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Abstract
A permutiple is the product of a digit-preserving multiplication, that is, a num-
ber which is an integer multiple of some permutation of its digits. Certain per-
mutiple problems, particularly transposable, cyclic, and, more recently, palintiple
numbers, have been well-studied. In this paper we study the problem of general
digit-preserving multiplication. We show how the digits and carries of a permutiple
are related and utilize these relationships to develop methods for finding new per-
mutiple examples from old. In particular, we shall focus on the problem of finding
new permutiples from a known example having the same set of digits.

1. Introduction

A permutiple is a natural number with the property of being an integer multiple
of some permutation of its digits. Digit permutation problems are nothing new
[2, 10] and have been a topic of study for both amateurs and professionals alike
[5]. A relatively well-studied example of permutiples includes palintiple numbers,
also known as reverse multiples [6, 9, 11], which are integer multiples of their digit
reversals and include well-known base-10 examples such as 87912 = 4 · 21978 and
98901 = 9 · 10989. As noted by Sutcli↵e [10] in his seminal paper on palintiple
numbers, cyclic digit permutations such as 714285 = 5 ·142857 are also well-studied
examples. We also note that 142857 is an example of a cyclic number ; not only
does multiplication by 5 permute the digits, but 2,3,4, and 6 also produce cyclic
digit permutations.

Permutiples for which the digits are cyclically permuted are relatively well-
understood, and their description is fairly straightforward in comparison to pal-
intiples. The digits of cyclic permutiples are found in repeating base-b decimal
expansions of a/p where a < p and p is a prime which does not divide b [2, 5].
On the other hand, palintiples (digit-reversing permutations) admit quite a vari-
ety of classifications [6, 7] and are not nearly as well-understood. Young [11, 12],
building upon the body of work of Sutcli↵e [10] and others [1, 8], translates the
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palintiple problem into graph-theoretical language by representing an e�cient pal-
intiple search method as a tree-graph where the possible carries are represented as
nodes and the potential digits are associated with the edges. Continuing the work
of Young [11, 12], Sloane [9] modified Young’s tree-graph representation into the
Young graph which is a visualization of digit-carry palintiple structure. The paper
identifies and studies several Young graph isomorphism classes which describe pal-
intiple type. Furthering the work of Sloane [9], Kendrick [6] proves two of Sloane’s
[9] main conjectures involving Young graph isomorphism classes which describe two
well-understood palintiple types. The work of Holt [3, 4] takes a more elementary
approach and classifies palintiples according to patterns exhibited by their carries.
This approach, as noted by Kendrick [6], seems to coincide with certain Young
graph isomorphism classes with Holt [4] conjecturing that the class of palintiples
characterized by the 1089 graph are precisely the collection of symmetric palintiples
(the carry sequence is palindromic) described in [3]. Kendrick’s work [6, 7] reveals
the sheer multitude of palintiple types when classified according to Young graph
isomorphism.

In this paper we establish some general properties of digit-preserving multiplica-
tion. We generalize the results for palintiple numbers found in Young [11], Sloane
[9], Kendrick [6], and Holt [3, 4] to an arbitrary permutation. Using these results,
we develop methods for finding new permutiples from old. In particular, we consider
the problem of finding new base-b permutiples with multiplier n having a fixed set
of digits from a single known example. Moreover, we find a condition under which
our methods give us all permutiples of a particular base and multiplier having the
same digits as a known example.

2. Permutiple Digits and Carries

We begin with a definition. We shall use (dk, dk�1, . . . , d0)b to denote the natural
number

Pk
j=0 djbj where each 0  dj < b.

Definition 1. Let n be a natural number and � be a permutation on {0, 1, 2, . . . , k}.
We say that (dk, dk�1, . . . , d0)b is an (n, b,�)-permutiple provided

(dk, dk�1, . . . , d1, d0)b = n(d�(k), d�(k�1), . . . , d�(1), d�(0))b.

Using the language established above, letting ⇢ =
✓

0 1 2 3 4
4 3 2 1 0

◆
, 87912 is

a (4, 10, ⇢)-permutiple since 87912 = 4 · 21978.
In order to avoid introducing extra digits when multiplying, it is assumed that

n < b. We note, however, that in order to circumvent overly cumbersome theorem
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statements, we do allow for leading zeros. Letting " be the identity permutation,
every natural number is a (1, b, ")-permutiple. Such trivial examples are ignored
so that n > 1. Furthermore, b = 2 implies that n = 1. Therefore, we impose
the additional restriction that b 6= 2. Thus, hereafter, we assume that n and b are
natural numbers such that 1 < n < b.

The following two theorems are an exceedingly straightforward generalization
of the first and third theorems of Holt [3] which concern palintiple numbers. A
description of single-digit multiplication in general is as follows: let pj denote the
jth digit of the product, cj the jth carry, and qj the jth digit of the number being
multiplied by n. Then the iterative algorithm for single-digit multiplication is

c0 = 0
pj = �(nqj + cj)

cj+1 = [nqj + cj � �(nqj + cj)] ÷ b

where � gives the least non-negative residue modulo b. Since (pk, pk�1, . . . , p0)b is
a (k + 1)-digit number, ck+1 = 0. For any (n, b,�)-permutiple, (dk, dk�1, . . . , d0)b,
qj = d�(j) so that dj = pj = �(nd�(j) + cj). Hence, we have our first result.

Theorem 1. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple and let cj be the jth
carry. Then

bcj+1 � cj = nd�(j) � dj

for all 0  j  k.

As is the case for palintiples, the following shows that the carries of any permu-
tiple are less than the multiplier.

Theorem 2. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple and let cj be the jth
carry. Then cj  n� 1 for all 0  j  k.

Proof. The proof will proceed by induction. We have c0 = 0  n� 1. Now suppose
that cj  n � 1. For a contradiction suppose cj+1 � n. Then Theorem 1 implies
bcj+1 � cj + dj = nd�(j). By our inductive hypothesis we have bn � (n � 1) =
(b� 1)n + 1  nd�(j). Therefore, d�(j) > b� 1 which is a contradiction.

The following is a converse to Theorem 1.

Theorem 3. Suppose bcj+1�cj = nd�(j)�dj for all 0  j  k where (dk, dk�1, . . . ,
d0) is a (k +1)-tuple of base-b digits and (ck, ck�1, . . . , c0) is a (k +1)-tuple of base-
n digits such that c0 = 0. Then (dk, dk�1, . . . , d0)b is an (n, b,�)-permutiple with
carries ck, ck�1, . . . , c0.
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Proof. By a simple calculation,

kX
j=0

(nd�(j) � dj)bj =
kX

j=0

(bcj+1 � cj)bj = 0.

Thus, p = (dk, dk�1, . . . , d0)b is an (n, b,�)-permutiple. Letting ĉk, ĉk�1, . . ., ĉ0

be the carries obtained by multiplying p by n, an application of Theorem 1 and a
simple induction argument establish that ĉj = cj for all 0  j  k.

Letting  be the (k+1)-cycle (0, 1, 2, . . . , k), it is convenient to write the relations
between the digits and the carries found in Theorems 1 and 3 in matrix form,

(bP � I)c = (nP� � I)d, (1)

where I is the identity matrix, P and P� are permutation matrices, and c and
d are column vectors containing the carries and digits, respectively. We note that
these matrices are indexed from 0 to k rather than from 1.

We highlight that we will extensively use the fact that (dk, dk�1, . . . , d0)b is an
(n, b,�)-permutiple with carries ck, ck�1, . . . , c1, c0 = 0 if and only if Equation 1
holds (a consequence of Theorems 1 and 3).

