Holt.Blue
Back To Class Notes Menu
Derivatives of Trigonometric Functions

The first transcendental functions we shall perform calculus operations on are the trig functions.

As we have seen, trigonometric functions are good at modelling periodic behavior.































The Derivative of $f(x)=\sin x$
$y$

$x$












































The Derivative of $f(x)=\sin x$

$$\frac{d}{dx}\sin x=\cos x$$





























The Derivative of $f(x)=\cos x$
$y$

$x$












































The Derivative of $f(x)=\cos x$

$$\frac{d}{dx}\cos x=-\sin x$$





























Example

Using the rules of derivatives we already have under our belts, find $$\frac{d}{dx}\tan x.$$

$$ \begin{array}{ll} \displaystyle \frac{d}{dx}\tan x&\\ =\displaystyle\frac{d}{dx}\frac{\sin x}{\cos x}&\\ =\displaystyle\frac{(\cos x)(\sin x)'-(\sin x)(\cos x)'}{(\cos x)^2}&\mbox{ by the quotient rule}\\ =\displaystyle\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos^2 x}&\\ =\displaystyle\frac{\cos^2 x+\sin^2 x}{\cos^2 x}&\\ =\displaystyle\frac{1}{\cos^2 x}& \mbox{by the Pythagorean Identity: $\sin^2 x + \cos^2 x = 1$}\\ =\displaystyle \sec^2 x& \mbox{}\\ \end{array} $$






























The Other Three

In similar fashion, we can derive the following derivative formulas. $$\frac{d}{dx}\cot x = -\csc^2 x$$ $$\frac{d}{dx}\sec x=\sec x \tan x$$ $$\frac{d}{dx}\csc x = -\csc x \cot x$$





























Example

Find $\displaystyle \frac{d^2 y}{dx^2}$ for the function $y=x\sin x-\cos x.$

Finding the first derivative: $$ \begin{array}{ll} \displaystyle \frac{dy}{dx}&\\ =\displaystyle \frac{d}{dx}(x\sin x-\cos x)&\\ =\displaystyle \frac{d}{dx}(x\sin x)-\frac{d}{dx}(\cos x)&\\ =\displaystyle (x)'(\sin x)+(x)(\sin x)'-(-\sin x)&\mbox{by the product rule}\\ =\displaystyle \sin x+x\cos x+\sin x&\\ =\displaystyle 2\sin x+x\cos x&\\ \end{array} $$ Finding the second derivative: $$ \begin{array}{ll} \displaystyle \frac{d^2y}{dx^2}&\\ =\displaystyle \frac{d}{dx}(2\sin x+x\cos x)&\\ =\displaystyle 2\frac{d}{dx}\sin x+\frac{d}{dx}(x\cos x)&\\ =\displaystyle 2\cos x+(x)'(\cos x)+(x)(\cos x)'&\mbox{by the product rule}\\ =\displaystyle 2\cos x+\cos x+x(-\sin x)&\\ =\displaystyle 3\cos x-x\sin x&\\ \end{array} $$
































Example

Find $\displaystyle \frac{d^4 y}{dx^4 }$ for the function $y=4 \sin x$

$$ \begin{array}{ll} \displaystyle \frac{dy}{dx}&\\ =\displaystyle \frac{d}{dx}(4\sin x)&\\ =\displaystyle 4\frac{d}{dx}\sin x&\\ =\displaystyle 4\cos x&\\ \end{array} $$ $$ \begin{array}{ll} \displaystyle \frac{d^2y}{dx^2}&\\ =\displaystyle \frac{d}{dx}(4\cos x)&\\ =\displaystyle 4\frac{d}{dx}\cos x&\\ =\displaystyle 4(-\sin x)&\\ =\displaystyle -4\sin x&\\ \end{array} $$ $$ \begin{array}{ll} \displaystyle \frac{d^3y}{dx^3}&\\ =\displaystyle \frac{d}{dx}(-4\sin x)&\\ =\displaystyle -4\frac{d}{dx}\sin x&\\ =\displaystyle -4\cos x&\\ \end{array} $$ $$ \begin{array}{ll} \displaystyle \frac{d^4y}{dx^4}&\\ =\displaystyle \frac{d}{dx}(-4\cos x)&\\ =\displaystyle -4\frac{d}{dx}\cos x&\\ =\displaystyle -4(-\sin x)&\\ =\displaystyle 4\sin x&\\ \end{array} $$






























