1. Identify the quantifier in the following statement as either universal or existential.

 $All\ cows\ eat\ grass.$

- A. Existential
- B. Universal

- 2. Determine if the following sentence is a statement or not. 2+2=4
- A. Is a statement.
- B. Not a statement.

3. Let p be the statement "Billy Bob is a chemistry major," and q be the statement "Linda Lou is a Physics major." Write the following statements in symbols.

If Billy Bob is a chemistry major, then Linda Lou is a Physics major.

- A. $\sim (p \lor q)$
- B. $\sim q$
- C. $p \rightarrow q$
- D. $\sim q \to p$
- E. $p \wedge q$
- F. $\sim p$
- G. $q \leftrightarrow p$

4. Fill in the missing values of the following truth table:

p	q	$p \rightarrow q$
T	T	
T	F	
F	T	
F	F	

- A. $\begin{array}{|c|c|} \hline p \rightarrow q \\ \hline T \\ \hline F \\ \hline \end{array}$
- $C. \begin{array}{|c|c|}\hline\hline p \rightarrow q \\ \hline T \\ T \\ T \\ T \\ T \\ T \\ \end{array}$
- D. $\begin{array}{c|c}
 \hline
 p \to q \\
 \hline
 T \\
 F \\
 T \\
 T
 \end{array}$
- $E. \begin{array}{|c|c|} \hline p \rightarrow q \\ \hline T \\ T \\ T \\ T \\ F \end{array}$
- $F. \begin{array}{|c|c|}\hline p \to q \\\hline T \\\hline T \\\hline F \\\hline F \\\hline \end{array}$
- G. $\begin{array}{|c|c|}
 \hline
 p \to q \\
 \hline
 T \\
 F \\
 F \\
 T
 \end{array}$
- $\text{H.} \begin{array}{|c|c|} \hline p \rightarrow q \\ \hline T \\ F \\ F \\ F \end{array}$

5. Fill in the missing values of the following truth table. Note: You may need to include more columns in your truth table to decide the truth values in the right-most column below.

m	α	r	(a, m)/(a, m)
p	q		$(\sim p \lor \sim q) \to \sim r$
$\mid T \mid$	T	$\mid T \mid$	
T	T	F	
T	F	T	
T	F	F	
F	T	$\mid T \mid$	
F	T	F	
F	F	T	
F	F	F	

	\ 1	1)
		Γ
		Γ
A.	7	- Г
		Г
		T T T T T
		Γ
	-	r F
	$(\sim p \lor \sim$	$q) \rightarrow \sim r$
	7	Γ
		Γ
	7	Γ
В.	1	7
	1	7
	1	7
	7	Γ
	1	[[[
		$q) \rightarrow \sim r$
		Γ
	3	Γ
C.	Ī	7
٠.	7	Γ
]	- -
]	
	j	다 [[다 다 다 다 다
	$(\sim p \lor \sim$	$q) \rightarrow \sim r$
		Γ Γ
	1	F

MORE OPTIONS ON NEXT PAGE...

	$(\sim p \lor \sim q) \to \sim r$
E.	T
	T
	$F \ T$
Ŀ.	$\stackrel{I}{F}$
	F
	F
	F
	$(\sim p \lor \sim q) \to \sim r$
	T
	F
F.	T
г.	$T \ F$
	\overline{F}
	$T \ T$
G.	$(\sim p \lor \sim q) \to \sim r$
	T
	T
	$egin{array}{cccc} T & & & & & & & & & & & & & & & & & & $
	$\stackrel{1}{F}$
	T
	T

	1
	T
	$(\sim p \lor \sim q) \to \sim r$
	T
	T
	F
Η.	T
	F
	T
	F
	T

6. Write the inverse of the statement $(p \lor \sim q) \to r$.

$$\mathbf{A.} \sim (p \vee \sim q) \rightarrow \sim r$$

B.
$$\sim r \rightarrow \sim (p \lor \sim q)$$

C.
$$r \to (p \lor \sim q)$$

- 7. The two statements $p\vee (\sim q\wedge r)$ and $(p\wedge \sim q)\vee (p\wedge r)$ are
- A. neither logically equivalent nor negations.
- B. logically equivalent.
- C. negations.

8. Use De Morgan's laws to write the negation of the following statement:

The patient is septic or she is in shock.

- A. The patient is not septic and is in shock.
- B. The patient is not septic or is not in shock.
- C. The patient is septic or is in shock.
- D. The patient is septic or is not in shock.
- E. The patient is septic and is in shock.
- F. The patient is not septic or is in shock.
- G. The patient is septic and is not in shock.
- H. The patient is not septic and is not in shock.

9. Use a truth table to decide if the following argument is valid.

$$\begin{array}{c}
\sim p \lor q \\
q \to \sim p \\
\hline
\therefore p
\end{array}$$

- A. Valid
- B. Invalid

10. Use a truth table to decide if the following argument is valid.

$$\begin{array}{c} p \leftrightarrow q \\ q \leftrightarrow r \\ \hline \vdots p \wedge q \end{array}$$

- A. Invalid
- B. Valid

Answers

- 1. B.
- 2. A.
- 3. C.
- 4. D.
- 5. H.
- 6. A.
- 7. A.
- 8. H.
- 9. B.
- 10. A.