1. You are rolling a fair, six-sided die.

Let $E=$ the event that it lands on an even number.
Let $M=$ the event that it lands on a multiple of three.
What does $P(E \cap M)$ mean in words?
A. $P(E \cap M)$ is the probability of rolling an even number or a multiple of 3 .
B. $P(E \cap M)$ is the probability of rolling an even number and a multiple of 3 .
C. $P(E \cap M)$ is the probability of rolling a multiple of 3 given that the number is even.
D. $P(E \cap M)$ is the probability of rolling an even number which is not a multiple of 3 .
E. $P(E \cap M)$ is the probability of rolling an even number given that the number is a multiple of 3 .
2. A fair, six-sided die is rolled. The sample space $S$ is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of $S$ and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen.
Event $N=$ the outcome is 2 .
Event $A=$ the outcome is an odd number.
Event $B=$ the outcome is greater than 4.
Identify the subset of $S$ which corresponds to the event $A \cup B$ and find $P(A \cup B)$.
A. $A \cup B=\{5\}$ and $P(A \cup B)=\frac{5}{6}$.
B. $A \cup B=\{1,2,3,4\}$ and $P(A \cup B)=\frac{5}{6}$.
C. $A \cup B=\{5\}$ and $P(A \cup B)=\frac{2}{3}$.
D. $A \cup B=\{1,3,5,6\}$ and $P(A \cup B)=\frac{5}{6}$.
E. $A \cup B=\{5,6\}$ and $P(A \cup B)=\frac{2}{3}$.
F. $A \cup B=\{5,6\}$ and $P(A \cup B)=\frac{5}{6}$.
G. $A \cup B=\{1,3,5,6\}$ and $P(A \cup B)=\frac{2}{3}$.
H. $A \cup B=\{1,2,3,4\}$ and $P(A \cup B)=\frac{2}{3}$.
3. A pack of Skittles contains 13 purples, 14 yellows, 10 greens, 11 reds, 10 oranges, and 12 blues. You draw one Skittle from the bag.
Let $P u=$ the event of drawing a purple Skittle.
Let $Y=$ the event of drawing a yellow Skittle.
Let $G=$ the event of drawing a green Skittle.
Let $R=$ the event of drawing a red Skittle.
Let $O r=$ the event of drawing a orange Skittle.
Let $B=$ the event of drawing a blue Skittle.

Find the probability $P(P u)$.
A. $P(P u)=\frac{3}{14}$
B. $P(P u)=\frac{9}{70}$
C. $P(P u)=\frac{13}{70}$
D. $P(P u)=\frac{9}{35}$
E. $P(P u)=\frac{11}{69}$
F. $P(P u)=\frac{16}{69}$
G. $P(P u)=\frac{4}{23}$
H. $P(P u)=\frac{17}{69}$
4. In a particular college class, there are male and female students. Some students have long hair and some students have short hair.
Let $F$ be the event that a student is female.
Let $M$ be the event that a student is male.
Let $S$ be the event that a student has short hair.
Let $L$ be the event that a student has long hair.
Write the symbols for the probability that a student is male, given that the student has long hair.
A. $P(S \mid F)$
B. $P(F \cap L)$
C. $P(F \mid S)$
D. $P(F \mid L)$
E. $P(F \cup L)$
F. $P(M \cap S)$
G. $P(M \cup S)$
H. $P(M \mid L)$
5. A fair, six-sided die is rolled. The sample space $S$ is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of $S$ and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen.
Event $N=$ the outcome is 2 .
Event $A=$ the outcome is an even number.
Event $B=$ the outcome is less than 3 .

Identify the subset of $S$ which corresponds to the event $A$ and find $P(A)$.
A. $A=\{2,4,6\}$ and $P(A)=\frac{1}{3}$.
B. $A=\{1,3,5\}$ and $P(A)=\frac{5}{6}$.
C. $A=\{2,4,6\}$ and $P(A)=\frac{5}{6}$.
D. $A=\{1,3,5\}$ and $P(A)=\frac{1}{2}$.
E. $A=\{1,3,5\}$ and $P(A)=\frac{1}{3}$.
F. $A=\{2,4,6\}$ and $P(A)=\frac{1}{6}$.
G. $A=\{2,4,6\}$ and $P(A)=\frac{1}{2}$.
H. $A=\{1,3,5\}$ and $P(A)=\frac{1}{6}$.
6. Let $S=\{0, \diamond, \natural, \sharp, 3,8, \boldsymbol{\leftrightarrow}, \boldsymbol{\star}, \boldsymbol{\uparrow}, 2, \boldsymbol{\square}, 9,1,5,4, \diamond, b, \mathbf{\Delta}, 6,7\}$ be the sample space where every element has an equal chance of being chosen.

