1. Solve the rational equation. Be sure to check for extraneous solutions.

$$\frac{\kappa^2 - 49}{5\kappa + 2} = \frac{7 - \kappa}{8}$$

A. This equation has no solution.

B.
$$\kappa = 7$$
 or $\kappa = -\frac{316}{65}$

C.
$$\kappa = -\frac{271}{52}$$

D.
$$\kappa = 7$$
 or $\kappa = -\frac{329}{65}$

E.
$$\kappa = 7$$
 or $\kappa = -\frac{58}{13}$

F.
$$\kappa = -\frac{316}{65}$$

G.
$$\kappa = 7$$
 or $\kappa = -\frac{271}{52}$

H.
$$\kappa = -\frac{58}{13}$$

2. Solve the rational equation. Be sure to check for extraneous solutions.

$$\frac{5}{\mu + 9} - \frac{2}{\mu + 7} = \frac{3}{\mu}$$

A. This equation has no solution.

B.
$$\mu = -\frac{852}{155}$$

C.
$$\mu=0$$
 or $\mu=-\frac{914}{155}$

D.
$$\mu = 0$$
 or $\mu = -\frac{629}{93}$

E.
$$\mu = -\frac{158}{31}$$

F.
$$\mu = -\frac{189}{31}$$

G.
$$\mu = -\frac{663}{124}$$

H.
$$\mu = 0$$
 or $\mu = -\frac{598}{93}$

- A. 1
- B. -10
- C. -6
- D. 0
- E. -12
- F. 4
- G. -13
- H. -4

4. Evaluate the radical expression.

 $\sqrt{25} + \sqrt{0.25}$

- A. $\frac{17}{2}$
- B. $-\frac{1}{2}$
- C. $\frac{21}{2}$
- D. $\frac{7}{2}$
- E. $\frac{11}{2}$
- F. $\frac{23}{2}$
- G. $\frac{29}{2}$
- H. $\frac{19}{2}$

- 5. Consider the rational function $f(x) = \frac{7x+6}{5x+2}$. Evaluate $f(\frac{1}{3})$.
- A. $f(\frac{1}{3}) = \frac{155}{44}$
- B. $f(\frac{1}{3}) = \frac{111}{44}$
- C. $f(\frac{1}{3}) = \frac{86}{33}$
- D. $f(\frac{1}{3}) = \frac{39}{22}$
- E. $f(\frac{1}{3}) = Undefined$
- F. $f(\frac{1}{3}) = \frac{130}{33}$
- G. $f(\frac{1}{3}) = \frac{25}{11}$
- H. $f(\frac{1}{3}) = \frac{53}{33}$

6. Consider the rational function $f(x) = \frac{1}{3x^2 + x - 10}$. What are the vertical asymptotes of f(x)?

A. The vertical asymptotes are y=2 and $y=\frac{11}{3}$

B. The vertical asymptotes are $y = \frac{2}{3}$ and y = 2

C. The vertical asymptotes are x=-2 and $x=\frac{5}{3}$.

D. The vertical asymptotes are x=0 and $x=\frac{29}{12}$

E. The vertical asymptotes are $y = \frac{1}{6}$ and $y = \frac{23}{12}$

F. The vertical asymptotes are $x = \frac{17}{12}$ and $x = \frac{29}{12}$

G. The vertical asymptotes are $y = \frac{1}{6}$ and $y = \frac{2}{3}$

H. The vertical asymptotes are x=0 and $x=\frac{11}{3}$

$$\frac{12\theta^2}{-3}\cdot\frac{12}{-10\theta^7}$$

- A. $\frac{18\theta^6}{5}$
- B. $\frac{2}{\theta^2}$
- C. $\frac{6}{\theta^2}$
- D. $\frac{8}{\theta^7}$
- E. $-48\theta^4$
- F. $\frac{16\theta^7}{5}$
- G. $\frac{2}{3\theta}$
- H. $\frac{24}{5\theta^5}$

$$\frac{21t^2 - 44t - 121}{55t - 15t^2} \div (77t^2 + 100t - 33)$$

- A. $\frac{1}{5t(11t-3)}$
- B. 5t(11t 3)
- C. $-\frac{1}{5t(11t-3)}$
- D. (3t+11)(3t-11)
- E. (11t + 7)(11t 7)
- F. (7t+3)(7t-3)
- G. 1
- H. -1

$$\frac{4v + 4}{v^2 + 3v} - \frac{6v - 7}{-v}$$

- A. $\frac{6v^2+11v-17}{v(v+3)}$
- B. $\frac{6v^2+14v-17}{v(v+3)}$
- C. $\frac{6v^2+19v-17}{v(v+3)(v-1)}$
- D. $\frac{6v^2+13v-17}{v(v+3)(v-1)}$
- E. $\frac{6v^2+15v-17}{v(v+3)}$
- F. $\frac{6v^2+9v-17}{v(v+3)}$
- G. $\frac{6v^2 + 10v 17}{v(v+3)(v-1)}$
- H. $\frac{6v^2+17v-17}{v(v+3)(v-1)}$

$$\frac{7x+6}{x^2+4x-5}+\frac{2}{x+5}-\frac{1}{1-x}$$

- A. $\frac{12x-11}{(x+5)(x-1)}$
- B. $\frac{8x+7}{(x+5)(x-1)}$
- C. $\frac{13x-12}{(x+4)(x-1)}$
- D. $\frac{7x+6}{(x+5)(x-1)}$
- E. $\frac{10x+9}{(x+5)(x-1)}$
- F. $\frac{15x-14}{(x+4)(x-1)}$
- G. $\frac{5x+4}{(x+4)(x-1)}$
- H. $\frac{17x+16}{(x+4)(x-1)}$

