1. Determine if the statement is a tautology, a self-contradiction, or neither.

$$(p \leftrightarrow q) \lor \sim (q \leftrightarrow p)$$

A. Tautology

B. Self-Contradiction

C. Neither

- 2. Write the inverse of the statement $p \to (q \vee r).$
- A. $\sim p \rightarrow \sim (q \lor r)$
- B. $\sim (q \lor r) \rightarrow \sim p$
- C. $(q \lor r) \to p$

3. For the following exercise, let p be the statement "I need to talk to my friend," and q be the statement "I will send her a text message."

Write the following statement in symbols:

If I need to talk to my friend, I will send her a text message.

A. $\sim p \rightarrow \sim q$ B. $\sim q \rightarrow \sim p$ C. $p \rightarrow q$

D. $q \rightarrow p$

4. Write the inverse of the following statement:

If she earns enough money this summer, then she will buy a car.

- A. If she buys a car, then she earned enough money this summer.
- B. If she doesn't earn enough money this summer, then she won't buy a car.
- C. If she doesn't buy a car, then she didn't earn enough money this summer.

- 5. The two statements $p \wedge q$ and $\sim q \vee \sim p$ are
- A. logically equivalent.
- B. neither logically equivalent nor negations.
- C. negations.

- 6. Write the inverse of the statement $(p\vee \sim q) \rightarrow r.$
- A. $\sim r \rightarrow \sim (p \lor \sim q)$
- B. $r \to (p \lor \sim q)$
- C. $\sim (p \lor \sim q) \rightarrow \sim r$

- 7. Write the contrapositive of the statement $p \to (q \vee r).$
- A. $\sim p \rightarrow \sim (q \lor r)$
- B. $(q \lor r) \to p$
- $\mathcal{C}. \sim (q \vee r) \rightarrow \sim p$

- 8. Write the converse of the statement $(q \lor \sim r) \to (p \lor r)$.
- A. $(p \lor r) \to (q \lor \sim r)$
- B. $\sim (q \lor \sim r) \rightarrow \sim (p \lor r)$
- C. $\sim (p \lor r) \rightarrow \sim (q \lor \sim r)$