1. Perform the indicated operations and reduce the result to lowest terms. Assume the variables are restricted to values that prevent division by 0.

$$\frac{2\beta-1}{\beta^2-\beta-12}+\frac{3\beta+7}{-\beta-3}$$

- A. $\frac{-3\beta^2 + 10\beta + 27}{(\beta+3)(\beta-4)(\beta-1)}$
- B. $\frac{-3\beta^2 + 3\beta + 27}{(\beta+3)(\beta-4)}$
- C. $\frac{-3\beta^2 + 5\beta + 27}{(\beta+3)(\beta-4)(\beta-1)}$
- D. $\frac{-3\beta^2 + 7\beta + 27}{(\beta+3)(\beta-4)}$
- E. $\frac{-3\beta^2 + 2\beta + 27}{(\beta+3)(\beta-4)(\beta-1)}$
- F. $\frac{-3\beta^2 + 4\beta + 27}{(\beta+3)(\beta-4)}$
- G. $\frac{-3\beta^2 + 8\beta + 27}{(\beta+3)(\beta-4)(\beta-1)}$
- H. $\frac{-3\beta^2 + 12\beta + 27}{(\beta+3)(\beta-4)}$

2. Solve the radical equation.

$$\sqrt{9\phi + 4} + 5 = 3$$

- A. $\phi = -\frac{3}{4}$
- B. $\phi = -\frac{3}{5}$
- C. This equation has no real solution.
- D. $\phi = -\frac{1}{4}$
- E. 0
- F. $\phi = -\frac{1}{2}$
- G. $\phi = -\frac{4}{5}$
- H. $\phi = \frac{4}{5}$

3. Evaluate the radical expression.

 $2\sqrt{5\alpha} + 5\sqrt{5\alpha}$

- A. $8\sqrt{10\alpha}$
- B. $3\sqrt{10\alpha}$
- C. $7\sqrt{10\alpha}$
- D. $7\sqrt{5\alpha}$
- E. $12\sqrt{10\alpha}$
- F. $8\sqrt{5\alpha}$
- G. $12\sqrt{5\alpha}$
- H. $3\sqrt{5\alpha}$

4. Solve the rational equation. Be sure to check for extraneous solutions.

$$\frac{\tau + 1}{\tau} + \frac{14}{\tau - 7} = \frac{4\tau - 7}{\tau^2 - 7\tau}$$

- A. $\tau = 1$
- B. This equation has no solution.

C.
$$\tau = 0$$
 or $\tau = 1$

D.
$$\tau = 0$$
 or $\tau = -1$

E.
$$\tau = 0$$

F.
$$\tau = -4$$

G.
$$\tau = -1$$

H.
$$\tau = 0$$
 or $\tau = -4$

- 5. Carbon-14 decays continuously at the rate of 0.01245% per year. An archaeologist has determined that only 3% of the original carbon-14 from a plant specimen remains. Estimate the age of this specimen.
- A. The specimen is approximately 28154.12 years old.
- B. The specimen is approximately 28261.12 years old.
- C. The specimen is approximately 28165.12 years old.
- D. The specimen is approximately 28106.12 years old.
- E. The specimen is approximately 28193.12 years old.
- F. The specimen is approximately 28118.12 years old.
- G. The specimen is approximately 28173.12 years old.
- H. The specimen is approximately 28067.12 years old.

6. Find the exact solution to the equation.

$$7.55e^{0.9h} = 7.02$$

A.
$$h = -\frac{1}{0.9} \frac{\ln(7.02)}{\ln(7.55)}$$

B.
$$h = \frac{1}{0.9} \ln(\frac{7.02}{7.55})$$

C.
$$h = -\frac{1}{0.9} \frac{\ln(7.55)}{\ln(7.02)}$$

D.
$$h = \frac{1}{0.9} \frac{\ln(7.55)}{\ln(7.02)}$$

E.
$$h = -\frac{1}{0.9} \ln(\frac{7.02}{7.55})$$

F.
$$h = \frac{1}{0.9} \frac{\ln(7.02)}{\ln(7.55)}$$

G.
$$h = -\frac{1}{0.9} \ln(\frac{7.55}{7.02})$$

H.
$$h = \frac{1}{0.9} \ln(\frac{7.55}{7.02})$$

7. Use an augmented matrix and elementary row operations to solve the system of linear equations.

$$\left\{ \begin{array}{c} 3y = 3\\ 2x - y - 2z = 1\\ 3x = -3 \end{array} \right\}$$

