| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You! | References |
|--------------|-------------------------------|-------------------|------------------------------|------------|------------|
|              |                               |                   |                              |            |            |

# Digit Permutation Without Apology

## Benjamin V. Holt

## Southwestern Oregon Community College

April 25th, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

| Origins               | s of My Fascina               | ation             |                              |                 |                 |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|
| Introduction<br>•0000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |

As an undergraduate, I found the following problem in a book of puzzles.

Find numbers A, B, C, D, and E such that

| Α | В | С | D | Ε |
|---|---|---|---|---|
| Х |   |   |   | 4 |
| Ε | D | С | В | A |

| Origins               | s of My Fascina               | ation             |                              |                 |                 |  |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|--|
| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |  |

#### The Solution

| 2 | 1 | 9 | 7 | 8 |
|---|---|---|---|---|
| Х |   |   |   | 4 |
| 8 | 7 | 9 | 1 | 2 |

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

What G.H. Hardy Had to Say About Such Numbers...

W. W. Rouse Ball's "Mathematical Recreations and Essays" states that  $8712 = 4 \cdot 2178$  and  $9801 = 9 \cdot 1089$  are the only 4-digit numbers which are multiples of their reversals. In his "Apology" G.H. Hardy had this to say about Ball's inclusion of this problem:

"These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but **there is nothing in them which appeals to a mathematician**. The proofs are neither difficult nor interesting merely tiresome. The theorems are not serious; and it is plain that one reason (though perhaps not the most important) is the extreme speciality of both the enunciations and proofs, which are **not capable of any significant**<sup>1</sup> **generalization**."

<sup>&</sup>lt;sup>1</sup>See S. Weisgerber, Value judgments in mathematics: G. H. Hardy and the (non-)seriousness of mathematical theorems, *Global Philosophy* **34**:1 (2024)

| Introduction<br>000€0 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| Timeli                | ne                            |                             |                              |                 |                 |

Below is an incomplete list of authors who have worked on finding numbers which are multiples of their reversals. Such numbers go by several names: palintiples, reverse multiples, and reverse divisors. This body of work seems to challenge Hardy's claims.

A. Sutcliffe, 1966
T. J. Kaczynski<sup>2</sup>, 1968
L. F. Klosinski and D. C. Smolarski, 1969
A. L. Young, 1992,
D. J. Hoey, 1992
L. Pudwell<sup>3</sup>, 2007
R. Webster and G. Williams, 2013
N. J. A. Sloane, 2014
B. V. Holt, 2014, 2016
L. H. Kendrick, 2015

<sup>&</sup>lt;sup>2</sup> "Better known for other work." - Laura Pudwell

³Pudwell's paper is titled "Digit Reversal Without Apology" 🛪 🗉 🖌 📱 🔊 ०० 🥆

| Statement of Problem                 |                          |                              |            |            |  |  |  |  |
|--------------------------------------|--------------------------|------------------------------|------------|------------|--|--|--|--|
| Introduction Basic Definitions and R | esults Permutiple Graphs | Finite-State Machine Methods | Thank You! | References |  |  |  |  |
| 00000 0000                           | 000000                   |                              | 0          | 0          |  |  |  |  |

In this talk, we consider a generalization of the digit-reversal problem.

We find numbers which are multiples of some permutation of their digits.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

| D     |                  | 000000 | 000000000000000000000000000000000000000 | 0 | 0 |
|-------|------------------|--------|-----------------------------------------|---|---|
| Permu | tinle Definition |        |                                         |   |   |

We shall use  $(d_k, d_{k-1}, \dots, d_0)_b$  to denote the natural number  $\sum_{j=0}^k d_j b^j$  where each  $0 \le d_j < b$ .

