1. Billy Bob plays soccer at Southwestern Oregon Community College. He makes a goal 56% the time he shoots.

Billy Bob is going to attempt two goals in a row in the next game.
$A=$ the event Billy Bob is successful on his first attempt. $P(A)=0.56$.
$B=$ the event Billy Bob is successful on his second attempt. $P(B)=0.56$.
Billy Bob tends to shoot in streaks. The probability that he makes the second goal GIVEN that he made the first goal is 0.68 .

What is the probability that he makes both goals?
A. The probability that Billy Bob makes both goals is 0.4708 .
B. The probability that Billy Bob makes both goals is 0.3708 .
C. The probability that Billy Bob makes both goals is 0.3608 .
D. The probability that Billy Bob makes both goals is 0.3508 .
E. The probability that Billy Bob makes both goals is 0.3108 .
F. The probability that Billy Bob makes both goals is 0.3808 .
G. The probability that Billy Bob makes both goals is 0.4608 .
H. The probability that Billy Bob makes both goals is 0.4008 .
2. Roll two fair dice. What is the probability of rolling no sixes?
A. The probability of rolling no sixes is 1.
B. The probability of rolling no sixes is 0 .
C. The probability of rolling no sixes is $\frac{1}{6}$.
D. The probability of rolling no sixes is $\frac{11}{36}$.
E. The probability of rolling no sixes is $\frac{25}{36}$.
F. The probability of rolling no sixes is $\frac{5}{6}$.
3. Draw two cards from a well-shuffled, 52-card deck with replacement. What is the probability of drawing at least one ace? (Hint: think complementary events.)
A. The probability of drawing at least one ace is $\frac{1}{17}$.
B. The probability of drawing at least one ace is $\frac{144}{169}$.
C. The probability of drawing at least one ace is $\frac{12}{13}$.
D. The probability of drawing at least one ace is $\frac{1}{221}$.
E. The probability of drawing at least one ace is $\frac{1}{169}$.
F. The probability of drawing at least one ace is 0 .
G. The probability of drawing at least one ace is $\frac{1}{16}$.
H. The probability of drawing at least one ace is $\frac{25}{169}$.
4. Suppose you shake up a can with 4 six-sided dice in it and then dump them on the table. What is the probability that none of the 4 six-sided dice will be showing a six after they settle? If necessary, round your answer to the nearest ten-thousandth. (Hint: think complementary events.)
A. The probability that none of the dice will be showing a six is 0.43175 .
B. The probability that none of the dice will be showing a six is 0.48225 .
C. The probability that none of the dice will be showing a six is 0.4521 .
D. The probability that none of the dice will be showing a six is 0.56825 .
E. The probability that none of the dice will be showing a six is 0.47354 .
F. The probability that none of the dice will be showing a six is 0.5479 .
G. The probability that none of the dice will be showing a six is 0.51775 .
H. The probability that none of the dice will be showing a six is 0.52646 .
5. Billy Bob plays soccer at Southwestern Oregon Community College. He makes a goal 63

Billy Bob is going to attempt two goals in a row in the next game.
$A=$ the event Billy Bob is successful on his first attempt. $P(A)=0.63$.
$B=$ the event Billy Bob is successful on his second attempt. $P(B)=0.63$.
Billy Bob tends to shoot in streaks. The probability that he makes the second goal GIVEN that he made the first goal is 0.78 .

What is the probability that Billy Bob makes the first goal or the second goal?
A. The probability that Billy Bob makes the first or second goal is 0.8086 .
B. The probability that Billy Bob makes the first or second goal is 0.7786 .
C. The probability that Billy Bob makes the first or second goal is 0.7086 .
D. The probability that Billy Bob makes the first or second goal is 0.7186 .
E. The probability that Billy Bob makes the first or second goal is 0.6986 .
F. The probability that Billy Bob makes the first or second goal is 0.7686 .
G. The probability that Billy Bob makes the first or second goal is 0.8386 .
H. The probability that Billy Bob makes the first or second goal is 0.6786 .
6. During World War II, the British found that the probability that a bomber is lost through enemy action on a mission over occupied Europe was 0.05 . The probability that the bomber returns safely from a mission was therefore 0.95 . It is reasonable to assume that missions are independent. Suppose a tour of duty consists of 9 missions. What was the probability of NOT surviving all 9 missions? If necessary, round your answer to the nearest ten-thousandth.
A. The probability of NOT surviving all 9 missions was 0.6367 .
B. The probability of NOT surviving all 9 missions was 0.6143 .
C. The probability of NOT surviving all 9 missions was 0.6302 .
D. The probability of NOT surviving all 9 missions was 0.3857 .
E. The probability of NOT surviving all 9 missions was 0.3698 .
F. The probability of NOT surviving all 9 missions was 0.6466 .
G. The probability of NOT surviving all 9 missions was 0.3633 .
H. The probability of NOT surviving all 9 missions was 0.3534 .
7. Draw two cards from a well-shuffled, 52-card deck without replacement. What is the probability of drawing two consecutive aces?
A. The probability of drawing two consecutive aces is $\frac{1}{16}$.
B. The probability of drawing two consecutive aces is 0 .
C. The probability of drawing two consecutive aces is $\frac{1}{17}$.
D. The probability of drawing two consecutive aces is $\frac{144}{169}$.
E. The probability of drawing two consecutive aces is $\frac{1}{169}$.
F. The probability of drawing two consecutive aces is $\frac{12}{13}$.
G. The probability of drawing two consecutive aces is $\frac{25}{169}$.
H. The probability of drawing two consecutive aces is $\frac{1}{221}$.
8. In a bag, there are 7 red marbles and 9 green marbles.

The red marbles are marked with the numbers $1,2,3,4,5,6$, and 7
The green marbles are marked with the numbers $1,2,3,4,5,6,7,8$, and 9 .
$R=$ a red marble $G=$ a green marble $E=$ an even-numbered marble
The sample space is $S=\{R 1, R 2, R 3, R 4, R 5, R 6, R 7, G 1, G 2, G 3, G 4, G 5, G 6, G 7, G 8, G 9\} . S$ has 16 outcomes.

What is $P(E \mid G)$? Write your answer as a decimal rounded to four places.
A. $P(E \mid G)=0.2222$.
B. $P(E \mid G)=0.6667$.
C. $P(E \mid G)=1$.
D. $P(E \mid G)=0.1111$.
E. $P(E \mid G)=0.8889$.
F. $P(E \mid G)=-0.1111$.
G. $P(E \mid G)=0.4444$.
H. $P(E \mid G)=0.3333$.