- A. $x = -\frac{5}{2}$ $y = \frac{4}{3}$ z = -2
- x = -1B. $y = -\frac{1}{2}$ $z = -\frac{7}{3}$
 - x = -1
- C. y = 1z = -2

- $x = -\frac{5}{2}$ y = 1 $z = -\frac{3}{2}$ E.
 - x = -1
- F. y = 1 $z = -\frac{7}{2}$ $x = -\frac{5}{2}$ G. $y = -\frac{1}{2}$ $z = -\frac{5}{3}$

 - x = -1

8. Reduce the rational expression $\frac{49n^2-16}{36+63n}$ to lowest terms. Assume that the variables are restricted to values that prevent division by 0.

- A. $\frac{7n-4}{9}$
- B. $-\frac{2j-5u}{8}$
- C. $-\frac{8}{2j-5u}$
- D. $-\frac{7n-4}{9}$
- E. $-\frac{9}{7n-4}$
- F. $\frac{9}{7n-4}$
- G. $\frac{7n-4}{2j-5u}$
- H. $\frac{2j-5u}{7n-4}$

9. Use transformations to graph the function. f(x) = -2|x-2| + 1.

MORE OPTIONS ON NEXT PAGE

10.	Use the change o	of base formula	to evaluate t	he following	g logarithm.	Round your	answer	to the	nearest
hur	ndredth.								

 $\log_{\frac{1}{2}} 11$

- A. -3.59
- B. -4.32
- C. -3.93
- D. -3.46
- E. -4.14
- F. -3.7
- G. -3.41
- H. -3.32

- 11. Solve the quadratic equation. Leave the radical unsimplified. $5z^2 = -2z + 9$
- A. This equation has no real number solutions.

B.
$$z = \frac{2 \pm \sqrt{260}}{-10}$$

C.
$$z = \frac{2 \pm \sqrt{136}}{10}$$

D.
$$z = \frac{2 \pm \sqrt{151}}{10}$$

E.
$$z = \frac{-2 \pm \sqrt{47}}{10}$$

F.
$$z = \frac{-2 \pm \sqrt{144}}{10}$$

G.
$$z = \frac{-2 \pm \sqrt{184}}{10}$$

H.
$$z = \frac{2 \pm \sqrt{265}}{-10}$$

12. Find the exact solution to the logarithmic equation.

$$\log(6\zeta + 3) = 2$$

- A. $\zeta = \frac{101}{6}$
- B. $\zeta = \frac{95}{6}$
- C. $\zeta = \frac{109}{6}$
- D. $\zeta = \frac{97}{6}$
- E. $\zeta = \frac{53}{3}$
- F. $\zeta = \frac{103}{6}$
- G. $\zeta = \frac{44}{3}$
- H. $\zeta = \frac{85}{6}$

13. Consider the functions f(x) = |x| and g(x) = 6x + 4. Find $f \circ g$.

A.
$$(f \circ g)(x) = |6x| - 4$$

B.
$$(f \circ g)(x) = 6|x| + 4$$

C.
$$(f \circ g)(x) = |6x| - |4|$$

D.
$$(f \circ g)(x) = |6x - 4|$$

E.
$$(f \circ g)(x) = 6|x| - 4$$

F.
$$(f \circ g)(x) = |6x| + |4|$$

G.
$$(f \circ g)(x) = |6x + 4|$$

H.
$$(f \circ g)(x) = |6x| + 4$$

14. Use the graph of the linear function to find interval(s) where the function increasing.

- A. The function f(x) is increasing on \emptyset
- B. The function f(x) is increasing on $(-\infty, 3)$
- C. The function f(x) is increasing on $(3, \infty)$
- D. The function f(x) is increasing on $(-\infty, 1.5) \cup (3, \infty)$
- E. The function f(x) is increasing on (3, 1.5)
- F. The function f(x) is increasing on $(-\infty,3) \cup (1.5,\infty)$
- G. The function f(x) is increasing on \mathbb{R}
- H. The function f(x) is increasing on $(-\infty, 1.5)$

