
Introduction Basic Definitions and Results Permutiple Graphs Finite-State Machine Methods Thank You! References

Digit Permutation Without Apology

Benjamin V. Holt

Southwestern Oregon Community College

April 25th, 2025



Introduction Basic Definitions and Results Permutiple Graphs Finite-State Machine Methods Thank You! References

Origins of My Fascination

As an undergraduate, I found the following problem in a book of
puzzles.

Find numbers A, B, C , D, and E such that

A B C D E
× 4

E D C B A
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Origins of My Fascination

The Solution
2 1 9 7 8
× 4

8 7 9 1 2
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What G.H. Hardy Had to Say About Such Numbers...

W. W. Rouse Ball’s “Mathematical Recreations and Essays” states
that 8712 = 4 · 2178 and 9801 = 9 · 1089 are the only 4-digit
numbers which are multiples of their reversals. In his “Apology”
G.H. Hardy had this to say about Ball’s inclusion of this problem:

“These are odd facts, very suitable for puzzle columns and likely to
amuse amateurs, but there is nothing in them which appeals to
a mathematician. The proofs are neither difficult nor interesting -
merely tiresome. The theorems are not serious; and it is plain that
one reason (though perhaps not the most important) is the
extreme speciality of both the enunciations and proofs, which are
not capable of any significant1 generalization.”

1See S. Weisgerber, Value judgments in mathematics: G. H. Hardy and the
(non-)seriousness of mathematical theorems, Global Philosophy 34:1 (2024)
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Timeline

Below is an incomplete list of authors who have worked on finding
numbers which are multiples of their reversals. Such numbers go
by several names: palintiples, reverse multiples, and reverse
divisors. This body of work seems to challenge Hardy’s claims.

A. Sutcliffe, 1966
T. J. Kaczynski2, 1968
L. F. Klosinski and D. C. Smolarski, 1969
A. L. Young, 1992,
D. J. Hoey, 1992
L. Pudwell3, 2007
R. Webster and G. Williams, 2013
N. J. A. Sloane, 2014
B. V. Holt, 2014, 2016

L. H. Kendrick, 2015

2“Better known for other work.”-Laura Pudwell
3Pudwell’s paper is titled “Digit Reversal Without Apology”
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Statement of Problem

In this talk, we consider a generalization of the digit-reversal
problem.

We find numbers which are multiples of some permutation of their
digits.
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Permutiple Definition

We shall use (dk , dk−1, . . . , d0)b to denote the natural number∑k
j=0 djb

j where each 0 ≤ dj < b.

Definition

Let n be a natural number and σ be a permutation on
{0, 1, 2, . . . , k}. We say that (dk , dk−1, . . . , d0)b is an
(n, b, σ)-permutiple provided

(dk , dk−1, . . . , d1, d0)b = n(dσ(k), dσ(k−1), . . . , dσ(1), dσ(0))b.
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A Basic Result

Theorem

Let (dk , dk−1, . . . , d0)b = n · (dσ(k), dσ(k−1), . . . , dσ(0))b be an
(n, b, σ)-permutiple, and let cj be the jth carry. Then,

bcj+1 − cj = ndσ(j) − dj

for all 0 ≤ j ≤ k.
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A Basic Result

The carries of any permutiple are always less than the multiplier, n.

Theorem

Let (dk , dk−1, . . . , d0)b = n · (dσ(k), dσ(k−1), . . . , dσ(0))b be an
(n, b, σ)-permutiple, and let cj be the jth carry. Then, cj ≤ n − 1
for all 0 ≤ j ≤ k.
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Some (4, 10)-Permutiple Examples

(4, 10, τ)-Example π τ
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10 ε ρ
(8, 7, 1, 9, 2)10 = 4 · (2, 1, 7, 9, 8)10 (1, 2) (1, 2)ρ(1, 2)
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10 ψ4 ψ−4ρψ4

(7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10 (1, 2)ψ4 ψ−4(1, 2)ρ(1, 2)ψ4

In the above table, ψ is the 5-cycle (0, 1, 2, 3, 4), ρ is the reversal
permutation, and ε is the identity permutation.
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Permutiple Graphs

Definition

Let p = (dk , dk−1, . . . , d0)b = n · (dσ(k), dσ(k−1), . . . , dσ(0))b be an
(n, b, σ)-permutiple. We define a directed graph, called the graph
of p, denoted as Gp, to consist of the collection of base-b digits as
vertices, and the collection of directed edges
Ep =

{(
dj , dσ(j)

)
| 0 ≤ j ≤ k

}
. A graph, G , for which there is a

permutiple, p, such that G = Gp is called a permutiple graph.