Multiplying both sides of Equation 1 by
P|�|�1
`=0 (nP�)`, we can express the digits

in terms of the carries as d = 1
n|�|�1

Pm�1
`=0 (n`P�`)(bP �I)c. Similarly, multiplying

both sides by
Pk
`=0(bP )`, we can likewise express the carries in terms of the digits:

c = 1
bk+1�1

Pk
`=0(b

`P `)(nP� � I)d. In component form, we have the following
result.

Theorem 4. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple, and let cj be the jth
carry. Then

dj =
1

n|�| � 1

|�|�1X
`=0

(bc �`(j) � c�`(j))n`

and

cj =
1

bk+1 � 1

kX
`=0

(nd� `(j) � d `(j))b`

for all 0  j  k.

Remark. Bearing in mind that | | = k + 1, we direct the reader’s attention to
the symmetry between the above equations expressing the digits in terms of the
carries and vice versa. The above also generalizes the relationship between palintiple
numbers and their carries found in Young [11], Sloane [9], Kendrick [6], and Holt
[3, 4].

The next theorem places restrictions on the first digit of any permutiple.
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Theorem 5. For any nontrivial (n, b,�)-permutiple, (dk, dk�1, . . . , d0)b, gcd(n, b)
divides d0.

Proof. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple where cj is the jth carry.
Then, for j = 0, Theorem 4 gives

(n|�| � 1)d0 = b

0
@|�|�1X

`=0

c �`(0)n
`

1
A� n

0
@|�|�1X

`=1

c�`(0)n
`�1

1
A .

Thus, gcd(n, b) divides d0 since n and n|�| � 1 are relatively prime.

3. New Permutiples from Old

We shall now consider the problem of finding new permutiples from known exam-
ples. The approach taken here, as stated in the beginning, will be to restrict our
attention to finding new permutiples having the same digits as our known exam-
ple. The ultimate aim of our e↵ort is to answer the question of whether or not
all permutiples having the same digits can be found from a single example. If not,
are there conditions under which it is possible? The following results give us some
methods for constructing new permutiples from old.

Theorem 6. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple with carries ck, ck�1,
. . . , c0. Let µ be a permutation such that cµ(0) = 0. Then (d⇡(k), d⇡(k�1), . . . , d⇡(0))b

is an (n, b,⇡�1�⇡)-permutiple with carries cµ(k), cµ(k�1), . . . , cµ(0) if and only if
P⇡(bP � I)c = (bP � I)Pµc.

Proof. By our hypothesis, Equation 1 is satisfied. Thus, if (d⇡(k), d⇡(k�1), . . . , d⇡(0))b

is an (n, b,⇡�1�⇡)-permutiple with carries cµ(k), cµ(k�1), . . . , cµ(0), then

P⇡(bP � I)c = P⇡(nP� � I)d = (nP⇡�1�⇡ � I)P⇡d = (bP � I)Pµc.

Conversely, if P⇡(bP � I)c = (bP � I)Pµc, then

(nP⇡�1�⇡ � I)P⇡d = P⇡(nP� � I)d = P⇡(bP � I)c = (bP � I)Pµc.

Corollary 1. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple with carries ck, ck�1,
. . . , c0. If cj = 0, then (d j(k), d j(k�1), . . . , d j(1), d j(0))b is an (n, b, �j� j)-
permutiple with carries c j(k), c j(k�1), . . . , c j(1), c j(0) = cj = 0.

Remark. We note that the above corollary follows either from Theorem 4 by set-
ting cj = 0, or from Theorem 6 by setting ⇡ = µ =  j .
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Example 1. Consider the (4, 10, ⇢)-permutiple (8, 7, 9, 1, 2)10 = 4 · (2, 1, 9, 7, 8)10.
Performing routine multiplication, we see that the carries are (c4, c3, c2, c1, c0) =
(0, 3, 3, 3, 0). Not surprisingly, applying Corollary 1 to j = 0 yields the original
permutiple. However, for the case of j = 4, we have (7, 9, 1, 2, 8)10 = 4·(1, 9, 7, 8, 2)10
with carries (c 4(4), c 4(3), c 4(2), c 4(1), c 4(0)) = (c3, c2, c1, c0, c4) = (3, 3, 3, 0, 0).

Applying Corollary 1 a bit more generally, if (dk, dk�1, . . . , d0)b is any (n, b)-
palintiple such that ck = 0 (this includes all symmetric, doubly-derived, and doubly-
reverse-derived palintiples [4]), then (dk�1, dk�2, . . . , d0, dk)b is an (n, b, �k⇢ k)-
permutiple.

Setting µ to the identity permutation in Theorem 6, we obtain another useful
corollary.

Corollary 2. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple with carries ck, ck�1,
. . . , c0. Then (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is an (n, b,⇡�1�⇡)-permutiple with carries
ck, ck�1, . . . , c0 if and only if P⇡(bP � I)c = (bP � I)c.

Example 2. Consider again the base-10 palintiple (8, 7, 9, 1, 2)10 = 4·(2, 1, 9, 7, 8)10
with carries (c4, c3, c2, c1, c0) = (0, 3, 3, 3, 0). With the above in mind, we calculate

(10P � I)c =

0
BBBB@10 ·

2
66664

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

3
77775�

2
66664

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3
77775

1
CCCCA

2
66664

0
3
3
3
0

3
77775 =

2
66664

30
27
27
�3
0

3
77775 .

Since the above column vector is unchanged by P⇡, where ⇡ is the transposition
(1, 2), we see by Corollary 2 that (8, 7, 1, 9, 2)10 is a (4, 10, (1, 2)⇢(1, 2))-permutiple
with carries (c4, c3, c2, c1, c0) = (0, 3, 3, 3, 0) which may also be be confirmed by
simple arithmetic.

Performing the same calculation as above, the (4, 10, �4⇢ 4)-permutiple from
Example 1, (7, 9, 1, 2, 8)10 = 4 · (1, 9, 7, 8, 2)10, yields via Corollary 2 the new
(4, 10, (2, 3) �4⇢ 4(2, 3))-permutiple (7, 1, 9, 2, 8)10 = 4 · (1, 7, 9, 8, 2)10 with car-
ries (c4, c3, c2, c1, c0) = (3, 3, 3, 0, 0). We note that we arrive at the same result by
applying Corollary 1 to the (4, 10, (1, 2)⇢(1, 2))-permutiple (8, 7, 1, 9, 2)10 which is
a�rmed by the fact that (1, 2) 4 =  4(2, 3).

At this point, several questions naturally present themselves. Can all permu-
tiples having a particular set of digits be found by repeated use of Theorem 6
and its corollaries? One does not have to look far to see that the answer is
no. If we consider the example (7, 8, 9, 1, 2)10 = 4 · (1, 9, 7, 2, 8)10 with carries
(c4, c3, c2, c1, c0) = (3, 2, 1, 3, 0), we see that the results obtained thus far do not
account for this example since the carries are di↵erent.
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Another question is if we have an (n, b,�)-permutiple, (dk, dk�1, . . . , d0)b, with
carries ck, ck�1, . . . , c0, and an (n, b, ⌧)-permutiple, (d⇡(k), . . . , d⇡(0))b, with per-
muted carries cµ(k), cµ(k�1), . . . , cµ(0), must it be that ⌧ = ⇡�1�⇡? Again,
with a little e↵ort, we can find an example which shows that this is not always
the case. Consider (4, 3, 5, 1, 2)6 = 2 · (2, 1, 5, 3, 4)6, a (2, 6,�)-permutiple, and
(2, 5, 1, 3, 4)6 = 2 · (1, 2, 3, 4, 5)6, a (2, 6, ⌧)-permutiple, both with the same carry
vector (0, 1, 1, 1, 0). Now � = (0, 4)(1, 3), ⇡ = (0, 4)(3, 2, 1), and ⌧ = (0, 3, 4, 2, 1),
but ⌧ 6= ⇡�1�⇡.