#### Definition

Let *n* be a natural number and  $\sigma$  be a permutation on  $\{0, 1, 2, ..., k\}$ . We say that  $(d_k, d_{k-1}, ..., d_0)_b$  is an  $(n, b, \sigma)$ -permutiple provided

$$(d_k, d_{k-1}, \ldots, d_1, d_0)_b = n(d_{\sigma(k)}, d_{\sigma(k-1)}, \ldots, d_{\sigma(1)}, d_{\sigma(0)})_b.$$

| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods            | Thank You! | References |
|--------------|-------------------------------|-------------------|-----------------------------------------|------------|------------|
| 00000        | 0000                          | 000000            | 000000000000000000000000000000000000000 |            |            |
|              |                               |                   |                                         |            |            |

## A Basic Result

#### Theorem

Let  $(d_k, d_{k-1}, \ldots, d_0)_b = n \cdot (d_{\sigma(k)}, d_{\sigma(k-1)}, \ldots, d_{\sigma(0)})_b$  be an  $(n, b, \sigma)$ -permutiple, and let  $c_j$  be the *j*th carry. Then,

$$bc_{j+1} - c_j = nd_{\sigma(j)} - d_j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all  $0 \leq j \leq k$ .

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| A Rasi                | c Result                      |                             |                              |                 |                 |

The carries of any permutiple are always less than the multiplier, n.

#### Theorem

Let  $(d_k, d_{k-1}, \ldots, d_0)_b = n \cdot (d_{\sigma(k)}, d_{\sigma(k-1)}, \ldots, d_{\sigma(0)})_b$  be an  $(n, b, \sigma)$ -permutiple, and let  $c_j$  be the *j*th carry. Then,  $c_j \leq n-1$  for all  $0 \leq j \leq k$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Basic Defin

Basic Definitions and Results

Permutiple Graphs

Finite-State Machine Methods

Thank You! Reference o o

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Some (4, 10)-Permutiple Examples

| (4, 10, 	au)-Example                                  | $\pi$         | au                             |
|-------------------------------------------------------|---------------|--------------------------------|
| $(8,7,9,1,2)_{10} = 4 \cdot (2,1,9,7,8)_{10}$         | ε             | ρ                              |
| $(8,7,1,9,2)_{10} = 4 \cdot (2,1,7,9,8)_{10}$         | (1,2)         | $(1,2)\rho(1,2)$               |
| $(7,9,1,2,8)_{10} = 4 \cdot (1,9,7,8,2)_{10}$         | $\psi^4$      | $\psi^{-4} ho\psi^{4}$         |
| $(7, 1, 9, 2, 8)_{10} = 4 \cdot (1, 7, 9, 8, 2)_{10}$ | $(1,2)\psi^4$ | $\psi^{-4}(1,2) ho(1,2)\psi^4$ |

In the above table,  $\psi$  is the 5-cycle (0, 1, 2, 3, 4),  $\rho$  is the reversal permutation, and  $\varepsilon$  is the identity permutation.

| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You! | Refer |
|--------------|-------------------------------|-------------------|------------------------------|------------|-------|
|              |                               | 00000             |                              |            |       |
|              |                               |                   |                              |            |       |

## Permutiple Graphs

#### Definition

Let  $p = (d_k, d_{k-1}, \ldots, d_0)_b = n \cdot (d_{\sigma(k)}, d_{\sigma(k-1)}, \ldots, d_{\sigma(0)})_b$  be an  $(n, b, \sigma)$ -permutiple. We define a directed graph, called *the graph* of p, denoted as  $G_p$ , to consist of the collection of base-b digits as vertices, and the collection of directed edges  $E_p = \{(d_j, d_{\sigma(j)}) | 0 \le j \le k\}$ . A graph, G, for which there is a permutiple, p, such that  $G = G_p$  is called a *permutiple graph*.

