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Abstract
A permutiple is a natural number that is a nontrivial multiple of a permutation of its
digits in some base. Special cases of permutiples include cyclic numbers (multiples
of cyclic permutations of their digits) and palintiple numbers (multiples of their
digit reversals). While cyclic numbers have a fairly straightforward description,
palintiple numbers admit many varieties and cases. A previous paper attempts to
get a better handle on the general case by constructing new examples of permutiples
with the same set of digits, multiplier, and length as a known example. However, the
results are not sufficient for finding all possible examples except when the multiplier
divides the base. Using an approach based on the methods of this previous paper, we
develop a new method which enables us to find all examples under any conditions.

1. Introduction

A permutiple, as the name suggests, is a number which is an integer multiple of some
permutation of its digits in some natural number base, b, greater than one [4]. Well-
studied cases include cyclic numbers [Il [], that is, numbers which are multiples
of cyclic permutations of their digits. A base-10 example of a cyclic number is
714285 = 5 - 142857. A richer, but much less well-understood, case is palintiple
numbers [2] [3], also known as reverse multiples [6l [7, 8, 9], which are multiples of
their digit reversals. The large variety of palintiple types can be organized using
a graph-theoretical construction by Sloane [7] called Young graphs which are a
modification of the work of Young [8, 0]. The most widely known examples of
palintiples, also in base 10, include 87912 =4 - 21978 and 98901 = 9 - 10989.

The work of Holt [4] establishes methods for finding new examples of general
permutiples from old examples. For instance, using these methods, we are able to
find new examples, such as 79128 = 4-19782, from the example with the same digits
mentioned above. Although these methods shed some light on the problem, they are
not able to account for all the desired examples under more general conditions. In
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particular, the results are not sufficient for finding the permutiple 78912 = 4-19728
from the known example already mentioned. In this paper, we fill this gap by
providing a simpler, yet more general, method for finding all permutiples with the
same set of digits, multiplier, and length from single known example.

2. Basic Notation, Definitions, and Results

We shall use (dg,dg—1,...,dp)s to denote the natural number Z?:o djb’ where
0 <d; <bforall 0 <j<k. The following is a definition of permutiple numbers.

Definition 1 ([4]). Let n be a natural number and o be a permutation on {0,1,2,...,k}.
We say that (dg,dk—1,...,do)s is an (n, b, o)-permutiple provided

(di,dp—1,...,d1,do)y = n(do), do(k—1)» - - s do (1), do(0))b-

This definition, along with basic facts about single-digit multiplication, gives the
following result which relates a permutiple’s digits and carries.

Theorem 1 ([4]). Let (dk,dk—1,...,do)s» be an (n,b, o)-permutiple and let c; be the
jth carry. Then
ijJrl —Cj = ndg(j) - dj

forall0 < j <k.

Letting ¢ denote the (k+1)-cycle (0,1,2,..., k), we may write the above relations
more conveniently in matrix form as

(bPy — Ic = (nP, — I)d,

where I is the identity matrix, Py and P, are permutation matrices, c is a column
vector containing the carries, and d is a column vector containing the digits. We
also note that indexing is from 0 to k rather than from 1 to k.

The problem posed by Holt [4] is the following: given an (n,b, o)-permutiple,
(dk,dk—1,-..,do)s, find all permutations, 7, such that (dﬂ.(k), dﬂ'(k}—l)) ceey dﬂ'(o))b7 is
also a permutiple.

To sort through the types of new examples that arise, Holt [4] defines the notion
permutiple conjugacy. For completeness, we state this definition here.

Definition 2 (|4]). Suppose (dk,dk—1,...,do)s is an (n,b,o)-permutiple. Then,
an (n, b, 7y)-permutiple, (drx, k), dx, (k—1)s- - - dx,(0))b, and an (n,b, 72)-permutiple,
(dry (k) Arg(k—1)s - - - » dry(0) )b, are said to be conjugate if ﬂ'ﬂ'ﬂrfl = 7727'27rgl.

Conjugacy defines an equivalence relation on the collection of permutiples having
digits di, dg—1, ..., do. Holt [4] refers to these equivalence classes as conjugacy



classes. The common permutation of a conjugacy class, 8 = w171 7T1_1 = 7T2T27T2_1, is
referred to its base permutation. The methods of Holt [4] are sufficient for finding
all known examples within a conjugacy class, but fall short when trying to find all
conjugacy classes outside of that which contains the known example.

3. A Method for Finding All Examples

We consider a generic (n, b, o)-permutiple, (dg, dk—1, ..., do)s, with carries ¢k, cx—1,
..., co, and an (n, b, 7)-permutiple with the same digits, (d ), dr k1), - - > dx(0))b;
but not necessarily the same carries, ¢, ¢x—1, ..., ¢o. Then, in the notation estab-
lished above,

(nP; —I)P,d = (bPy, — I)¢. (1)

Reducing modulo b, we have
(nPr — I)P,d = —& mod b.
Multiplying the above by P,-1 and rearranging, we obtain
d+ (b—n)Prrr-1d = P,-1€& mod b. (2)

Equation (@) in component form, along with the fact from Holt [4] that the carries
of any permutiple must be less than or equal to n — 1, gives us our main result.