Thus, it is clear that our results so far do not account for every possibility. There-
fore, we shall require some additional machinery in order to find every permutiple
with the same digits as our known example. Again, for the purpose of less cum-
bersome theorem statements, we shall henceforth assume that (dk, dk�1, . . . , d0)b is
an (n, b,�)-permutiple. We begin with a definition, motivated by the above, which
will help us to organize and classify our new examples.

Definition 2. We say that an (n, b, ⌧1)-permutiple, (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b,
and an (n, b, ⌧2)-permutiple, (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b, are conjugate if
⇡1⌧1⇡

�1
1 = ⇡2⌧2⇡

�1
2 .

Clearly, permutiple conjugacy defines an equivalence relation on the collection
of all base-b permutiples with multiplier n having the same digits. From this
fact, we need to establish some additional terminology. For any two (n, b, ⌧1)
and (n, b, ⌧2)-permutiples of the same conjugacy class, (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b

and (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b, we shall refer to the common permutation � =
⇡1⌧1⇡

�1
1 = ⇡2⌧2⇡

�1
2 as the base permutation of the class. We emphasize that the

base permutation of a conjugacy class might not necessarily be a digit permutation
itself.

Our next result tells us that two permutiples in the same conjugacy class both
have the same set of carries.

Theorem 7. Let (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b and (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b be
(n, b, ⌧1) and (n, b, ⌧2)-permutiples, respectively, from the same conjugacy class with
carries given by ck, ck�1, . . . , c0 and ĉk, ĉk�1, . . . , ĉ0, respectively. Then ĉj =
c⇡�1

1 ⇡2(j)
for all 0  j  k.

Proof. By assumption, we have both that (nP⌧1 � I)P⇡1d = (bP � I)c and that
(nP⌧2 � I)P⇡2d = (bP � I)ĉ. Then P⇡1(nP⇡1⌧1⇡

�1
1
� I)d = (bP � I)c and

P⇡2(nP⇡2⌧2⇡
�1
2
� I)d = (bP � I)ĉ. Since both permutiples are conjugate we have

that P⇡1⌧1⇡
�1
1

= P⇡2⌧2⇡
�1
2

. It follows that P⇡�1
1

(bP � I)c = P⇡�1
2

(bP � I)ĉ. Re-
ducing modulo b we have P⇡�1

1
c ⌘ P⇡�1

2
ĉ mod b, or P⇡�1

1 ⇡2
c ⌘ ĉ mod b. Theorem

2 then implies that ĉ = P⇡�1
1 ⇡2

c.

The above theorem gives us the following important result.
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Theorem 8. Let p = (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b be an (n, b, ⌧1)-permutiple with
carries ck, ck�1, . . . , c0. If (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b is an (n, b, ⌧2)-permutiple
from the same conjugacy class as p, then c ⇡�1

1 ⇡2(j)
= c⇡�1

1 ⇡2 (j) for all 0  j  k.

Proof. Our first assumption in matrix form is (nP⌧1 � I)P⇡1d = (bP � I)c, and by
Theorem 7, our second assumption becomes (nP⌧2 � I)P⇡2d = (bP � I)P⇡�1

1 ⇡2
c.

Using this second equation, we have

(nP⇡2⌧2⇡
�1
2
� I)d = P⇡�1

2
(nP⌧2 � I)P⇡2d = P⇡�1

2
(bP � I)P⇡�1

1 ⇡2
c,

which by conjugacy gives

(nP⇡1⌧1⇡
�1
1
� I)d = P⇡�1

2
(bP � I)P⇡�1

1 ⇡2
c.

Multiplying by P⇡1 , we then have

(nP⌧1 � I)P⇡1d = P⇡1P⇡�1
2

(bP � I)P⇡�1
1 ⇡2

c,

which by the first relation above becomes

(bP � I)c = P�1
⇡�1
1 ⇡2

(bP � I)P⇡�1
1 ⇡2

c.

The above reduces to
P⇡�1

1 ⇡2
P c = P P⇡�1

1 ⇡2
c,

and the proof is complete.

With the above theorem, we may determine a list of candidate permutations, ⇡,
within a particular conjugacy class. The next theorem tells us that every item on
this list yields a permutiple.

Theorem 9. Let p = (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b be an (n, b, ⌧1)-permutiple with
carries ck, ck�1, . . . , c0. If ⇡2 is a permutation such that c⇡�1

1 ⇡2(0)
= 0, and

c ⇡�1
1 ⇡2(j)

= c⇡�1
1 ⇡2 (j) for all 0  j  k, then (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b is an

(n, b, ⌧2)-permutiple from the same conjugacy class as p, where ⌧2 = ⇡�1
2 ⇡1⌧1⇡

�1
1 ⇡2.

Proof. By assumption, we have that (nP⌧1�I)P⇡1d = (bP �I)c and P⇡�1
1 ⇡2

P c =
P P⇡�1

1 ⇡2
c. Multiplying the first of the above equations by P⇡�1

1 ⇡2
, and then using

the second equation, yields P⇡�1
1 ⇡2

(nP⌧1 � I)P⇡1d = (bP � I)P⇡�1
1 ⇡2

c. Our first
assumption and a routine calculation then show that

(nP⇡�1
2 ⇡1⌧1⇡

�1
1 ⇡2

� I)P⇡2d = (bP � I)P⇡�1
1 ⇡2

c,

and the proof is complete.
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If we take the point of view that there is a reference permutiple, p, in every
conjugacy class (not necessarily our initial example), we can simply take ⇡1 in the
above to be the identity, and ⇡ = ⇡2 to be any suitable permutation of the digits
of p. The above theorem then implies that P⇡P c = P P⇡c, or, P c = P⇡ ⇡�1c.
We state the above as a single corollary to Theorems 8 and 9.

Corollary 3. Let p = (dk, dk�1, . . . , d0)b be an (n, b, ⌧1)-permutiple with carries ck,
ck�1, . . . , c0. Then the following hold:

1. If (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is an (n, b, ⌧2)-permutiple from the same conju-
gacy class as p, then c (j) = c⇡ ⇡�1(j) for all 0  j  k.

2. If ⇡ is a permutation such that c⇡(0) = 0 and c (j) = c⇡ ⇡�1(j) for all 0  j 
k, then (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is an (n, b, ⌧2)-permutiple from the same
conjugacy class as p.

The above corollary, together with ⇡ ⇡�1 = (⇡(0),⇡(1), . . . ,⇡(k)), enables us
to construct the entire collection of all permutations, ⇡, of a reference permutiple’s
digits within a particular conjugacy class. The next example illustrates this process.

Example 3. Consider an earlier example, (d4, d3, d2, d1, d0) = (4, 3, 5, 1, 2)6 =
2 ·(2, 1, 5, 3, 4)6, a (2, 6,�)-permutiple whose carry vector is (0, 1, 1, 1, 0). The reader
will note that this example is a (2, 6)-palintiple.