For the remainder of this talk, all graphs will be directed graphs, and we may refer to a "directed graph" as simply a "graph," or a "directed edge" as an edge.

| _            |                               |                   |                              |            |            |
|--------------|-------------------------------|-------------------|------------------------------|------------|------------|
|              |                               | 00000             |                              |            |            |
| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You! | References |

## Permutiple Graphs

## All of the permutiples below have the same graph.

| (4, 10, 	au)-Example                                  | π             | au                             |
|-------------------------------------------------------|---------------|--------------------------------|
| $(8,7,9,1,2)_{10} = 4 \cdot (2,1,9,7,8)_{10}$         | ε             | ρ                              |
| $(8,7,1,9,2)_{10} = 4 \cdot (2,1,7,9,8)_{10}$         | (1,2)         | $(1,2)\rho(1,2)$               |
| $(7,9,1,2,8)_{10} = 4 \cdot (1,9,7,8,2)_{10}$         | $\psi^4$      | $\psi^{-4} ho\psi^{4}$         |
| $(7, 1, 9, 2, 8)_{10} = 4 \cdot (1, 7, 9, 8, 2)_{10}$ | $(1,2)\psi^4$ | $\psi^{-4}(1,2) ho(1,2)\psi^4$ |



| Dormu        | tiple Classes                 |                             |                              |                 |                 |
|--------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| Introduction | Basic Definitions and Results | Permutiple Graphs<br>00●000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>O |

#### Definition

Let p be an (n, b)-permutiple with graph  $G_p$ . We define the *class* of p to be the collection, C, of all (n, b)-permutiples, q, such that  $G_q$  is a subgraph of  $G_p$ . We also define the graph of the class to be  $G_p$ , which we will denote as  $G_C$  and will call the graph of C.

All of the permutiples below have the same graph, and are, therefore, members of the same class.

| (4, 10, 	au)-Example                                  | $\pi$         | au                             |
|-------------------------------------------------------|---------------|--------------------------------|
| $(8,7,9,1,2)_{10} = 4 \cdot (2,1,9,7,8)_{10}$         | ε             | ρ                              |
| $(8,7,1,9,2)_{10} = 4 \cdot (2,1,7,9,8)_{10}$         | (1,2)         | $(1,2)\rho(1,2)$               |
| $(7,9,1,2,8)_{10} = 4 \cdot (1,9,7,8,2)_{10}$         | $\psi^4$      | $\psi^{-4}\rho\psi^{4}$        |
| $(7, 1, 9, 2, 8)_{10} = 4 \cdot (1, 7, 9, 8, 2)_{10}$ | $(1,2)\psi^4$ | $\psi^{-4}(1,2) ho(1,2)\psi^4$ |

| 00000  | 0000     | 000000 | O<br>O | O<br>O |
|--------|----------|--------|--------|--------|
| More E | Examples |        |        |        |

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

More examples of permutiples in this same class include:

$$\begin{array}{l} (8,7,1,2)_{10} = 4 \cdot (2,1,7,8)_{10}, \\ (8,7,9,1,2)_{10} = 4 \cdot (2,1,9,7,8)_{10}, \\ (8,7,9,9,1,2)_{10} = 4 \cdot (2,1,9,9,7,8)_{10}, \\ (7,1,2,8)_{10} = 4 \cdot (1,7,8,2)_{10}, \\ (7,9,1,2,8)_{10} = 4 \cdot (1,9,7,8,2)_{10}, \\ (7,9,9,1,2,8)_{10} = 4 \cdot (1,9,9,7,8,2)_{10}, \\ (8,7,1,2,8,7,1,2)_{10} = 4 \cdot (2,1,7,8,2,1,7,8)_{10}. \end{array}$$

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>0000●0 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| The M                 | lother Craph                  |                             |                              |                 |                 |

#### Theorem

Let  $p = (d_k, d_{k-1}, ..., d_0)_b = n \cdot (d_{\sigma(k)}, d_{\sigma(k-1)}, ..., d_{\sigma(0)})_b$  be an  $(n, b, \sigma)$ -permutiple with graph  $G_p$ . Then, for any edge,  $(d_j, d_{\sigma(j)})$ , of  $G_p$ , it must be that  $\lambda (d_j + (b - n)d_{\sigma(j)}) \leq n - 1$  for all  $0 \leq j \leq k$ , where  $\lambda$  gives the least non-negative residue modulo b.