Consider the two events $A=\{0, \sharp, 8,2,5, \boldsymbol{\Delta}, 7\}$ and $B=\{0, \natural, 3,9,1,6,7\}$.
Find the probability $P(A \mid B)$ and $P(B \mid A)$.
A. $P(A \mid B)=\frac{1}{7}$ and $P(B \mid A)=\frac{5}{7}$
B. $P(A \mid B)=0$ and $P(B \mid A)=\frac{1}{7}$
C. $P(A \mid B)=\frac{2}{7}$ and $P(B \mid A)=\frac{5}{7}$
D. $P(A \mid B)=0$ and $P(B \mid A)=0$
E. $P(A \mid B)=\frac{2}{7}$ and $P(B \mid A)=0$
F. $P(A \mid B)=\frac{2}{7}$ and $P(B \mid A)=\frac{2}{7}$
G. $P(A \mid B)=\frac{1}{7}$ and $P(B \mid A)=\frac{1}{7}$
H. $P(A \mid B)=\frac{1}{7}$ and $P(B \mid A)=\frac{2}{7}$
7. Let $S=\{6, \star, \boldsymbol{\wedge}, \diamond, 3,9,1, \boldsymbol{\wedge}, 7,8, দ, \boldsymbol{\&}, 2,4, \boldsymbol{\square}, b, 5, \sharp, 0, \oslash\}$ be the sample space where every element has an equal chance of being chosen.

Consider the event $A=\{\star, \diamond, 3,9,1,7,0\}$. Find the event $A^{\prime}$.
A. $A^{\prime}=\{6, \boldsymbol{\Delta}, 7,8,\llcorner, 2,4, \boldsymbol{\square}, b, \sharp, 0, \oslash\}$
B. $A^{\prime}=\{\diamond, 1,7,8, \llbracket, b, 5,0, \diamond\}$
C. $A^{\prime}=\{6, \star, \boldsymbol{\Delta}, 7, \boldsymbol{\ell}, 2,4, \boldsymbol{\square}, b, 0, \oslash\}$
D. $A^{\prime}=\{6, \star, \diamond, 9,8, দ, b, \sharp\}$
E. $A^{\prime}=\{\diamond, 9,1,7, \natural, 2,4, b, \sharp, \diamond\}$
F. $A^{\prime}=\{6, \star, \boldsymbol{\uparrow}, \diamond, 9,1, \mathbf{\Delta}, 7,8, \boldsymbol{\propto}, 4, \boldsymbol{\square}, b, 5, \sharp, 0, \odot\}$
G. $A^{\prime}=\{6, \boldsymbol{\oplus}, 3,9,8, দ, \boldsymbol{\varphi}, 2,4, \boldsymbol{\square}, 5, \sharp\}$
H. $A^{\prime}=\{6, \boldsymbol{\uparrow}, \boldsymbol{\Delta}, 8, \downarrow, \boldsymbol{\uparrow}, 2,4, \boldsymbol{\square}, b, 5, \sharp, \oslash\}$
8. A pack of m\&ms contains 13 browns, 11 yellows, 15 greens, 12 reds, 14 oranges, and 11 blues. You draw one $\mathrm{m} \& \mathrm{~m}$ from the bag.
Let $B r=$ the event of drawing a brown $m \& m$.
Let $Y=$ the event of drawing a yellow $m \& m$.
Let $G=$ the event of drawing a green m\&m.
Let $R=$ the event of drawing a red $\mathrm{m} \& \mathrm{~m}$.
Let $O r=$ the event of drawing a orange $m \& m$.
Let $B l=$ the event of drawing a blue m\&m.
Find the probability $P(R)$.
A. $P(R)=\frac{10}{73}$
B. $P(R)=\frac{4}{19}$
C. $P(R)=\frac{9}{73}$
D. $P(R)=\frac{2}{19}$
E. $P(R)=\frac{7}{38}$
F. $P(R)=\frac{3}{19}$
G. $P(R)=\frac{17}{73}$
H. $P(R)=\frac{11}{73}$

