Holt.Blue
Back To Class Notes Menu
Discrete Probability Distribution Functions (PDFs) Worksheet

The Big Idea

A discrete probability distribution function (or PDF) is a function which assigns a probability $P(X=x)$ to every value $x$ which $X$ can be equal to.

The "discrete" part means that $X$ can take on a discrete set of values. That is, all possible values of $X$ are either finite, or do not occur over a continuous interval of real numbers.

























Example: Roll a fair die. Let $X$ be the possible value of each face. Then the PDF is $$ \begin{array}{|l|l|} \hline x & P(X=x)\\ \hline 1 & \frac{1}{6}\\ \hline 2 & \frac{1}{6} \\ \hline 3 & \frac{1}{6} \\ \hline 4 & \frac{1}{6} \\ \hline 5 & \frac{1}{6} \\ \hline 6 & \frac{1}{6} \\ \hline \end{array} $$

























Long-Term Probabilities of Rolling a Fair Die

Empirical
Probability
Roll Result






























Huge Fact: A PDF table is nothing more than a loooooooooong term frequency table.

For example, if you had eternity to roll a fair die and record the results in a frequency table, it would be $$ \begin{array}{|l|l|} \hline x & P(X=x)\\ \hline 1 & \frac{1}{6}=0.1\overline{6}\\ \hline 2 & \frac{1}{6}=0.1\overline{6} \\ \hline 3 & \frac{1}{6}=0.1\overline{6} \\ \hline 4 & \frac{1}{6}=0.1\overline{6} \\ \hline 5 & \frac{1}{6}=0.1\overline{6} \\ \hline 6 & \frac{1}{6}=0.1\overline{6} \\ \hline \end{array} $$ All the stuff that you can do with frequency tables you can do with PDF tables!





























Example: A crooked die has the following PDF. $$ \begin{array}{|l|l|} \hline x & P(X=x)\\ \hline 1 & \frac{1}{12}\\ \hline 2 & \frac{1}{12} \\ \hline 3 & \frac{1}{12} \\ \hline 4 & \frac{1}{6} \\ \hline 5 & \frac{1}{4} \\ \hline 6 & \frac{1}{3} \\ \hline \end{array} $$































Long-Term Probabilities of Our Crooked Die

Empirical
Probability
Roll Result


























Example

For our crooked die above, let $X$ be the possible value of each face. Calculate the following probabilities:

(a) $P(X=3)$

(b) $P(X<3)$

(c) $P(X \geq 3)$

(d) $P(3 \leq X \leq 5)$



Let's recall the PDF $$ \begin{array}{|l|l|} \hline x & P(X=x)\\ \hline 1 & \frac{1}{12}\\ \hline 2 & \frac{1}{12} \\ \hline 3 & \frac{1}{12} \\ \hline 4 & \frac{1}{6} \\ \hline 5 & \frac{1}{4} \\ \hline 6 & \frac{1}{3} \\ \hline \end{array} $$ (a) $\displaystyle P(X=3)=\frac{1}{12}$

(b) $\displaystyle P(X \lt 3)=\frac{1}{12}+\frac{1}{12}=\frac{1}{6}$

(c) $\displaystyle P(X \geq 3)=\frac{1}{12}+\frac{1}{6}+\frac{1}{4}+\frac{1}{3}=\frac{5}{6}$

Scenic Alternative

$\displaystyle P(X \geq 3)=1-P(X \lt 3)=1-\frac{1}{6}=\frac{5}{6}$

(d) $\displaystyle P(3 \leq X \leq 5)=\frac{1}{12}+\frac{1}{6}+\frac{1}{4}=\frac{1}{2}$





























Example: A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company.

Let $X$ = the number of years a new hire will stay with the company.

Let $P(X=x)$ = the probability that a new hire will stay with the company $x$ years.

Over the years, they have established the following PDF. $$ \begin{array}{|l|l|} \hline x & P(X=x) \\ \hline 0 & 0.13 \\ \hline 1 & \\ \hline 2 & 0.31 \\ \hline 3 & 0.14 \\ \hline 4 & 0.11 \\ \hline 5 & 0.09 \\ \hline 6 & 0.05 \\ \hline\end{array} $$



























Example (Continued) Using the PDF provided above, answer the following:

(a) What is the probability a new hire will stay with the company for $1$ year?

(b) What is the probability a new hire will stay with the company for $1$ year or less?

(c) What is the probability a new hire will stay with the company for more than $1$ year?

(d) What is the probability a new hire will stay with the company between $1$ and $3$ years?



Recall the PDF. $$ \begin{array}{|l|l|} \hline x & P(X=x) \\ \hline 0 & 0.13 \\ \hline 1 & \\ \hline 2 & 0.31 \\ \hline 3 & 0.14 \\ \hline 4 & 0.11 \\ \hline 5 & 0.09 \\ \hline 6 & 0.05 \\ \hline\end{array} $$ (a) $P(X=1)=1-(0.13+0.31+0.14+0.11+0.09+0.05)=0.17$

(b) $P(X\leq 1)=0.13+0.17=0.30$

(c) $P(X\gt 1)=1-P(X\leq 1)=1-0.30=0.70$

(d) $P(1\leq X \leq 3)=0.17+00.31+0.14$