With the above, we gather all possible edges of a permutiple graph into a single graph.

#### Definition

The (n, b)-mother graph, denoted M, is the graph having all base-b digits as its vertices and the collection of edges,  $(d_1, d_2)$ , satisfying the inequality  $\lambda (d_1 + (b - n)d_2) \le n - 1$ .

Introduction Basic Definitions and Results Permutiple Graphs 00000 Finite-State Machine Methods Thank You! References 0

## Example: The (4, 10)-Mother Graph

The (4, 10)-mother graph tells us which edges are possible for a base-10 permutiple when multiplying by 4.



| ~            |                   |             | ~            |        |                                         |            |            |
|--------------|-------------------|-------------|--------------|--------|-----------------------------------------|------------|------------|
|              |                   |             |              |        | •00000000000000000000000000000000000000 |            |            |
| Introduction | Basic Definitions | and Results | Permutiple G | Graphs | Finite-State Machine Methods            | Thank You! | References |

## Constructing a Finite-State Machine

We now take our most basic results and construct a finite state machine which recognizes permutiples.

We will use the fact that for an  $(n, b, \sigma)$ -permutiple,  $(d_k, d_{k-1}, \ldots, d_0)_b = n \cdot (d_{\sigma(k)}, d_{\sigma(k-1)}, \ldots, d_{\sigma(0)})_b$ , we have  $bc_{j+1} - c_j = nd_{\sigma(j)} - d_j$ 

and that  $c_j \leq n-1$  for all  $0 \leq j \leq k$ .

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods<br>○●○○○○○○○○○○○○○○○○○○ | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-------------------|------------------------------------------------------|-----------------|-----------------|
| The H                 | oev-Sloane Ma                 | chine             |                                                      |                 |                 |

#### Definition

Taking non-negative integers less than n as the collection of states, and the edges of the mother graph, M, as the input alphabet, the equation

$$c_2 = [\mathit{nd}_2 - \mathit{d}_1 + \mathit{c}_1] \div \mathit{b}$$

defines a state-transition function from state  $c_1$  to state  $c_2$  with  $(d_1, d_2)$  serving as the input which induces the transition. The initial state is zero, and the only accepting state is zero. We name this construction the (n, b)-Hoey-Sloane machine.

Since the  $c_0 = 0$  in any multiplication (see multiplication algorithm), the initial state must be zero. Also, for any multiplication of length  $\ell$ , the final state,  $c_{\ell+1}$  must be zero for the process to end. This is why zero is the only accepting state.

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| The Hoev-Sloane Graph |                               |                             |                              |                 |                 |

When the input  $(d_1, d_2)$  induces the transition from the state  $c_1$  to state  $c_2$ , this transition corresponds to a labeled edge on the state diagram as seen below.



This state diagram is called the (n, b)-Hoey-Sloane graph, which we will denote as  $\Gamma$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00000 Basic Definitions and Results 0000

Permutiple Graphs

Finite-State Machine Methods

Thank You! References 0 0

# The (n, b)-Hoey-Sloane Language

#### Definition

We shall denote language of input strings accepted by the (n, b)-Hoey-Sloane machine as L. We may describe L as finite sequences of edge-label inputs which define walks on  $\Gamma$  whose initial and final states are zero. For simplicity, we will call such walks *L*-walks. Members of L which produce permutiple numbers will be called (n, b)-permutiple strings.