15. Represent each expression by using radical notation, and evaluate the expression.

 $(0.16)^{\frac{1}{2}}$

- A. $\sqrt[3]{0.16} = \frac{23}{20}$
- B. $\sqrt{0.16} = \frac{1}{5}$
- C. $\frac{1}{\sqrt[3]{0.16}} = \frac{23}{20}$
- D. $\frac{1}{\sqrt{0.16}} = \frac{2}{5}$
- E. $\sqrt{0.16} = \frac{2}{5}$
- $F. \ \frac{1}{\sqrt[3]{0.16}} = \frac{12}{5}$
- G. $\sqrt[3]{0.16} = \frac{12}{5}$
- H. $\frac{1}{\sqrt{0.16}} = \frac{1}{5}$

16. Perform the indicated operations and reduce the result to lowest terms. Assume the variables are restricted to values that prevent division by 0.

$$\frac{\frac{1}{\alpha^2} - \frac{1}{n^2}}{\frac{1}{\alpha} - \frac{1}{n}}$$

- A. $-\frac{\alpha(\alpha+n)}{(\alpha-n)^2}$
- B. $\frac{n}{\alpha}$
- C. $\frac{1}{\alpha n}$
- D. $-\frac{\alpha+n}{\alpha}$
- E. $\frac{\alpha+n}{\alpha n}$
- F. $\frac{\alpha+n}{\alpha^2n^2}$
- G. $\frac{1}{\alpha n}$
- H. 1

17. Find the y-intercept, x-intercepts, and range of the parabola graphed below.

- A. The y-intercept is (0,8). The x-intercepts are (4,0) and (3,0). The range is $R=(-\infty,\frac{7}{4}]$.
- B. The y-intercept is (0,6). The x-intercepts are (4,0) and (5,0). The range is $R=(-\infty,\frac{7}{4}]$.
- C. The y-intercept is (0,8). The x-intercepts are (2,0) and (5,0). The range is $R=(-\infty,\frac{7}{4}]$.
- D. The y-intercept is (0,6). The x-intercepts are (2,0) and (3,0). The range is $R=[-\frac{1}{4},\infty)$.
- E. The y-intercept is (0,6). The x-intercepts are (4,0) and (5,0). The range is $R = [\frac{7}{4}, \infty)$.
- F. The y-intercept is (0,8). The x-intercepts are (4,0) and (5,0). The range is $R=[-\frac{1}{4},\infty)$.
- G. The y-intercept is (0,8). The x-intercepts are (2,0) and (5,0). The range is $R=[\frac{7}{4},\infty)$.
- H. The y-intercept is (0,8). The x-intercepts are (4,0) and (5,0). The range is $R=(-\infty,-\frac{1}{4}]$.

18. Simplify the division. Rationalize the denominator only if this step is necessary.

 $\frac{\sqrt[3]{25}}{\sqrt[3]{16}}$

- A. $\frac{2\sqrt[3]{100}}{5}$
- B. $\frac{\sqrt[3]{100}}{25}$
- C. 4
- D. $\frac{4}{\sqrt[3]{100}}$
- E. $\frac{5\sqrt[3]{100}}{2}$
- F. $\frac{\sqrt[3]{100}}{4}$
- G. 25
- H. $\frac{25}{\sqrt[3]{100}}$

19. Perform the indicated operations and reduce the result to lowest terms. Assume the variables are restricted to values that prevent division by 0.

$$\frac{21\varphi s}{15\varphi^2+15\varphi s}\cdot\frac{\varphi^4-s^4}{-5\varphi-7s}\cdot\frac{5\varphi+7s}{4\varphi^2+4s^2}$$

- A. $\frac{20}{7s(\varphi-s)}$
- B. $-\frac{20}{7s(\varphi s)}$
- C. $\frac{7s(\varphi-s)}{20}$
- D. $\frac{1}{4\varphi(\varphi-s)}$
- E. $-\frac{1}{4\varphi(\varphi-s)}$
- F. $-\frac{\varphi}{4\varphi(\varphi-s)}$
- G. $\frac{\varphi}{4\varphi(\varphi-s)}$
- H. $-\frac{7s(\varphi s)}{20}$

 $20. \ \mathrm{TRUE}$ or FALSE: The graph below represents a one-to-one function. (Hint: use the horizontal line test.)

A. True

B. False

Answers

- 1. D.
- 2. C.
- 3. D.
- 4. F.
- 5. C.
- 6. B.
- 7. C.
- 8. A.
- 9. B.
- 10. D.
- 11. G.
- 12. D.
- 13. G.
- 14. A.
- 15. E.
- 16. E.
- 17. D.
- 18. F.
- 19. H.
- 20. A.