1. A pack of m\&ms contains 13 browns, 11 yellows, 10 greens, 13 reds, 15 oranges, and 10 blues. You draw one $\mathrm{m} \& \mathrm{~m}$ from the bag.

Find the probability that you draw an orange or a green m\&m.
A. The probability of getting an orange or a green $m \& m$ is $\frac{11}{24}$.
B. The probability of getting an orange or a green m\&m is $\frac{19}{72}$.
C. The probability of getting an orange or a green m\&m is $\frac{25}{72}$.
D. The probability of getting an orange or a green m\&m is $\frac{1}{3}$.
E. The probability of getting an orange or a green m\&m is $\frac{17}{36}$.
F. The probability of getting an orange or a green m\&m is $\frac{7}{24}$.
G. The probability of getting an orange or a green m\&m is $\frac{4}{9}$.
H. The probability of getting an orange or a green m\&m is $\frac{3}{8}$.
2. You roll a six-sided die.

Let $A=$ the event of rolling an even number.
Let $B=$ the event of rolling a prime number.
Let $C=$ the event of rolling an perfect square.

True or False: B and C mutually exclusive.
A. True
B. False
3. In a bag, there are 4 red marbles and 7 green marbles.

The red marbles are marked with the numbers $1,2,3$, and 4
The green marbles are marked with the numbers $1,2,3,4,5,6$, and 7 .
$R=$ a red marble
$G=$ a green marble
$E=$ an even-numbered marble
$O=$ an odd-numbered marble

The sample space is $S=\{R 1, R 2, R 3, R 4, G 1, G 2, G 3, G 4, G 5, G 6, G 7\} . S$ has 11 outcomes.
What is $P(G \cup O)$?
A. $P(G \cup O)=0.4545$.
B. $P(G \cup O)=1.1818$.
C. $P(G \cup O)=0.5455$.
D. $P(G \cup O)=1.0909$.
E. $P(G \cup O)=0.8182$.
F. $P(G \cup O)=1.2727$.
G. $P(G \cup O)=0.7273$.
H. $P(G \cup O)=0.3636$.
4. You roll a six-sided die.

Let $A=$ the event of rolling an even number.
Let $B=$ the event of rolling a prime number.
Let $C=$ the event of rolling an odd number.
True or False: A and C mutually exclusive.
A. True
B. False
5. A box has two marbles, one white and one red. We select one marble, put it back in the box, and select a second marble (sampling with replacement). Consider the following events:

Let $F=$ the event of getting the white marble twice.
Let $G=$ the event of getting two marbles of different colors.
Let $H=$ the event of getting white on the first pick.

True or False: G and H mutually exclusive.
A. True
B. False
6. Suppose E and F are events such that $P(E)=0.1, P(F)=0.1$, and $P(E \cap F)=0.08$

Find $P(E \cup F)$.
A. $P(E \cup F)=0.19$
B. $P(E \cup F)=0.1$
C. $P(E \cup F)=0.15$
D. $P(E \cup F)=0.17$
E. $P(E \cup F)=0.03$
F. $P(E \cup F)=0.09$
G. $P(E \cup F)=0.12$
H. $P(E \cup F)=0.11$
7. You roll a six-sided die.

Let $A=$ the event of rolling an even number.
Let $B=$ the event of rolling a prime number.
Let $C=$ the event of rolling an perfect square.
True or False: A and C mutually exclusive.
A. False
B. True
8. A box is filled with several party favors. It contains 12 hats, 11 noisemakers, 11 finger traps, and 11 bags of confetti.

Find the probability of getting a fingertrap or a bag of confetti.
A. The probability of getting a fingertrap or a bag of confetti is $\frac{23}{45}$.
B. The probability of getting a fingertrap or a bag of confetti is $\frac{5}{9}$.
C. The probability of getting a fingertrap or a bag of confetti is $\frac{8}{15}$.
D. The probability of getting a fingertrap or a bag of confetti is $\frac{3}{5}$.
E. The probability of getting a fingertrap or a bag of confetti is $\frac{22}{45}$.
F. The probability of getting a fingertrap or a bag of confetti is $\frac{1}{3}$.
G. The probability of getting a fingertrap or a bag of confetti is $\frac{13}{45}$.
H. The probability of getting a fingertrap or a bag of confetti is $\frac{7}{15}$.

