaystyle \frac{d}{dx}e^{\ln(3^x)}& \mbox{$e^x$ and $\ln x$ are inverses}\\ &=\displaystyle \frac{d}{dx}e^{x\ln 3}&\mbox{Logs bring exponents down to earth.}\\ &=\displaystyle e^{x\ln 3}\frac{d}{dx}(x\ln 3)&\mbox{by the Chain Rule}\\ &=\displaystyle e^{x\ln(3)}(\ln 3)&\mbox{$\frac{d}{dx}(cx)=c$}\\ &=\displaystyle e^{\ln(3^x)}(\ln 3)&\mbox{Logs can put exponents back on top.}\\ &=\displaystyle 3^x (\ln 3)&\mbox{$e^x$ and $\ln x$ are inverses}\\ \end{array} $$
































Derivatives of Exponential Functions

$$\frac{d}{dx} b^x =b^x \ln b$$































Dire Warning

WHEN YOU DO THIS $\displaystyle \frac{d}{dx}3^x=x3^{x-1}$ YOU MAKE KITTY ANGRY!!!!!!!!!!!!!!!!!!































Another Fundamental Derivative

Suppose we want to find the derivative of $y=\ln x.$

We can pull the same trick (AGAIN!) we did with generic inverse functions by rearranging by writing $$x=e^{\ln x}$$ and then differentiating both sides using the chain rule.

$$ \begin{array}{lll} &x=e^{\ln x}&\\ \implies & \displaystyle \frac{d}{dx}x=\frac{d}{dx}e^{\ln x}&\mbox{differentiate both sides with respect to $x$}\\ \implies & \displaystyle 1=e^{\ln x}\frac{d}{dx}\ln x&\mbox{by the Chain Rule}\\ \implies & \displaystyle 1=x\frac{d}{dx}\ln x&\mbox{$e^x$ and $\ln x$ are inverses}\\ \implies & \displaystyle \frac{1}{x}=\frac{d}{dx} \ln x&\mbox{}\\ \end{array} $$


































Another Fundamental Derivative

$$\frac{d}{dx}\ln x=\frac{1}{x}$$































Example

$$\frac{d}{dx} \log_3 x$$

$$ \begin{array}{lll} \displaystyle \frac{d}{dx}\log_3 x &\displaystyle=\displaystyle \frac{d}{dx}\frac{\ln x}{\ln 3}& \mbox{by the change of base formula}\\ &=\displaystyle \frac{d}{dx}\left(\frac{1}{\ln 3}\ln x\right)&\mbox{}\\ &=\displaystyle \frac{1}{\ln 3} \frac{d}{dx}\ln x&\mbox{$\frac{1}{\ln 3}$ is just a constant we can pull out}\\ &=\displaystyle \frac{1}{\ln 3} \frac{1}{x}&\mbox{ $\frac{d}{dx}\ln x=\frac{1}{x}$}\\ &=\displaystyle \frac{1}{x\ln 3}&\mbox{}\\ \end{array} $$
































Derivatives of Logarithmic Functions

$$\frac{d}{dx} \log_b x =\frac{1}{x \ln b}$$































Example

Find $f'(x)$ for the following.

$\displaystyle f(x)=\sqrt{e^{2x}+2x}$

$$ \begin{array}{lll} \displaystyle f'(x) &=\displaystyle \frac{d}{dx}\sqrt{e^{2x}+2x}& \mbox{}\\ &=\displaystyle \frac{d}{dx}(e^{2x}+2x)^{1/2}& \mbox{}\\ &=\displaystyle \frac{1}{2}(e^{2x}+2x)^{-1/2}\frac{d}{dx}(e^{2x}+2x)& \mbox{}\\ &=\displaystyle \frac{1}{2}(e^{2x}+2x)^{-1/2}(2e^{2x}+2)& \mbox{$\frac{d}{dx}e^{2x}=e^{2x}\frac{d}{dx}(2x)=2e^{2x}$}\\ &=\displaystyle \frac{1}{2}(e^{2x}+2x)^{-1/2}\cdot 2(e^{2x}+1)& \mbox{factor out 2}\\ &=\displaystyle (e^{2x}+2x)^{-1/2}(e^{2x}+1)& \mbox{cancel out 2}\\ &=\displaystyle \frac{1}{\sqrt{e^{2x}+2x}}(e^{2x}+1)& \mbox{get into radical form}\\ &=\displaystyle \frac{e^{2x}+1}{\sqrt{e^{2x}+2x}}& \mbox{put on finishing touches}\\ \end{array} $$