Theorem 2. Suppose (dy,dk—1,...,do)s is an (n,b, o)-permutiple. Then, in order
for the number (dx (), dx(k—1,- -, dr))e to be an (n,b,T)-permutiple, it must be
that

A (dJ +(b— n)dwrﬂ-*l(j)) <n-1

for all 0 < j < k, where X is the least non-negative residue modulo b.

The above enables us to find all possible base permutations, 3 = w7 !, for each
conjugacy class by imposing necessary conditions on what m7m=! can be. A big
advantage of the result is that it does not require any prior knowledge of what the
carry sequence should be. In fact, once we narrow down the possible candidates for
B, we may then determine the values of the candidate set of carries by substituting
in the known digits into Equation (2)); the permuted carries are contained in the
column vector v = P,.-1¢€.

With the base permutations in hand, we then rewrite Equation () as

(nP; —I)Pyd = (bPy — I)P,v
since ¢ = P,v. Multiplying both sides by P,-1 we have

(’IIP,TTﬂ.fl - I)d = (bPﬂ.d)ﬂ-—l — I)V,



or
(nPg —I)d = (bPryr—1 — I)Vv.

Rearranging, we obtain

bPyr-1v = (nPg—I)d+v. (3)

Now, since d, v, and 8 = n77~! are known, the only unknown in Equation (@) is

7. This is to say that Equation (3] gives us a list of candidate permutations, 7, for
which (dr k), dx(k—1), - -+ dr(0))s is an (n, b, 7)-permutiple. Moreover, we note that
Equation (B)) is equivalent to Equation (). So, Theorem 3 of Holt [4] guarantees that
every permutation, m, satisfying Equation (3] yields a permutiple so long as ¢y = 0.
From there, determining 7 itself is a matter of either of computing 7 = 7~ '7 or
diViding (dﬂ'(k)adﬂ'(k—l)v ceey dw(o))b by n.

We now illustrate the above method by resolving a case for which the techniques
of Holt [4] were insufficient for recovering all permutiples from a known example.

Example 1. We shall find all 5-digit, (4,10, 7)-permutiples with the same digits
as the base-10 example 87912 = 4 - 21978. In more general notation, we state our
known example as (8,7,9,1,2)10 =4-(2,1,9,7,8)10 so that

do 2
d 1
d=|dy | =109
ds 7
da 8

Theorem [2] tells us that for all 0 < 7 < 4 we must have
)\(d 4+ 6drr— 135 )) <3.

That is,

(2+ 6drrr-1(0))
(1+ 6drrr-11))
(9+ 6drrr-1(2)
(7 + Gdﬂ.,,.ﬂ.fl(g))
A (8 + 6drrr-1(1))

The above inequalities yield the possibilities
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L (0 1 2 3 4
=\ 4 0or3 0,2, 0r3 lor2 0,2 or3 )"

We note that 77771 (3) = 2 would give us a relation that is not a permutation, so
we are left with

(0 1 2 3 4
™=\ 4 0or3 0,2,0r3 1 0,2, 0r3 )"



The possible base permutations are then 8, = ( Z zl)) 3 515 3 > , B2 = < Z (1) ;

01 2 3 4 01 2 3 4
53_(4 02 1 3)’andﬂ4_<4 3 01 2)'

The reader will notice that 1 is the reversal permutation, p, and is the base
permutation of our known example. Also, 51 = p is the digit permutation appearing
in our known example. It is here that we underscore, as in Holt [4], that a base
permutation need not be a digit permutation itself in conjugacy classes outside the
one which contains the known example.

From here, we substitute d and each possible 8; = 777! into Equation (@) to
determine v = P,-1¢, which gives a possible set of carries. To these, we then apply
Equation () to recover .
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Applying Equation @) to 5 = ( 2 515 ; i’ E)L ) gives
2 2 0
1 1 3
v=Paé=|9 |+6P3 | 9 |=]|3 mod 10.
7 7 3
8 8 0

Since 0 < ¢é; < 3 for each 0 < j < 4, we conclude that

v=PFP..1¢=

O W wwo

which is no surprise since these are the carries, c;, of our known example.
Applying Equation (@),

10P,yp = (4P, — 1)
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The possibilities are then expressed as

ol — 0 1 2 3 4
"\ 1,2,0or3 1,2, 0r3 1,2,0or3 Oor4 Oor4d /'

Since the above must be a 5-cycle, our possibilities are reduced to

! — 0 1 2 3 4
™=\ 1or2 20r3 1or3 4 0 )



That is, mr~! = (7(0),7(1),7(2),m(3),7(4)) can be either v = (0,1,2,3,4) or
(0,2,1,3,4) = (1,2)¥(1,2). Thus, m = ¢, the identity permutation, and = = (1,2)
both solve Equation (3). Moreover, since the first carry, ¢o = vr(g), must always be
zero, we have that 7(0) can be either 0 or 4. The possibility 7(0) = 4 gives us two
more permutations: 7 = ¢* and m = (1,2)y*.