For the remainder of this talk, all graphs will be directed graphs,
and we may refer to a “directed graph” as simply a “graph,” or a
“directed edge” as an edge.
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Permutiple Graphs

All of the permutiples below have the same graph.

(4, 10, τ)-Example π τ
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10 ε ρ
(8, 7, 1, 9, 2)10 = 4 · (2, 1, 7, 9, 8)10 (1, 2) (1, 2)ρ(1, 2)
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10 ψ4 ψ−4ρψ4

(7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10 (1, 2)ψ4 ψ−4(1, 2)ρ(1, 2)ψ4
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Permutiple Classes

Definition

Let p be an (n, b)-permutiple with graph Gp. We define the class
of p to be the collection, C , of all (n, b)-permutiples, q, such that
Gq is a subgraph of Gp. We also define the graph of the class to be
Gp, which we will denote as GC and will call the graph of C .

All of the permutiples below have the same graph, and are,
therefore, members of the same class.

(4, 10, τ)-Example π τ
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10 ε ρ
(8, 7, 1, 9, 2)10 = 4 · (2, 1, 7, 9, 8)10 (1, 2) (1, 2)ρ(1, 2)
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10 ψ4 ψ−4ρψ4

(7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10 (1, 2)ψ4 ψ−4(1, 2)ρ(1, 2)ψ4
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More Examples...

More examples of permutiples in this same class include:

(8, 7, 1, 2)10 = 4 · (2, 1, 7, 8)10,
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10,
(8, 7, 9, 9, 1, 2)10 = 4 · (2, 1, 9, 9, 7, 8)10,
(7, 1, 2, 8)10 = 4 · (1, 7, 8, 2)10,
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10,
(7, 9, 9, 1, 2, 8)10 = 4 · (1, 9, 9, 7, 8, 2)10,
(8, 7, 1, 2, 8, 7, 1, 2)10 = 4 · (2, 1, 7, 8, 2, 1, 7, 8)10.
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The Mother Graph

Theorem

Let p = (dk , dk−1, . . . , d0)b = n · (dσ(k), dσ(k−1), . . . , dσ(0))b be an
(n, b, σ)-permutiple with graph Gp. Then, for any edge, (dj , dσ(j)),
of Gp, it must be that λ

(
dj + (b − n)dσ(j)

)
≤ n − 1 for all

0 ≤ j ≤ k , where λ gives the least non-negative residue modulo b.

With the above, we gather all possible edges of a permutiple graph
into a single graph.

Definition

The (n, b)-mother graph, denoted M, is the graph having all
base-b digits as its vertices and the collection of edges, (d1, d2),
satisfying the inequality λ (d1 + (b − n)d2) ≤ n − 1.
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Example: The (4, 10)-Mother Graph

The (4, 10)-mother graph tells us which edges are possible for a
base-10 permutiple when multiplying by 4.
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Constructing a Finite-State Machine

We now take our most basic results and construct a finite state
machine which recognizes permutiples.

We will use the fact that for an (n, b, σ)-permutiple,
(dk , dk−1, . . . , d0)b = n · (dσ(k), dσ(k−1), . . . , dσ(0))b, we have

bcj+1 − cj = ndσ(j) − dj

and that cj ≤ n − 1 for all 0 ≤ j ≤ k .
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The Hoey-Sloane Machine

Definition

Taking non-negative integers less than n as the collection of states,
and the edges of the mother graph, M, as the input alphabet, the
equation

c2 = [nd2 − d1 + c1]÷ b

defines a state-transition function from state c1 to state c2 with
(d1, d2) serving as the input which induces the transition. The
initial state is zero, and the only accepting state is zero. We name
this construction the (n, b)-Hoey-Sloane machine.