# The (4, 10)-Hoey-Sloane Graph



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods            | Thank You! | References |
|--------------|-------------------------------|-------------------|-----------------------------------------|------------|------------|
|              |                               |                   | 000000000000000000000000000000000000000 |            |            |
|              |                               |                   |                                         |            |            |

## An Example

The input string s = (2,8)(7,1) defines an *L*-walk on  $\Gamma$ . The corresponding mutilplication is  $(7,2)_{10} = 4 \cdot (1,8)_{10}$ , with state (carry) sequence  $c_0 = 0$ , and  $c_1 = 3$ . We see that *s* is a member of *L*, but is NOT a permutiple string.



| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
|                       |                               |                             |                              |                 |                 |

## Another Example

The input string s = (2,8)(1,7)(9,9)(7,1)(8,2) defines an *L*-walk on  $\Gamma$ . The corresponding mutilplication is  $(8,7,9,1,2)_{10} = 4 \cdot (2,1,9,7,8)_{10}$ . We see that *s* is not only a member of *L*, it's also a permutiple string!







| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|
| Some                  | Questions                     |                   |                              |                 |                 |

If we have the (n, b)-Hoey-Sloane graph, how do we find permutiple strings?

What makes a string,  $s = (d_0, \hat{d}_0)(d_1, \hat{d}_1) \cdots (d_k, \hat{d}_k)$ , in L a permutiple string?

| Δ Holn       | ful Recult                    |                   |                                         |            |            |
|--------------|-------------------------------|-------------------|-----------------------------------------|------------|------------|
| 00000        | 0000                          | 000000            | 000000000000000000000000000000000000000 |            |            |
| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods            | Thank You! | References |

#### Theorem

Let  $s = (d_0, \hat{d}_0)(d_1, \hat{d}_1) \cdots (d_k, \hat{d}_k)$  be a member of L. If s is a permutiple string, then the collection of ordered-pair inputs of s is a union of cycles of M.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
|                       |                               |                             |                              |                 |                 |

## Example

Consider the permutiple string s = (2, 8)(1, 7)(9, 9)(7, 1)(8, 2). The inputs of *s* form a union of the mother-graph cycles  $C_0 = \{(9, 9)\}, C_1 = \{(2, 8), (8, 2)\}, \text{ and } C_2 = \{(1, 7), (7, 1)\}.$ 



| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods            | Thank You! | References |
|--------------|-------------------------------|-------------------|-----------------------------------------|------------|------------|
|              |                               |                   | 000000000000000000000000000000000000000 |            |            |
|              |                               |                   |                                         |            |            |

## Example

For the mother-graph cycles  $C_1 = \{(2,8), (8,2)\}$ , and  $C_2 = \{(1,7), (7,1)\}$  we may use  $\Gamma$  to order the multiset union  $C_1 \uplus C_2 \uplus C_2 = \{(2,8), (8,2), (2,8), (8,2), (1,7), (7,1), (1,7), (7,1)\}$ into s = (8,2)(2,8)(1,7)(7,1)(2,8)(1,7)(7,1)(8,2) to produce examples such as  $(8,7,1,2,7,1,2,8)_{10} = 4 \cdot (2,1,7,8,1,7,8,2)_{10}$ .



| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>○ | References<br>0 |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|
| Questi                | on                            |                   |                              |                 |                 |

How do we begin to understand which multiset unions of mother-graph cycles can be ordered into permutiple strings?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| A Part                | ial Answer                    |                             |                              |                 |                 |

The labeled subgraph,  $\Gamma_j$ , of  $\Gamma$  corresponding to the cycle  $C_j$  is called the *cycle image* of  $C_j$ .

A multiset union must correspond to a cycle-image union on which we can form *L*-walks. This is a necessary, but not sufficient, condition to form permutiple strings.

Basic Definitions and Results

Finite-State Machine Methods 

References Thank You!