The entire conjugacy class for 5, = p is listed below.

(drr(4)7d7r(3)7d‘rr(2)7d‘rr(1)7d7-r(0))10 T T (64763762761760)
(8,7,9,1,2)10 € p (0,3,3,3,0)
(8,7,1,9,2)10 (1,2) (1,2)p(1,2) (0,3,3,3,0)
(7,9,1,2,8)10 Pt P~ Tpy? (3,3,3,0,0)
(7,1,9,2,8)10 (1,2)v* | =31, 2)p(1, 2)y* (3,3,3,0,0)

Remark 1. The reader will notice that Equation (B]) does the same work as Corol-
lary 2 in Holt [4]. In fact, the above analysis is identical in form to that found in
Example 3 of Holt [4].

We now find the conjugacy class for Gy = ( 2 (1) g i) ;L ) . Again, by Equa-
tion (@),
2 2 0
1 1 3
v=FP,1¢=|9 [+6FP3 | 9 |=|1 mod 10.
7 7 3
8 8 2
In similar fashion to the above case, we may argue that
0
3
vV = Pﬂ-—lé = 1
3
2
Using Equation (@), we have
0 2 0 3
3 1 3 1
0Py | 1 | =@Ps,=1)| 9 |+ | 1 | =10] 2 |,
3 7 3 0
2 8 2 3

which allows for

et — 0 1 2 3 4
™=\ 1or3 2 4 0 30rl1 )°

Again, since the above must be a 5-cycle, we are left with a single possibility:

(01 2 3 4
mm _<12403>'



It follows that ! = (7(0), 7(1), 7(2), 7(3),m(4)) = (0,1,2,4,3). Thus, the only
possible permutation is 7 = (3,4).

The conjugacy class for [, therefore, consists of a single element, namely, the
example (7,8,9,1,2)10 =4-(1,9,7,2,8)10, & (4,10, 7)-permutiple with carry vector

0
3
c=Pv=|1]|,
2
3
01 2 3 4
Wherer_<3 0 4 2 1)_(0,3,2,4,1)_77 1Bor.

Remark 2. The above conjugacy class consists of the example that the results of
Holt [4] could not account for.

Considering 3 = ( 2 (1) ; i) g > , another use of Equation (2)) yields

2 2 0
1 1 3
v=PFP €= 9 | +6FPg | 9 | =] 3 mod 10.
7 7 3
8 8 0
Then, using
0
3
v=1|3 |,
3
0
we employ Equation (@) to obtain
0 2 0 3
3 1 3 1
10P,yr | 3 | =@Ps,—1)| 9 |+ |3 |=10]3
3 7 3 0
0 8 0 2

Since there is no permutation, 7, which makes the above statement true, we conclude
that the conjugacy class corresponding to 3 is empty. By a similar calculation,
B4 also yields no new examples. With the above, we have found all (4,10, 7)-
permutiples with the same digits as our known example.



4. Summary of Method and Concluding Remarks

To summarize the above method, Theorem [2] provides a list of base permutation
candidates. Trying all of these in Equation (2] gives us possibilities for what the
carries can be by computing the permuted carry vector v = P,-:¢€. Inserting this
information into Equation (B]) then allows us to recover permutations, m, which yield
new permutiples.

While the above method addresses the main question of Holt [4], we note that
there are still plenty of questions that remain from the above considerations. Of
particular interest are patterns or restrictions which may exist concerning permuta-
tion type and orders of base permutations, as well as the sizes of their corresponding
conjugacy classes.

Other tractable lines of inquiry with the goal of finding new permutiples from old
include understanding when “derived” permutiples are possible, that is, (n,b,o)-
permutiples whose truncated carry vector, (cg,ck—1,...,c1), is also a base-n per-
mutiple. An example of this phenomenon, mentioned by Holt [4], is the cyclic
(6,12, 13)-permutiple, (10,3,5,1,8,6)12 = 6-(1,8,6,10,3,5)12, whose nonzero car-
ries are the digits of the (2, 6)-palintiple, (4,3,5,1,2)s = 2-(2,1,5,3,4)s. In other
words, we ask: when is it possible to construct, or “derive,” a new permutiple,
say (10,3,5,1,8,6)12, from a known permutiple, such as (4,3,5,1,2)g, by treating
it as a carry vector (4,3,5,1,2,0)7 We note that the less general case of derived
palintiples is taken up by Holt [3].

For other research questions and results regarding the general permutiple prob-
lem, the reader is directed to Holt [4].
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