Since the c0 = 0 in any multiplication (see multiplication
algorithm), the initial state must be zero. Also, for any
multiplication of length `, the final state, c`+1 must be zero for the
process to end. This is why zero is the only accepting state.
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The Hoey-Sloane Graph

When the input (d1, d2) induces the transition from the state c1 to
state c2, this transition corresponds to a labeled edge on the state
diagram as seen below.

c1 c2
(d1, d2)

This state diagram is called the (n, b)-Hoey-Sloane graph, which
we will denote as Γ.
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The (n, b)-Hoey-Sloane Language

Definition

We shall denote language of input strings accepted by the
(n, b)-Hoey-Sloane machine as L. We may describe L as finite
sequences of edge-label inputs which define walks on Γ whose
initial and final states are zero. For simplicity, we will call such
walks L-walks. Members of L which produce permutiple numbers
will be called (n, b)-permutiple strings.
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The (4, 10)-Hoey-Sloane Graph

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (7, 4) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)
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An Example

The input string s = (2, 8)(7, 1) defines an L-walk on Γ. The
corresponding mutilplication is (7, 2)10 = 4 · (1, 8)10, with state
(carry) sequence c0 = 0, and c1 = 3. We see that s is a member of
L, but is NOT a permutiple string.

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (7, 4) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)
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Another Example

The input string s = (2, 8)(1, 7)(9, 9)(7, 1)(8, 2) defines an L-walk
on Γ. The corresponding mutilplication is
(8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10. We see that s is not only a
member of L, it’s also a permutiple string!

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (7, 4) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)
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More Examples!

Permutiple Permutiple String
(7, 1, 2, 8)10 = 4 · (1, 7, 8, 2)10, s = (8, 2)(2, 8)(1, 7)(7, 1)
(7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10, s = (8, 2)(2, 8)(1, 7)(9, 9)(7, 1)

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (7, 4) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)
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Some Questions

If we have the (n, b)-Hoey-Sloane graph, how do we find
permutiple strings?

What makes a string, s = (d0, d̂0)(d1, d̂1) · · · (dk , d̂k), in L a
permutiple string?
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A Helpful Result

Theorem

Let s = (d0, d̂0)(d1, d̂1) · · · (dk , d̂k) be a member of L. If s is a
permutiple string, then the collection of ordered-pair inputs of s is
a union of cycles of M.
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Example

Consider the permutiple string s = (2, 8)(1, 7)(9, 9)(7, 1)(8, 2).
The inputs of s form a union of the mother-graph cycles
C0 = {(9, 9)}, C1 = {(2, 8), (8, 2)}, and C2 = {(1, 7), (7, 1)}.
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Example

For the mother-graph cycles C1 = {(2, 8), (8, 2)}, and
C2 = {(1, 7), (7, 1)} we may use Γ to order the multiset union

C1]C1]C2]C2 = {(2, 8), (8, 2), (2, 8), (8, 2), (1, 7), (7, 1), (1, 7), (7, 1)}
into s = (8, 2)(2, 8)(1, 7)(7, 1)(2, 8)(1, 7)(7, 1)(8, 2) to produce
examples such as (8, 7, 1, 2, 7, 1, 2, 8)10 = 4 · (2, 1, 7, 8, 1, 7, 8, 2)10.

0start 1 2 3

(0, 0), (4, 1), (8, 2) (3, 3), (7, 4) (2, 5), (6, 6) (1, 7), (5, 8),(9, 9)

(2, 3), (6, 4)

(1, 0), (5, 1), (9, 2) (0, 2), (4, 3), (8, 4)

(1, 5), (5, 6), (9, 7)

(3, 8), (7, 9)

(0, 7), (4, 8), (8, 9)

(3, 5), (7, 6)

(1, 2), (5, 3), (9, 4)(0, 5), (4, 6), (8, 7)

(2, 8), (6, 9)

(2, 0), (6, 1)

(3, 0), (7, 1)
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Question

How do we begin to understand which multiset unions of
mother-graph cycles can be ordered into permutiple strings?
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A Partial Answer

For each mother-graph cycle, Cj , gather all the edges, (c1, c2), of
the Hoey-Sloane graph for which the inputs in Cj are an edge label
of (c1, c2).