We shall use Corollary 3 to find all permutiples conjugate to (d4, d3, d2, d1, d0).
By Corollary 3, we know that if (d4, d3, d2, d1, d0) and (d⇡(4), d⇡(2), d⇡(2), d⇡(1), d⇡(0))
are conjugate, then ⇡ necessarily satisfies

2
66664

1
1
1
0
0

3
77775 = P 

2
66664

0
1
1
1
0

3
77775 = P⇡ ⇡�1

2
66664

0
1
1
1
0

3
77775 .

Restating the above in component form, we have

c⇡ ⇡�1(0) = 1 = c1, c2, or, c3,
c⇡ ⇡�1(1) = 1 = c1, c2, or, c3,
c⇡ ⇡�1(2) = 1 = c1, c2, or, c3,
c⇡ ⇡�1(3) = 0 = c0 or c4,
c⇡ ⇡�1(4) = 0 = c0 or c4.

The list of possible candidates for ⇡ ⇡�1 from above then consists of any permu-
tation which can be constructed from✓

0 1 2 3 4
1, 2 or, 3 1, 2 or, 3 1, 2 or, 3 0 or 4 0 or 4

◆
.
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Since ⇡ ⇡�1 is a 5-cycle, we can eliminate any fixed points so that the above
permutation must have the form✓

0 1 2 3 4
1, 2 or, 3 2 or 3 1 or 3 4 0

◆
.

Therefore, ⇡ ⇡�1 = (⇡(0),⇡(1),⇡(2),⇡(3),⇡(4)) must equal either (0, 1, 2, 3, 4) or
(0, 2, 1, 3, 4). Since c0 = c4 = 0, we have four permutations which satisfy the condi-

tions of Corollary 3: the identity " =
✓

0 1 2 3 4
0 1 2 3 4

◆
,  4 =

✓
0 1 2 3 4
4 0 1 2 3

◆
,

(1, 2) =
✓

0 1 2 3 4
0 2 1 3 4

◆
, and (1, 2) 4 =

✓
0 1 2 3 4
4 0 2 1 3

◆
. These permu-

tations give us the entire conjugacy class listed in the table below.

(d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))6 ⇡ ⌧ (c⇡(4), c⇡(3), c⇡(2), c⇡(1), c⇡(0))
(4, 3, 5, 1, 2)6 " ⇢ (0, 1, 1, 1, 0)
(4, 3, 1, 5, 2)6 (1, 2) (1, 2)⇢(1, 2) (0, 1, 1, 1, 0)
(3, 5, 1, 2, 4)6  4  �4⇢ 4 (1, 1, 1, 0, 0)
(3, 1, 5, 2, 4)6 (1, 2) 4  �4(1, 2)⇢(1, 2) 4 (1, 1, 1, 0, 0)

Table 1: The conjugacy class corresponding to ⇢.

We shall now look between conjugacy classes. The converse of Theorem 7 does
not hold in general. However, assuming its consequent does yield a useful theorem
which gives us a list of base permutation candidates from every conjugacy class
with the same set of carries as the original example.

Theorem 10. Let (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b and (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b

be (n, b, ⌧1) and (n, b, ⌧2)-permutiples, respectively, with carries given by ck, ck�1,
. . . , c0 and ĉk, ĉk�1, . . . , ĉ0, respectively. If ĉj = c⇡�1

1 ⇡2(j)
for all 0  j  k, then

nd⇡1⌧1⇡
�1
1 (j) ⌘ nd⇡2⌧2⇡

�1
2 (j) mod b for all 0  j  k.

Proof. Our assumptions in matrix form are (nP⌧1 � I)P⇡1d = (bP � I)c and
(nP⌧2�I)P⇡2d = (bP �I)P⇡�1

1 ⇡2
c. Reducing modulo b, we have both that (nP⌧1�

I)P⇡1d ⌘ �c mod b and (nP⌧2 � I)P⇡2d ⌘ �P⇡�1
1 ⇡2

c mod b. It follows that
P⇡1(nP⇡1⌧1⇡

�1
1
� I)d ⌘ �c mod b and P⇡2(nP⇡2⌧2⇡

�1
2
� I)d ⌘ �P⇡�1

1 ⇡2
c mod b,

from which we obtain (nP⇡1⌧1⇡
�1
1
� I)d ⌘ �P⇡�1

1
c ⌘ (nP⇡2⌧2⇡

�1
2
� I)d mod b.

Thus, nP⇡1⌧1⇡
�1
1

d ⌘ nP⇡2⌧2⇡
�1
2

d mod b.

Letting ⇡1 be the identity and ⌧1 be � in the above theorem, we obtain a result
which relates any (n, b, ⌧)-permutiple with the same set of carries to our known
example.

Corollary 4. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple with carries ck, ck�1,
. . . , c0, and let (d⇡(k), d⇡(k�1), . . . , d⇡(0))b be an (n, b, ⌧)-permutiple with carries
c⇡(k), c⇡(k�1), . . . , c⇡(0). Then nd�(j) ⌘ nd⇡⌧⇡�1(j) mod b for all 0  j  k.
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The above corollary will, under certain conditions, enable us to find all base
permutations � = ⇡⌧⇡�1 for every possible conjugacy class.

Our next result gives us conditions for the existence of a bijective correspondence
between permutiples, namely,

(d⇡(k), d⇡(k�1), . . . , d⇡(0))b 7! (d↵⇡(k), d↵⇡(k�1), . . . , d↵⇡(0))b.

Theorem 11. Let (d⇡1(k), d⇡1(k�1), . . . , d⇡1(0))b and (d⇡2(k), d⇡2(k�1), . . . , d⇡2(0))b

be (n, b, ⌧1) and (n, b, ⌧2)-permutiples, respectively. If there exists an ↵ such that
(nP⌧2 � I)P↵d = (nP⌧1 � I)d, then (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is an (n, b,⇡�1⌧1⇡)-
permutiple if and only if (d↵⇡(k), d↵⇡(k�1), . . . , d↵⇡(0))b is an (n, b,⇡�1⌧2⇡)-permutiple.

Proof. If (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is an (n, b,⇡�1⌧1⇡)-permutiple with carries ck,
ck�1, . . . , c0, then (nP⇡�1⌧1⇡ � I)P⇡d = (bP � I)c. Now, by the theorem’s
hypothesis, we have

(nP⇡�1⌧1⇡ � I)P⇡d = P⇡(nP⌧1 � I)d = P⇡(nP⌧2 � I)P↵d = (nP⇡�1⌧2⇡ � I)P↵⇡d.

Then (nP⇡�1⌧2⇡ � I)P↵⇡d = (bP � I)c. By Theorem 3, the forward implication
holds. The reverse implication follows in similar fashion.

Thus, the above gives us a bijection between conjugacy classes provided that
⇡1⌧1⇡

�1
1 6= ⇡2⌧2⇡

�1
2 . Also, the reader should note that according to the above ar-

gument, the carries of (d⇡(k), d⇡(k�1), . . . , d⇡(0))b and (d↵⇡(k), d↵⇡(k�1), . . . , d↵⇡(0))b

must be the same.
At this point, the big question is whether or not the results given thus far can

give us all the examples we seek. If we recall our initial examples which motivated
Definition 2, we can see that, in general, the answer is no. However, there is a
condition which guarantees that we have found all of the desired examples. The
next theorem tells us that if n divides b, then all permutiples having the same digits
as our known example have the same set of carries as the known example.