A D N A 目 N A E N A E N A B N A C N

## We interrupt this program to bring you a simpler example...

For reasons which will soon be apparent, we will return to our regularly scheduled base-10 example after considering a much simpler example:

## Find all base-4 permutiples with multiplier 2.

This example will set the stage for understanding the task of finding all (4, 10)-permutiples.



$$C_{0} = (0) = \{(0,0)\},$$

$$C_{1} = (3) = \{(3,3)\},$$

$$C_{2} = (1,2) = \{(1,2), (2,1)\},$$

$$C_{3} = (0,2,1) = \{(0,2), (2,1)(1,0)\},$$

$$C_{4} = (1,2,3) = \{(1,2), (2,3), (3,1)\},$$

$$C_{5} = (0,2,3,1) = \{(0,2), (2,3), (3,1), (1,0)\}.$$

$$(0,0), (2,1)$$

$$(1,0), (3,1)$$

$$(1,2), (3,3)$$

(0,2),(2,3)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで





s = (2,3)(1,2)(3,1) is a permutiple string;  $(3,1,2)_4 = 2 \cdot (1,2,3)_4$ 

Basic Definitions and Results

Permutiple Graphs

Finite-State Machine Methods  Thank You!

## The Full Collection of Cycle Images



ж



The class, C, of (4, 10)-permutiples with considered above may be built from unions of cycles of  $G_C$  whose corresponding cycle-image union allows for the formation of *L*-walks.



| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods            | Thank You! | References |
|--------------|-------------------------------|-------------------|-----------------------------------------|------------|------------|
|              |                               |                   | 000000000000000000000000000000000000000 |            |            |
|              |                               |                   |                                         |            |            |

## Cycles and Cycle Images of $G_C$



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

| 00000  | 0000         | 000000 | 000000000000000000000000000 | 0 | 0 |
|--------|--------------|--------|-----------------------------|---|---|
| One Fi | inal Example |        |                             |   |   |



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs<br>000000 | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-----------------------------|------------------------------|-----------------|-----------------|
| One Fi                | inal Example                  |                             |                              |                 |                 |

*s* = (8, 2)



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|
| One Fi                | inal Example                  |                   |                              |                 |                 |

s = (8, 2)(2, 8)



| 00000  | 0000         | 000000 | 000000000000000000000000000000000000000 | O | o |
|--------|--------------|--------|-----------------------------------------|---|---|
| One Fi | inal Example |        |                                         |   |   |

s = (8, 2)(2, 8)(1, 7)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>0 | References<br>0 |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|-----------------|
| One Fi                | inal Example                  |                   |                              |                 |                 |

s = (8, 2)(2, 8)(1, 7)(9, 9)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

| 00000  | 0000         | 000000 | 000000000000000000000000000000000000000 | 0 | 0 |
|--------|--------------|--------|-----------------------------------------|---|---|
| One Fi | inal Example |        |                                         |   |   |

s = (8,2)(2,8)(1,7)(9,9)(7,1)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

| Introduction | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You! | References |
|--------------|-------------------------------|-------------------|------------------------------|------------|------------|
|              |                               |                   |                              | •          |            |
|              |                               |                   |                              |            |            |

# Thank you!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

| Introduction<br>00000 | Basic Definitions and Results | Permutiple Graphs | Finite-State Machine Methods | Thank You!<br>O | <ul> <li>References</li> </ul> |
|-----------------------|-------------------------------|-------------------|------------------------------|-----------------|--------------------------------|

## References

- D. J. Hoey, Untitled online article (not peer-reviewed). Available from OEIS Foundation Inc. (1992), *The On-Line Encyclopedia of Integer Sequences* at https://oeis.org/A008919/a008919.txt.
- B. V. Holt, Finding permutiples of a known base and multiplier, *Integers* **25** (2025), #A13.
- T. J. Kaczynski. Note on a problem of Alan Sutcliffe. Math. Mag., 41 (1968): 84-86.
- L. H. Kendrick, Young graphs: 1089 et al., *J. Integer Seq.* **18** (2015), Article 15.9.7.
- L. Pudwell. Digit reversal without apology. *Math. Mag.*, **80** (2007): 129-132
- N. J. A. Sloane, 2178 and all that, *Fibonacci Quart*. **52**(2) (2014), 99-120.
- A. Sutcliffe. Integers that are multiplied when their digits are reversed. *Math. Mag.*, **39** (1966): 282-287
- A. L. Young, Trees for *k*-reverse multiples, *Fibonacci Quart.*, **30** (1992), 166-174.