Example

$\displaystyle f(x)=3^{\sin 3x}$

$$ \begin{array}{lll} f'(x) &=\displaystyle \frac{d}{dx} 3^{\sin 3x}& \mbox{}\\ &=\displaystyle 3^{\sin 3x}\ln 3 \frac{d}{dx} \sin 3x& \mbox{by the Chain Rule}\\ &=\displaystyle 3^{\sin 3x}\ln 3 \cos 3x \frac{d}{dx}3x& \mbox{by the Chain Rule}\\ &=\displaystyle 3^{\sin 3x}\ln 3 \cos 3x \cdot 3& \mbox{}\\ &=\displaystyle 3 \ln 3 \cdot 3^{\sin 3x} \cos 3x & \mbox{}\\ &=\displaystyle \ln 3^3 \cdot 3^{\sin 3x} \cos 3x & \mbox{}\\ &=\displaystyle \ln 27 \cdot 3^{\sin 3x} \cos 3x & \mbox{}\\ \end{array} $$


Example

$\displaystyle f(x)=\ln \sqrt{5x-7}$

Version 1: $$ \begin{array}{lll} f'(x) &=\displaystyle \frac{d}{dx} \ln \sqrt{5x-7}& \mbox{}\\ &=\displaystyle \frac{1}{\sqrt{5x-7}}\frac{d}{dx}\sqrt{5x-7}& \mbox{by the Chain Rule}\\ &=\displaystyle \frac{1}{\sqrt{5x-7}}\frac{d}{dx}(5x-7)^{1/2}& \mbox{}\\ &=\displaystyle \frac{1}{\sqrt{5x-7}}\frac{1}{2}(5x-7)^{-1/2}\frac{d}{dx}(5x-7)& \mbox{by the Chain Rule}\\ &=\displaystyle \frac{1}{\sqrt{5x-7}}\frac{1}{2\sqrt{5x-7}}\cdot 5& \mbox{}\\ &=\displaystyle \frac{5}{2(5x-7)}& \mbox{}\\ &=\displaystyle \frac{5}{10x-14}& \mbox{}\\ \end{array} $$ Version 2: Use properties of logs. $$ \begin{array}{lll} f'(x) &=\displaystyle \frac{d}{dx} \ln \sqrt{5x-7}& \mbox{}\\ &=\displaystyle \frac{d}{dx} \ln (5x-7)^{1/2}& \mbox{}\\ &=\displaystyle \frac{d}{dx} \left(\frac{1}{2}\ln (5x-7)\right)& \mbox{}\\ &=\displaystyle \frac{1}{2}\frac{d}{dx}\ln (5x-7)& \mbox{}\\ &=\displaystyle \frac{1}{2}\frac{1}{5x-7}\frac{d}{dx}(5x-7)& \mbox{by the Chain Rule}\\ &=\displaystyle \frac{1}{2(5x-7)}\cdot 5& \mbox{}\\ &=\displaystyle \frac{5}{10x-14}& \mbox{}\\ \end{array} $$


Example

$\displaystyle f(x)=\log_7 \left(6x^4+3\right)^5$

$$ \begin{array}{lll} f'(x) &=\displaystyle \frac{d}{dx} \log_7 \left(6x^4+3\right)^5& \mbox{}\\ &=\displaystyle \frac{d}{dx} \left(5\log_7\left(6x^4+3\right)\right)& \mbox{}\\ &=\displaystyle 5 \frac{d}{dx} \log_7\left(6x^4+3\right)& \mbox{}\\ &=\displaystyle 5 \frac{1}{(6x^4+3)\ln 7}\frac{d}{dx}(6x^4+3)& \mbox{by the Chain Rule}\\ &=\displaystyle \frac{5}{(6x^4+3)\ln 7}(24x^3)& \mbox{}\\ &=\displaystyle \frac{120x^3}{(6x^4+3)\ln 7}& \mbox{}\\ &=\displaystyle \frac{40x^3}{(2x^4+1)\ln 7}& \mbox{}\\ \end{array} $$
