The labeled subgraph, Γj , of Γ corresponding to the cycle Cj is
called the cycle image of Cj .

A multiset union must correspond to a cycle-image union on which
we can form L-walks. This is a necessary, but not sufficient,
condition to form permutiple strings.
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We interrupt this program to bring you a simpler example...

For reasons which will soon be apparent, we will return to our
regularly scheduled base-10 example after considering a much
simpler example:

Find all base-4 permutiples with multiplier 2.

This example will set the stage for understanding the task of
finding all (4, 10)-permutiples.
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(2, 4)-Mother Graph, its Cycles, and Hoey-Sloane Graph

For each mother-graph cycle, Cj , gather all the edges, (c1, c2), of
the Hoey-Sloane graph for which the inputs in Cj are an edge label
of (c1, c2).

C0 = (0) = {(0, 0)},
C1 = (3) = {(3, 3)},
C2 = (1, 2) = {(1, 2), (2, 1)},
C3 = (0, 2, 1) = {(0, 2), (2, 1)(1, 0)},
C4 = (1, 2, 3) = {(1, 2), (2, 3), (3, 1)},
C5 = (0, 2, 3, 1) = {(0, 2), (2, 3), (3, 1), (1, 0)}.

0start 1

(0, 2), (2, 3)

(1, 0), (3, 1)(0, 0), (2, 1) (1, 2), (3, 3)
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(2, 4)-Mother Graph, its Cycles, and Hoey-Sloane Graph

For each mother-graph cycle, Cj , gather all the edges, (c1, c2), of
the Hoey-Sloane graph for which the inputs in Cj are an edge label
of (c1, c2).

C0 = (0) = {(0, 0)},
C1 = (3) = {(3, 3)},
C2 = (1, 2) = {(1, 2), (2, 1)},
C3 = (0, 2, 1) = {(0, 2), (2, 1)(1, 0)},
C4 = (1, 2, 3) = {(1, 2), (2, 3), (3, 1)},
C5 = (0, 2, 3, 1) = {(0, 2), (2, 3), (3, 1), (1, 0)}.

0start 1

(0, 2), (2, 3)

(1, 0), (3, 1)(0, 0),(2, 1) (1, 2), (3, 3)
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(2, 4)-Mother Graph, its Cycles, and Hoey-Sloane Graph

For each mother-graph cycle, Cj , gather all the edges, (c1, c2), of
the Hoey-Sloane graph for which the inputs in Cj are an edge label
of (c1, c2).

C0 = (0) = {(0, 0)},
C1 = (3) = {(3, 3)},
C2 = (1, 2) = {(1, 2), (2, 1)},
C3 = (0, 2, 1) = {(0, 2), (2, 1)(1, 0)},
C4 = (1, 2, 3) = {(1, 2), (2, 3), (3, 1)},
C5 = (0, 2, 3, 1) = {(0, 2), (2, 3), (3, 1), (1, 0)}.

0start 1

(0, 2),(2, 3)

(1, 0),(3, 1)(0, 0), (2, 1) (1, 2), (3, 3)

s = (2, 3)(1, 2)(3, 1) is a permutiple string; (3, 1, 2)4 = 2 · (1, 2, 3)4
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The Full Collection of Cycle Images
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We now return to our base-10 example...

The class, C , of (4, 10)-permutiples with considered above may be
built from unions of cycles of GC whose corresponding cycle-image
union allows for the formation of L-walks.
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Cycles and Cycle Images of GC

Cycle of GC Cycle Image

C0
9 0start 3

(9, 9)

Γ0

C1

2

8

0start 3

(2, 8)

(8, 2)

Γ1

C2

1

7 0start 3

(7, 1)
(1, 7)

Γ2
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = “ ”

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = (8, 2)

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = (8, 2)(2, 8)

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = (8, 2)(2, 8)(1, 7)

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = (8, 2)(2, 8)(1, 7)(9, 9)

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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One Final Example

0 3 3 3 0 0
1 9 7 8 2

× 4

7 9 1 2 8

s = (8, 2)(2, 8)(1, 7)(9, 9)(7, 1)

0start 3
(2, 8)

(8, 2)

(7, 1)

(1, 7), (9, 9)
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Thank you!
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