Theorem 12. Let (dk, dk�1, . . . , d0)b be an (n, b,�)-permutiple with carries ck,
ck�1, . . . , c0, and let (d⇡(k), d⇡(k�1), . . . , d⇡(0))b be an (n, b, ⌧)-permutiple with car-
ries ĉk, ĉk�1, . . . , ĉ0. If n divides b, then ĉj = c⇡(j) for all 0  j  k.

Proof. By Equation 1, we have both (bP � I)c = (nP� � I)d and (bP � I)ĉ =
(nP⌧�I)P⇡d. Since n divides b, it follows that c ⌘ d mod n and ĉ ⌘ P⇡d mod n.
Thus, ĉ ⌘ P⇡c mod n. By Theorem 2, it follows that ĉ = P⇡c, which establishes
the theorem.

Thus, when n divides b, Corollary 4 enables us to find every possible base permu-
tation � = ⇡⌧⇡�1. From there, we may use either Theorem 1 or other techniques
(such as those in the following example) to find a reference permutiple from each
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conjugacy class. Then, using Corollary 3, we find all ⇡ within each conjugacy class.
Thus, when n divides b, finding all permutiples with the same digits as a known
permutiple becomes considerably easier. The next two examples illustrate the above
approach.

Example 4. Using our results, we find all 5-digit (2, 6,�)-permutiples starting
from the (2, 6, ⇢)-permutiple (d4, d3, d2, d1, d0)6 = (4, 3, 5, 1, 2)6 = 2 · (2, 1, 5, 3, 4)6
with carries (c4, c3, c2, c1, c0) = (0, 1, 1, 1, 0) which we considered in Example 3.

By Corollary 4 and Theorem 12, any suitable base permutation, �, necessarily
satisfies 2d⇢(j) ⌘ 2d�(j) mod 6 for all 0  j  4, which, since 2 divides 6, becomes
d⇢(j) ⌘ d�(j) mod 3 for all 0  j  4. In matrix form we have

2
66664

d�(0)

d�(1)

d�(2)

d�(3)

d�(4)

3
77775 ⌘

2
66664

1
0
2
1
2

3
77775 mod 3.

Expressing the above in component form gives us

d�(0) = 1 = d1 or d4,
d�(1) = 0 = d3,
d�(2) = 2 = d0 or d2,
d�(3) = 1 = d1 or d4,
d�(4) = 2 = d0 or d2.

Then, any base permutation, �, necessarily has the form✓
0 1 2 3 4

1 or 4 3 0 or 2 1 or 4 0 or 2

◆
.

Thus, there are four candidate base permutations: �1 = ⇢, �2 = (4, 2, 0, 1, 3),
�3 = (4, 2, 0)(1, 3), and �4 = (4, 0, 1, 3).

For �1 = ⇢, the solution corresponding to our known example, we note that we
already determined its conjugacy class in Example 3.

We now consider the conjugacy class for �2 = (4, 2, 0, 1, 3). Using Theorem 11,
we shall find this class by finding a bijection from the class with base permutation ⇢
which we found in Example 3. But first we must find an example from the conjugacy
class with base permutation �2. Provided a suitable permutation ↵ exists, the
bijection guaranteed by Theorem 11 maps permutiples with carry vector c to other
permutiples with the same carry vector. Therefore, if such an ↵ exists, we know that
our known example (dk, dk�1, . . . , d0) will map to (d↵(k), d↵(k�1), . . . , d↵(0))b. Then,
by Theorem 12, ↵ fixes the carry vector (0, 1, 1, 1, 0) of our known (2, 6, ⇢) example.
Thus, ↵ must contain a factor of either the identity or (4, 0), and a factor of (3, 2, 1),
(1, 2, 3), (3, 1, 2), (1, 2), (1, 2), (1, 3), or (2, 3). Using simple base-6 arithmetic to
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check the possibilities which are not already listed in the class with base permutation
⇢, we see that either ↵ = (4, 0)(3, 2, 1) = (1, 2)⇢ or ↵ = (4, 0)(3, 2) = (1, 2)⇢(1, 2).
Respectively, these values give us the permutiples (2, 5, 1, 3, 4)6 = 2 · (1, 2, 3, 4, 5)6,
for which ⌧2 = (0, 1)�2(0, 1) = (4, 2, 1, 0, 3), and (2, 5, 3, 1, 4)6 = 2 · (1, 2, 4, 3, 5)6,
for which ⌧2 = (1, 2)(0, 1)�2(0, 1)(1, 2) = (4, 1, 2, 0, 3). The reader may check that
both values of ↵ yield a bijection. Using the first value, ↵ = (1, 2)⇢ with ⌧2 =
(0, 1)�2(0, 1) = (4, 2, 1, 0, 3), Theorem 11 easily gives us the rest of the permutiples
in this class listed below.

(d⇡(4), d⇡(3), . . . , d⇡(0))6 ⇡ ⌧ (c⇡(4), c⇡(3), . . . , c⇡(0))
(2, 5, 1, 3, 4)6 (1, 2)⇢ ⌧2 = (4, 2, 1, 0, 3) (0, 1, 1, 1, 0)
(2, 5, 3, 1, 4)6 (1, 2)⇢(1, 2) (1, 2)⌧2(1, 2) (0, 1, 1, 1, 0)
(5, 1, 3, 4, 2)6 (1, 2)⇢ 4  �4⌧2 4 (1, 1, 1, 0, 0)
(5, 3, 1, 4, 2)6 (1, 2)⇢(1, 2) 4  �4(1, 2)⌧2(1, 2) 4 (1, 1, 1, 0, 0)

Table 2: The conjugacy class corresponding to �2 = (4, 2, 0, 1, 3).

To determine the conjugacy class having the base permutation �3 = (4, 2, 0)(3, 1),
we find an example from this class. We shall attempt to find a (2, 6,�3)-permutiple
(d⇡(k), d⇡(k�1), . . . , d⇡(0))b. Then ⇡�3⇡�1 = �3 so that

(⇡(4),⇡(2),⇡(0))(⇡(3),⇡(1)) = (4, 2, 0)(3, 1).

Since the first carry of any permutiple must always be zero, we know that ⇡(0) equals
either 0 or 4. Hence, provided ⇡ commutes with �3, there are eight possibilities,
among which, ⇡ = �3 provides us with a solution. Therefore, by Theorem 12, with
⇡ = (4, 2, 0)(1, 3), we have that (c⇡(4), c⇡(3), c⇡(2), c⇡(1), c⇡(0)) = (1, 1, 0, 1, 0). So the
new initial carry vector is given by

ĉ = P⇡c =

2
66664

0
1
0
1
1

3
77775 .

In order to use Corollary 3, and for the sake of cleaner notation, we shall take
(d̂4, d̂3, d̂2, d̂1, d̂0)6 to mean (d⇡(4), d⇡(2), d⇡(2), d⇡(1), d⇡(0))6 = (5, 1, 2, 3, 4)6. Then
Corollary 3 tells us that if both (d̂4, d̂3, d̂2, d̂1, d̂0)6 and (d̂⇡(4), d̂⇡(2), d̂⇡(2), d̂⇡(1), d̂⇡(0))6
are conjugate, then ⇡ necessarily satisfies

2
66664

1
0
1
1
0

3
77775 = P 

2
66664

0
1
0
1
1

3
77775 = P⇡ ⇡�1

2
66664

0
1
0
1
1

3
77775 .
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Restating the above in component form, we have

ĉ⇡ ⇡�1(0) = 1 = ĉ1, ĉ3, or, ĉ4,
ĉ⇡ ⇡�1(1) = 0 = ĉ0 or ĉ2,
ĉ⇡ ⇡�1(2) = 1 = ĉ1, ĉ3, or, ĉ4,
ĉ⇡ ⇡�1(3) = 1 = ĉ1, ĉ3, or, ĉ4,
ĉ⇡ ⇡�1(4) = 0 = ĉ0 or ĉ2,

which provides a list of possible values of ⇡ ⇡�1, which can be any permutation of
the form ✓

0 1 2 3 4
1, 3 or, 4 0 or 2 1, 3 or, 4 1 or 4 0 or 2

◆
.