Example

Find the equation of the tangent line to the function $f(x)= \sec x$ at $\displaystyle x=-\frac{\pi}{4}$



First we find the derivative of $\sec x:$ $$ \begin{array}{ll} \displaystyle f'(x)&\\ =\displaystyle \frac{d}{dx} \sec x&\\ =\displaystyle \sec x \tan x&\\ \end{array} $$ Thus, the slope of our tangent line is $$ \begin{array}{ll} \displaystyle f'\left(-\frac{\pi}{4}\right)&\\ =\displaystyle \sec\left(-\frac{\pi}{4}\right) \tan\left(-\frac{\pi}{4}\right)&\\ =\displaystyle \frac{2}{\sqrt{2}}\cdot (-1)&\\ =\displaystyle -\frac{2}{\sqrt{2}}&\\ =\displaystyle -\sqrt{2}& \mbox{rationalizing denominator}\\ \end{array} $$ Now $\displaystyle f\left(-\frac{\pi}{4}\right)=\frac{2}{\sqrt{2}}=\sqrt{2}.$ Then, $$ \begin{array}{ll} \displaystyle y-f(a)=f'(a)(x-a)&\\ \implies \displaystyle y-f\left(-\frac{\pi}{4}\right)=f'\left(-\frac{\pi}{4}\right)\left(x-\left(-\frac{\pi}{4}\right)\right)&\\ \implies \displaystyle y-\sqrt{2}=-\sqrt{2}\left(x+\frac{\pi}{4}\right)&\\ \end{array} $$ is our tangent line.

Putting the above into slope-intercept form: $$ \begin{array}{ll} \displaystyle y-\sqrt{2}=-\sqrt{2}\left(x+\frac{\pi}{4}\right)&\\ \implies \displaystyle y-\sqrt{2}=(-\sqrt{2})x-\sqrt{2}\frac{\pi}{4}&\\ \implies \displaystyle y=(-\sqrt{2})x-\sqrt{2}\frac{\pi}{4}+\sqrt{2}&\\ \implies \displaystyle y=(-\sqrt{2})x+\frac{(4-\pi)\sqrt{2}}{4}&\\ \end{array} $$






























Application

Let the position of a mass in an undamped spring–mass system in simple harmonic motion be given by $s(t)=a\cos t +b\sin t.$


(a) Find the constants $a$ and $b$ such that when the velocity is $3 \mbox{ cm/s},$ the position is $s=0,$ and when $t=0.$

From the above information, we may write two equations: $s'(0)=3$ and $s(0)=0.$

Now, $s(0)=0$ gives that $a\cos 0 +b\sin 0=0,$ which becomes $a=0.$

Thus, our position function has the form $s(t)=b\sin t$ and our velocity function has the form $s'(t)=b\cos t$

Since $s'(0)=3,$ we have the equation $b\cos 0 = 3,$ or simply $b=0.$

Our position function is then $s(t)=3\sin t.$ That is, the constants we seek are $a=0$ and $b=3.$


(b) Over which interval(s) is the velocity positive?

From the above, the velocity is positive when $s'(t) \gt 0.$

That is, when $3 \cos t \gt 0,$ or more simply, when $\cos t \gt 0.$

Now, in general, $\cos t$ is positive when $-\frac{\pi}{2}+2k\pi \lt t \lt \frac{\pi}{2}+2k\pi$ where $k \in \mathbb{Z}$ ($k$ is an integer).

But since we are measuring from $t=0,$ the velocity is positive on the interval $\left(0,\frac{\pi}{2}\right)$ and the intervals $\left(-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right)$ where $k \in \mathbb{N}$ ($k$ is a positive integer).