Weird Example

$$\frac{d}{dx} x^x$$ Any ideas?

$$ \begin{array}{lll} &y=x^x&\\ \implies &\ln y=\ln x^x&\\ \implies &\ln y=x\ln x&\mbox{Logs bring exponents down to earth!}\\ \implies & \displaystyle \frac{d}{dx}\ln y=\frac{d}{dx}(x \ln x)&\mbox{differentiate both sides with respect to $x$}\\ \implies & \displaystyle \frac{1}{y}\frac{dy}{dx}=(x)'(\ln x)+(x)(\ln x)'&\mbox{by the Chain Rule (left) the Product Rule (right)}\\ \implies & \displaystyle \frac{1}{y}\frac{dy}{dx}=\ln x+x\frac{1}{x}&\mbox{}\\ \implies & \displaystyle \frac{1}{y}\frac{dy}{dx}=\ln x+1&\mbox{}\\ \implies & \displaystyle \frac{dy}{dx}=y(\ln x+1)&\mbox{}\\ \implies & \displaystyle \frac{dy}{dx}=x^x(\ln x+1)&\mbox{since $y=x^x$}\\ \end{array} $$
































Logarithmic Differentiation

1. To differentiate $y=h(x)$ using logarithmic differentiation, take the natural logarithm of both sides of the equation to obtain $\ln y= \ln(h(x)).$

2. Use properties of logarithms to expand $\ln(h(x))$ as much as possible.

3. Implicitly differentiate both sides of the equation. On the left we will have $\displaystyle \frac{1}{y}\frac{dy}{dx}.$

4. Multiply both sides of the equation by $y$ to solve for $\displaystyle \frac{dy}{dx}.$

5. Replace $y$ by $h(x).$































Product/Quotient-Rule-Heavy Examples

Use logarithmic differentiation to find the derivative of $$y=\frac{x+11}{\sqrt[3]{x^2-4}}.$$