Examining all eight possibilities, ⇡ ⇡�1 = (⇡(0),⇡(1),⇡(2),⇡(3),⇡(4)) must equal
(0, 1, 2, 3, 4), (0, 3, 4, 2, 1), (0, 4, 2, 3, 1), or (0, 3, 1, 2, 4). Since ĉ0 = ĉ2 = 0, we
have the following eight permutations which satisfy Corollary 3: the identity " =✓

0 1 2 3 4
0 1 2 3 4

◆
, ⇡2 =

✓
0 1 2 3 4
0 3 4 2 1

◆
, ⇡3 =

✓
0 1 2 3 4
0 4 2 3 1

◆
, ⇡4 =✓

0 1 2 3 4
0 3 1 2 4

◆
, ⇡5 =

✓
0 1 2 3 4
2 3 4 0 1

◆
, ⇡6 =

✓
0 1 2 3 4
2 1 0 3 4

◆
, ⇡7 =✓

0 1 2 3 4
2 3 1 0 4

◆
, and ⇡8 =

✓
0 1 2 3 4
2 4 0 3 1

◆
. These permutations give us

the entire conjugacy class corresponding to �3 = (4, 2, 0)(3, 1).

(d̂⇡(4), d̂⇡(3), d̂⇡(2), d̂⇡(1), d̂⇡(0))6 ⇡ ⌧ (ĉ⇡(4), ĉ⇡(3), ĉ⇡(2), ĉ⇡(1), ĉ⇡(0))
(5, 1, 2, 3, 4)6 " �3 = (4, 2, 0)(1, 3) (1, 1, 0, 1, 0)

(3, 2, 5, 1, 4)6 ⇡2 ⇡�1
2 �3⇡2 (1, 0, 1, 1, 0)

(3, 1, 2, 5, 4)6 ⇡3 ⇡�1
3 �3⇡3 (1, 1, 0, 1, 0)

(5, 2, 3, 1, 4)6 ⇡4 ⇡�1
4 �3⇡4 (1, 0, 1, 1, 0)

(3, 4, 5, 1, 2)6 ⇡5 ⇡�1
5 �3⇡5 (1, 0, 1, 1, 0)

(5, 1, 4, 3, 2)6 ⇡6 ⇡�1
6 �3⇡6 (1, 1, 0, 1, 0)

(5, 4, 3, 1, 2)6 ⇡7 ⇡�1
7 �3⇡7 (1, 0, 1, 1, 0)

(3, 1, 4, 5, 2)6 ⇡8 ⇡�1
8 �3⇡8 (1, 1, 0, 1, 0)

Table 3: The conjugacy class corresponding to �3 = (4, 2, 0)(3, 1).

We now consider the final candidate �4 = (4, 0, 1, 3). By Theorem 12, any
suitable ⇡ in this class must satisfy

P⇡(2P�4 � I)d = (2P⇡�1�4⇡ � I)P⇡d = (6P � I)P⇡c,

or,

P⇡(2P�4 � I)

2
66664

2
1
5
3
4

3
77775 = (6P � I)P⇡

2
66664

0
1
1
1
0

3
77775 ,
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which simplifies to

P⇡

2
66664

0
1
1
1
0

3
77775 = P P⇡

2
66664

0
1
1
1
0

3
77775 .

We plainly see that P must fix the column vector

P⇡

2
66664

0
1
1
1
0

3
77775 .

Since there is no permutation, ⇡, which makes this statement true, there is no ⇡ for
which (d⇡(k), d⇡(k�1), . . . , d⇡(0))b is a (2, 6,⇡�1�4⇡)-permutiple.

We shall now apply the above techniques to another example with more digits
and a larger base. However, instead of beginning with a palintiple as in Exam-
ples 1, 2, 3, and 4, we shall find all permutiples having the same digits as the
base-12 cyclic number (1, 8, 6, 10, 3, 5)12. In particular, we shall find all (3, 12)-
permutiples from the example (5, 1, 8, 6, 10, 3)12 = 3 · (1, 8, 6, 10, 3, 5)12 with carries
(c5, c4, c3, c2, c1, c0) = (2, 1, 2, 0, 1, 0).

Example 5. We begin by computing the conjugacy class containing

(d5, d4, d3, d2, d1, d0) = (5, 1, 8, 6, 10, 3)12 = 3 · (1, 8, 6, 10, 3, 5)12.

The carries are given by (c5, c4, c3, c2, c1, c0) = (2, 1, 2, 0, 1, 0), so by Corollary 3,
any permutation, ⇡, of the digits of our initial example must satisfy

2
6666664

1
0
2
1
2
0

3
7777775

= P⇡ ⇡�1

2
6666664

0
1
0
2
1
2

3
7777775

.

Translating the above to component form, we have

c⇡ ⇡�1(0) = 1 = c1 or c4,
c⇡ ⇡�1(1) = 0 = c0 or c2,
c⇡ ⇡�1(2) = 2 = c3 or c5,
c⇡ ⇡�1(3) = 1 = c1 or c4,
c⇡ ⇡�1(4) = 2 = c3 or c5,
c⇡ ⇡�1(5) = 0 = c0 or c2.
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Then, it must be that ⇡ ⇡�1 has the form
✓

0 1 2 3 4 5
1 or 4 0 or 2 3 or 5 4 or 1 5 or 3 0 or 2

◆
.

From the above, there are three possible 6-cycles which yield acceptable permuta-
tions ⇡ ⇡�1 = (⇡(0),⇡(1),⇡(2),⇡(3),⇡(4),⇡(5)), namely, (0, 1, 2, 3, 4, 5), (0, 4, 5, 2,
3, 1), and (0, 4, 3, 1, 2, 5). Since c0 = c2 = 0, we have six values of ⇡, namely, the

identity ", ⇡2 =  2, ⇡3 =
✓

0 1 2 3 4 5
0 4 5 2 3 1

◆
, ⇡4 =

✓
0 1 2 3 4 5
2 3 1 0 4 5

◆
,

⇡5 =
✓

0 1 2 3 4 5
0 4 3 1 2 5

◆
, and ⇡6 =

✓
0 1 2 3 4 5
2 5 0 4 3 1

◆
, which yield the

permutiple conjugacy class listed below.

(d⇡(5), d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))12 ⇡ ⌧ (c⇡(5), c⇡(4), c⇡(3), c⇡(2), c⇡(1), c⇡(0))
(5, 1, 8, 6, 10, 3)12 "  5 (2, 1, 2, 0, 1, 0)
(10, 3, 5, 1, 8, 6)12  2  5 (1, 0, 2, 1, 2, 0)

(10, 8, 6, 5, 1, 3)12 ⇡3 ⇡�1
3  5⇡3 (1, 2, 0, 2, 1, 0)

(5, 1, 3, 10, 8, 6)12 ⇡4 ⇡�1
4  5⇡4 (2, 1, 0, 1, 2, 0)

(5, 6, 10, 8, 1, 3)12 ⇡5 ⇡�1
5  5⇡5 (2, 0, 1, 2, 1, 0)

(10, 8, 1, 3, 5, 6)12 ⇡6 ⇡�1
6  5⇡6 (1, 2, 1, 0, 2, 0)

Table 4: The conjugacy class corresponding to  5.

