1. A pack of m&ms contains 13 browns, 11 yellows, 10 greens, 13 reds, 15 oranges, and 10 blues. You draw one m&m from the bag.

Find the probability that you draw an orange or a green m&m.

A. The probability of getting an orange or a green m&m is ¹¹/₂₄.
B. The probability of getting an orange or a green m&m is ¹⁹/₇₂.
C. The probability of getting an orange or a green m&m is ²⁵/₇₂.
D. The probability of getting an orange or a green m&m is ¹/₃.
E. The probability of getting an orange or a green m&m is ¹⁷/₃₆.
F. The probability of getting an orange or a green m&m is ⁷/₂₄.
G. The probability of getting an orange or a green m&m is ⁴/₉.
H. The probability of getting an orange or a green m&m is ³/₈.

2. You roll a six-sided die.

Let A = the event of rolling an even number. Let B = the event of rolling a prime number. Let C = the event of rolling an perfect square.

True or False: B and C mutually exclusive.

A. True

B. False

3. In a bag, there are 4 red marbles and 7 green marbles.

The red marbles are marked with the numbers 1, 2, 3, and 4

The green marbles are marked with the numbers 1, 2, 3, 4, 5, 6, and 7.

R = a red marble G = a green marble E = an even-numbered marble O = an odd-numbered marble

The sample space is $S = \{R1, R2, R3, R4, G1, G2, G3, G4, G5, G6, G7\}$. S has 11 outcomes.

- What is $P(G \cup O)$?
- A. $P(G \cup O) = 0.4545$.
- B. $P(G \cup O) = 1.1818$.
- C. $P(G \cup O) = 0.5455$.
- D. $P(G \cup O) = 1.0909$.
- E. $P(G \cup O) = 0.8182$.
- F. $P(G \cup O) = 1.2727$.
- G. $P(G \cup O) = 0.7273$.
- H. $P(G \cup O) = 0.3636$.

4. You roll a six-sided die.

Let A = the event of rolling an even number. Let B = the event of rolling a prime number. Let C = the event of rolling an odd number.

True or False: A and C mutually exclusive.

A. True

B. False

5. A box has two marbles, one white and one red. We select one marble, put it back in the box, and select a second marble (sampling with replacement). Consider the following events:

Let F = the event of getting the white marble twice. Let G = the event of getting two marbles of different colors. Let H = the event of getting white on the first pick.

True or False: G and H mutually exclusive.

A. True

B. False

6. Suppose E and F are events such that P(E) = 0.1, P(F) = 0.1, and $P(E \cap F) = 0.08$

Find $P(E \cup F)$.

- A. $P(E \cup F) = 0.19$
- B. $P(E \cup F) = 0.1$
- C. $P(E \cup F) = 0.15$
- D. $P(E \cup F) = 0.17$
- E. $P(E \cup F) = 0.03$
- F. $P(E \cup F) = 0.09$
- G. $P(E \cup F) = 0.12$
- H. $P(E \cup F) = 0.11$

7. You roll a six-sided die.

Let A = the event of rolling an even number. Let B = the event of rolling a prime number. Let C = the event of rolling an perfect square.

True or False: A and C mutually exclusive.

A. False

B. True

8. A box is filled with several party favors. It contains 12 hats, 11 noisemakers, 11 finger traps, and 11 bags of confetti.

Find the probability of getting a fingertrap or a bag of confetti.

A. The probability of getting a fingertrap or a bag of confetti is $\frac{23}{45}$.

B. The probability of getting a fingertrap or a bag of confetti is $\frac{5}{9}$.

C. The probability of getting a fingertrap or a bag of confetti is $\frac{8}{15}$.

D. The probability of getting a fingertrap or a bag of confetti is $\frac{3}{5}$.

E. The probability of getting a fingertrap or a bag of confetti is $\frac{22}{45}$.

F. The probability of getting a fingertrap or a bag of confetti is $\frac{1}{3}$.

G. The probability of getting a fingertrap or a bag of confetti is $\frac{13}{45}$.

H. The probability of getting a fingertrap or a bag of confetti is $\frac{7}{15}$.