$$ \begin{array}{lll} &\displaystyle y=\frac{x+11}{\sqrt[3]{x^2-4}}&\\ \implies &\displaystyle \ln y=\displaystyle \ln \frac{x+11}{\sqrt[3]{x^2-4}}& \mbox{Take a natural log of both sides.}\\ \implies &\displaystyle \ln y=\displaystyle \ln (x+11)-\ln(\sqrt[3]{x^2-4})&\mbox{A log of quotient is a difference of the logs.}\\ \implies &\displaystyle \ln y=\displaystyle \ln (x+11)-\ln((x^2-4)^{1/3})&\mbox{}\\ \implies &\displaystyle \ln y=\displaystyle \ln (x+11)-\frac{1}{3}\ln(x^2-4)&\mbox{Logs bring exponents down to earth.}\\ \implies &\displaystyle \frac{d}{dx} \ln y=\displaystyle \frac{d}{dx} \left(\ln (x+11)-\frac{1}{3}\ln(x^2-4)\right)&\mbox{Differentiate both sides.}\\ \implies &\displaystyle \frac{1}{y}\frac{dy}{dx}=\displaystyle \frac{d}{dx}\ln (x+11)-\frac{1}{3}\frac{d}{dx}\ln(x^2-4)&\mbox{by the Chain Rule (left)}\\ \implies &\displaystyle \frac{1}{y}\frac{dy}{dx}=\displaystyle \frac{1}{x+11}\frac{d}{dx}(x+11)-\frac{1}{3}\frac{1}{x^2-4}\frac{d}{dx}(x^2-4)&\mbox{by the Chain Rule (right)}\\ \implies &\displaystyle \frac{1}{y}\frac{dy}{dx}=\displaystyle \frac{1}{x+11}-\frac{1}{3}\frac{1}{x^2-4}(2x)&\mbox{}\\ \implies &\displaystyle \frac{1}{y}\frac{dy}{dx}=\displaystyle \frac{1}{x+11}-\frac{2x}{3(x^2-4)}&\mbox{}\\ \implies &\displaystyle \frac{dy}{dx}=\displaystyle y\left(\frac{1}{x+11}-\frac{2x}{3(x^2-4)}\right)&\mbox{}\\ \implies &\displaystyle \frac{dy}{dx}=\displaystyle \frac{x+11}{\sqrt[3]{x^2-4}} \left(\frac{1}{x+11}-\frac{2x}{3(x^2-4)}\right)&\mbox{since $y=\frac{x+11}{\sqrt[3]{x^2-4}}$}\\ \end{array} $$ If required, we may need to clean up our answer a bit: $$ \begin{array}{lll} \displaystyle \frac{dy}{dx}&=\displaystyle \frac{x+11}{\sqrt[3]{x^2-4}} \left(\frac{1}{x+11}-\frac{2x}{3(x^2-4)}\right)&\\ &=\displaystyle \frac{x+11}{\sqrt[3]{x^2-4}}\frac{1}{x+11}-\frac{x+11}{\sqrt[3]{x^2-4}}\frac{2x}{3(x^2-4)}&\mbox{distribute}\\ &=\displaystyle \frac{1}{{\sqrt[3]{x^2-4}}}-\frac{x+11}{\sqrt[3]{x^2-4}}\frac{2x}{3(x^2-4)}&\mbox{cancel $x+11$}\\ &=\displaystyle \frac{1}{{\sqrt[3]{x^2-4}}}-\frac{2x(x+11)}{3(x^2-4)^{4/3}}&\mbox{multiply fractions}\\ &=\displaystyle \frac{1}{{\sqrt[3]{x^2-4}}}\frac{3(x^2-4)}{3(x^2-4)}-\frac{2x(x+11)}{3(x^2-4)^{4/3}}&\mbox{multiply by fancy one to get common denominator}\\ &=\displaystyle \frac{3(x^2-4)}{3(x^2-4)^{4/3}}-\frac{2x(x+11)}{3(x^2-4)^{4/3}}&\mbox{}\\ &=\displaystyle \frac{3x^2-12}{3(x^2-4)^{4/3}}-\frac{2x^2+22x}{3(x^2-4)^{4/3}}&\mbox{expand numerators}\\ &=\displaystyle \frac{3x^2-12-2x^2-22x}{3(x^2-4)^{4/3}}&\mbox{subtract (don't forget to distribut minus!)}\\ &=\displaystyle \frac{x^2-22x-12}{3(x^2-4)^{4/3}}&\mbox{simplify}\\ &=\displaystyle \frac{x^2-22x-12}{3\sqrt[3]{(x^2-4)^4}}&\mbox{express in radical notation if desired}\\ \end{array} $$






























Application

The graph below is an exponential fit of the population of my hometown where $t$ is the number of years since $1860.$ The red function $P(t)$ is given by $$P(t) = 1318.3462 \cdot (1.008)^t .$$ Use the function $P$ to estimate the rate at which the population is growing in the year $2020.$


Since time $t$ is measured in years since $1860,$ we need to find $P'(160).$ First, however, we must find $P'(t):$ $$ \begin{array}{lll} P'(t) &=\displaystyle \frac{d}{dt} (1318.3462 \cdot (1.008)^t)& \mbox{}\\ &=\displaystyle 1318.3462 \frac{d}{dt} 1.008^t& \mbox{}\\ &=\displaystyle 1318.3462 \cdot 1.008^t \cdot (\ln 1.008)& \mbox{}\\ &=\displaystyle 1318.3462 \cdot \ln 1.008 \cdot 1.008^t & \mbox{}\\ &\approx \displaystyle 10.5048 \cdot 1.008^t & \mbox{}\\ \end{array} $$ We may now estimate $P'(160):$ $$ \begin{array}{lll} P'(160) &\approx \displaystyle 10.5048 \cdot 1.008^{160} & \mbox{}\\ &\approx 37.5901 & \mbox{}\\ \end{array} $$ That is, in $2020,$ we estimate that the population was growing by about $38$ people per year.