We now set to the task of finding all candidate base permutations. By Corollary
4, we have for any base permutation, �, that

2
6666664

d�(0)

d�(1)

d�(2)

d�(3)

d�(4)

d�(4)

3
7777775
⌘

2
6666664

1
3
2
2
0
1

3
7777775

mod 4.

The above expressed in component form gives us

d�(0) = 1 = d4 or d5,
d�(1) = 3 = d0,
d�(2) = 2 = d1 or d2,
d�(3) = 2 = d1 or d2,
d�(4) = 0 = d3,
d�(5) = 1 = d4 or d5.

Then, a base permutation, �, has the form
✓

0 1 2 3 4 5
4 or 5 0 1 or 2 1 or 2 3 4 or 5

◆
.
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The possible base permutations are then �1 =  5 (which corresponds to the con-
jugacy class listed in Table 4), �2 = (0, 5, 4, 3, 1), �3 = (0, 4, 3, 2, 1), and �4 =
(0, 4, 3, 1). As we shall presently see, unlike Examples 3 and 4, each candidate base
permutation yields a non-empty conjugacy class.

We now determine the conjugacy class for �2 = (0, 5, 4, 3, 1). In order to do this,
we must first find an example from this class. We shall see that the techniques we
used for Examples 3 and 4 will not work in this case. Therefore, we must appeal
to more rudimentary techniques. In particular, Theorem 1 will prove useful. We
need permutations ⌧2 and ⇡ yielding a (3, 12, ⌧2)-permutiple such that ⇡⌧2⇡�1 =
(0, 5, 4, 3, 1). Rearranging, we have ⌧2 = (⇡�1(0),⇡�1(5),⇡�1(4),⇡�1(3),⇡�1(1)).
In order to reduce the number of candidate permutations, we attempt to find a value
of ⇡ which fixes 0. Then ⌧2 = (0,⇡�1(5),⇡�1(4),⇡�1(3),⇡�1(1)). Applying The-
orem 12, the new permutiple (d⇡(5), d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))12 has the carry
vector (c⇡(5), c⇡(4), c⇡(3), c⇡(2), c⇡(1), c⇡(0)). Applying Theorem 1 to the jth digit, we
have that 3d⇡⌧2(j) � d⇡(j) = 12c⇡ (j) � c⇡(j). We know by the above that ⇡(0) = 0
and ⌧2(0) = ⇡�1(5). Therefore, for j = 0, we have 3d5 � d0 = 3 · 5 � 3 = 12c⇡(1).
Thus, c⇡(1) = 1 = c1 or c4. So ⇡(1) must be either 1 or 4. We shall attempt to
find a solution with ⇡(1) = 1. Then ⌧2 = (0,⇡�1(5),⇡�1(4),⇡�1(3), 1). Another
application of Theorem 1 for j = 1 yields 3d⇡⌧2(1) � d⇡(1) = 12c⇡ (1) � c⇡(1), or
�1 = 3 · 3 � 10 = 3d0 � d1 = 12c⇡(2) � c1 = 12c⇡(2) � 1. Thus, c⇡(2) = 0, so
⇡(2) equals either 0 or 2, but since ⇡(0) = 0, it must be that ⇡(2) = 2. Applying
Theorem 1 for j = 2, we obtain 3d⇡⌧2(2)� d⇡(2) = 12c⇡ (2)� c⇡(2), which, using the
above information, reduces to c⇡(3) = 1. That is, ⇡(3) is either 1 or 3. But since
⇡(1) = 1, it follows that ⇡(3) = 4. Thus, ⌧2 = (0,⇡�1(5), 3,⇡�1(3), 1). In the above
fashion, Theorem 1 for j = 3 then gives that c⇡(4) = 2. Then ⇡(4) must equal either
3 or 5. Letting ⇡(4) = 3, we have ⌧2 = (0, 5, 3, 4, 1).

From the above, ⇡ = (4, 3) and ⌧2 = (0, 5, 3, 4, 1) give us a solution from the con-
jugacy class corresponding to �2 = (0, 5, 4, 3, 1), namely, the (3, 12, ⌧2)-permutiple,

(d⇡(5), d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))12 = (5, 8, 1, 6, 10, 3)12 = 3 · (1, 10, 8, 6, 3, 5)12,

with carries (ĉ5, ĉ4, ĉ3, ĉ2, ĉ1, ĉ0) = (2, 2, 1, 0, 1, 0). Taking

p̂ = (d̂5, d̂4, d̂3, d̂2, d̂1, d̂0)12 = (5, 8, 1, 6, 10, 3)12

to be our reference example from this class, we now use Corollary 3 to find the
remaining elements of this class:2

6666664

1
0
1
2
2
0

3
7777775

= P⇡ ⇡�1

2
6666664

0
1
0
1
2
2

3
7777775

.
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We express the above in component form as

ĉ⇡ ⇡�1(0) = 1 = ĉ1 or ĉ3,
ĉ⇡ ⇡�1(1) = 0 = ĉ0 or ĉ2,
ĉ⇡ ⇡�1(2) = 1 = ĉ1 or ĉ3,
ĉ⇡ ⇡�1(3) = 2 = ĉ4 or ĉ5,
ĉ⇡ ⇡�1(4) = 2 = ĉ4 or ĉ5,
ĉ⇡ ⇡�1(5) = 0 = ĉ0 or ĉ2.

Therefore, ⇡ ⇡�1 can be expressed as
✓

0 1 2 3 4 5
1 or 3 0 or 2 1 or 3 5 4 0 or 2

◆
.

In particular, we have either (0, 1, 2, 3, 4, 5), or (0, 3, 4, 5, 2, 1), and since ĉ0 = ĉ2 = 0,
the four permutations induced by the digits of p̂ are the identity " (corresponding

to p̂), ⇡7 =
✓

0 1 2 3 4 5
2 3 4 5 0 1

◆
, ⇡8 =

✓
0 1 2 3 4 5
0 3 4 5 2 1

◆
, and ⇡9 =✓

0 1 2 3 4 5
2 1 0 3 4 5

◆
. The conjugacy class corresponding to �2 = (0, 5, 4, 3, 1) is

given by the table below.
⇣
d̂⇡(5), d̂⇡(4), . . . , d̂⇡(0)

⌘
12

⇡ ⌧
�
ĉ⇡(5), ĉ⇡(4), . . . , ĉ⇡(0)

�
(5, 8, 1, 6, 10, 3)12 " ⌧2 = (0, 5, 3, 4, 1) (2, 2, 1, 0, 1, 0)

(10, 3, 5, 8, 1, 6)12 ⇡7 ⇡�1
7 ⌧2⇡7 (1, 0, 2, 2, 1, 0)

(10, 6, 5, 8, 1, 3)12 ⇡8 ⇡�1
8 ⌧2⇡8 (1, 0, 2, 2, 1, 0)

(5, 8, 1, 3, 10, 6)12 ⇡9 ⇡�1
9 ⌧2⇡9 (2, 2, 1, 0, 1, 0)

Table 5: The conjugacy class corresponding to �2 = (0, 5, 4, 3, 1).

Finding an example from the conjugacy class corresponding to �3 = (0, 4, 3, 2, 1),
repeated use of Theorem 1 as above yields the permutations ⇡ = (1, 2, 3, 4, 5) and
⌧3 = (5, 0, 3, 2, 1). From these permutations, we obtain the reference (3, 12, ⌧3)-
permutiple,

(d̂5, d̂4, d̂3, d̂2, d̂1, d̂0)12 = (d⇡(5), d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))12 = (10, 5, 1, 8, 6, 3)12,

with carries (ĉ5, ĉ4, ĉ3, ĉ2, ĉ1, ĉ0) = (1, 2, 1, 2, 0, 0).
In similar fashion to calculations for the above conjugacy classes, the reader

may verify that this example via Corollary 3 gives the following four permutations:

the identity ", ⇡10 =
✓

0 1 2 3 4 5
1 2 3 4 5 0

◆
, ⇡11 =

✓
0 1 2 3 4 5
0 1 4 3 2 5

◆
, and

⇡12 =
✓

0 1 2 3 4 5
1 4 3 2 5 0

◆
, and thus, the conjugacy class corresponding to

�3 = (0, 4, 3, 2, 1) is given by the following table.
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⇣
d̂⇡(5), d̂⇡(4), . . . , d̂⇡(0)

⌘
12

⇡ ⌧
�
ĉ⇡(5), ĉ⇡(4), . . . , ĉ⇡(0)

�
(10, 5, 1, 8, 6, 3)12 " ⌧3 = (5, 0, 3, 2, 1) (1, 2, 1, 2, 0, 0)

(3, 10, 5, 1, 8, 6)12 ⇡10 ⇡�1
10 ⌧3⇡10 (0, 1, 2, 1, 2, 0)

(10, 8, 1, 5, 6, 3)12 ⇡11 ⇡�1
11 ⌧3⇡11 (1, 2, 1, 2, 0, 0)

(3, 10, 8, 1, 5, 6)12 ⇡12 ⇡�1
12 ⌧3⇡12 (0, 1, 2, 1, 2, 0)

Table 6: The conjugacy class corresponding to �3 = (0, 4, 3, 2, 1).

To find an example from our final conjugacy class corresponding to �4 =(0, 4, 3, 1),
we use Theorem 1 as above to find the permutations ⇡ = (5, 1, 2, 4) and ⌧4 =
(0, 2, 3, 5). From these permutations, we obtain the reference (3, 12, ⌧4)-permutiple,

(d̂5, d̂4, d̂3, d̂2, d̂1, d̂0)12 = (d⇡(5), d⇡(4), d⇡(3), d⇡(2), d⇡(1), d⇡(0))12 = (10, 5, 8, 1, 6, 3)12,

with carries (ĉ5, ĉ4, ĉ3, ĉ2, ĉ1, ĉ0) = (1, 2, 2, 1, 0, 0). Again, we shall leave the de-
tails of the calculations involving Corollary 3 to the reader who may verify that
this permutiple yields the following two permutations: the identity " and ⇡13 =✓

0 1 2 3 4 5
1 2 3 4 5 0

◆
. The conjugacy class for �4 = (0, 4, 3, 1) is given by the

table below.⇣
d̂⇡(5), d̂⇡(4), . . . , d̂⇡(0)

⌘
12

⇡ ⌧
�
ĉ⇡(5), ĉ⇡(4), . . . , ĉ⇡(0)

�
(10, 5, 8, 1, 6, 3)12 " ⌧4 = (0, 2, 3, 5) (1, 2, 2, 1, 0, 0)

(3, 10, 5, 8, 1, 6)12 ⇡13 ⇡�1
13 ⌧4⇡13 (0, 1, 2, 2, 1, 0)

Table 7: The conjugacy class corresponding to �4 = (0, 4, 3, 1).

4. Future Directions and Concluding Remarks

While we have developed methods for finding all permutiples having the same digits
and carries as a known example (which, as we have seen, allow us to find all desired
examples when n divides b), the next step forward is to find methods which give us
all the desired examples.

Aside from the above problem, the work we have done here leaves many questions.
Are there other conditions or divisibility criteria which, using the methods developed
here, or some slight variation thereof, allow us to find all permutiples having the
same digits as a single permutiple example already in hand? How do the orders of
base permutations of each conjugacy class relate to the order of �? Are there any
restrictions on the size of the conjugacy classes? Regarding the general permutiple
problem, other questions certainly abound. What kinds of permutations can � be?
What sort of restrictions might there be on the order of �?

As we have already seen, repeated application of Theorem 1, Corollary 3, and
Corollary 4 give us methods for finding permutations of the digits of a starting
permutiple which yield other permutiples. However, in fairness, we should add that
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some examples require substantially more calculation than others in order to find
every example. For instance, considering the base-10 cyclic example given in the
introductory paragraph, 714285 = 5 · 142857, the reader may verify that Corollary
4 requires us to examine 36 possible base permutations, among which, only four
actually yield non-empty conjugacy classes. This is all to say that future e↵orts
should look for criteria for determining when base permutations yield non-empty
conjugacy classes.

Another avenue of investigation is finding a way to generalize Sloane’s [9] Young
graph representation of palintiple structure in order to visualize permutiple struc-
ture. We imagine that such a construction would allow us to classify, and better
understand, permutiple structure. We also imagine that it would be substantially
more complex. Finally, as Young graphs themselves are an interesting area of study
in their own right, we conjecture that its generalization would also justify future
study.

It is also worth mentioning that the matrices nP� � I and bP � I, as well as
their inverses (given by 1

n|�|�1

P|�|�1
`=0 (nP�)` and 1

bk+1�1

Pk
`=0(bP )`, respectively),

all have interesting properties. For instance, both bP � I and its inverse are
circulant matrices. Moreover, both nP� � I and bP � I have the property that
every column and row sum to n � 1 and b � 1, respectively. In addition to these
properties, we ask if these matrices are endowed with other special properties when
(n, b,�)-permutiples exist.

With the palintiple problem firmly in mind, the di�culty of particular digit
permutation problems might make the general permutiple problem seem intractable.
However, the methods developed here seem to prove otherwise; there is certainly
structure that one can take advantage of. Moreover, as noted by Holt [4], studying
the general problem may very well o↵er insight into particular problems which
study only one kind of permutation. In particular, it might be possible to derive (in
the manner described by Holt [4]) entire palintiple classes from certain permutiple
types such as those mentioned by Holt [4]. What is more, it seems that general
permutiples can also be derived from other permutiples. As a noteworthy example,
we present the cyclic (6, 12, 3)-permutiple, (10, 3, 5, 1, 8, 6)12 = 6·(1, 8, 6, 10, 3, 5)12,
whose non-zero carries are the digits of the (2, 6)-palintiple, (4, 3, 5, 1, 2)6 = 2 ·
(2, 1, 5, 3, 4)6, which served as our initial base-6 example. Another example is the
starting permutiple of Example 5, (5, 1, 8, 6, 10, 3)12 = 3 · (1, 8, 6, 10, 3, 5)12, with
carries (c5, c4, c3, c2, c1, c0) = (2, 1, 2, 0, 1, 0). The carries (excluding c0 = 0) are
the digits of a (2, 3)-palintiple, which again, as shown by Holt [4], gives rise to an
entire family of derived palintiples. When choosing these examples, we did not
intentionally seek out such occurrences; we only later noticed that such examples of
“derived permutiples” seem to naturally abound. We suspect that there are deep
and interesting connections between permutiples of di↵ering bases which have yet
to be explored.
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