11. Lens Formula The relationship between the focal length f of a lens, the distance d_o of an object from the lens, and the distance d_i of an image from the lens is $\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$. So

$$f = \frac{1}{\frac{1}{d_o} + \frac{1}{d_i}}.$$

Determine f when $d_o = 14$ ft and $d_i = 0.1$ ft. Round your answer to the nearest thousandth.

- A. f = 0.198 ft
- B. f = 0.664 ft
- C. f = 0.585 ft
- D. f = 0.49 ft
- E. f = 0.769 ft
- F. f = 0.39 ft
- G. f = 0.099 ft
- H. $f=0.295~\mathrm{ft}$

$$\frac{\frac{1}{cn^2} + \frac{1}{c^2n}}{\frac{1}{n} + \frac{1}{c}}$$

- A. 1
- B. $\frac{c+n}{cn}$
- C. $\frac{1}{cn}$
- D. $-\frac{c(c+n)}{(c-n)^2}$
- E. $\frac{n}{c}$
- F. $\frac{c+n}{c^2n^2}$
- G. $\frac{1}{c-n}$
- H. $-\frac{c+n}{c}$

13. Evaluate the radical expression.

 $\sqrt[3]{54\zeta^4}$

- A. $9\zeta^4\sqrt[3]{2}$
- B. $6\zeta\sqrt[3]{2\zeta}$
- C. $-4\zeta\sqrt[3]{2\zeta}$
- D. $3\zeta\sqrt[3]{2\zeta}$
- E. $3\zeta^4\sqrt[3]{2}$
- F. $-4\zeta^4\sqrt[3]{2}$
- G. $9\zeta\sqrt[3]{2\zeta}$
- H. $6\zeta^4\sqrt[3]{2}$

14. The volume of a spherical tank is given by

$$V = \frac{4}{3}\pi r^3.$$

If a spherical tank has a volume of V = 905 in³, approximate its radius to the nearest tenth of an inch.

- A. The radius of the container is 6.1 in.
- B. The radius of the container is 5.5 in.
- C. The radius of the container is 5.8 in.
- D. The radius of the container is 6.3 in.
- E. The radius of the container is 6.5 in.
- F. The radius of the container is 6 in.
- G. The radius of the container is 5.7 in.
- H. The radius of the container is 5.6 in.

15. Simplify the division. Rationalize the denominator only if this step is necessary.

 $\frac{11}{\sqrt{22}}$

- A. $\frac{11\sqrt{11}}{2}$
- B. $\frac{\sqrt{22}}{2}$
- C. $\frac{\sqrt{22}}{\sqrt{2}}$
- D. $\frac{11}{2}$
- E. $\frac{121}{4}$
- F. $\frac{\sqrt{2}}{11}$
- G. $\frac{\sqrt{11}}{2}$
- H. $\frac{\sqrt{11}}{\sqrt{2}}$

16. Multiply the radical expression by its conjugate and simplify the result. Assume that the radicands represent nonnegative real numbers, so that absolute value notation is unnecessary.

 $5+\sqrt{13}$

- A. 8
- B. 12
- C. 17
- D. -12
- E. -17
- F. 4
- $\mathrm{G.}\ -8$
- H. -4

$$\sqrt{5\zeta + 2} = 3\zeta$$

A. This equation has no real solution.

B.
$$\zeta = \frac{5 + \sqrt{100}}{18}$$

C.
$$\zeta = \frac{5+\sqrt{90}}{18}$$
 or $\zeta = \frac{5-\sqrt{90}}{18}$

D.
$$\zeta = \frac{5 + \sqrt{97}}{18}$$

E.
$$\zeta = \frac{5+\sqrt{97}}{18}$$
 or $\zeta = \frac{5-\sqrt{97}}{18}$

F.
$$\zeta = \frac{5 + \sqrt{95}}{18}$$

G.
$$\zeta = \frac{5+\sqrt{100}}{18}$$
 or $\zeta = \frac{5-\sqrt{100}}{18}$

H.
$$\zeta = \frac{5+\sqrt{90}}{18}$$

18. Solve the radical equation.

$$\sqrt{7h+9} + 8 = 4$$

- A. h = 1
- B. $h = \frac{8}{5}$
- C. $h = \frac{4}{5}$
- D. $h = \frac{1}{3}$
- E. $h = \frac{3}{4}$
- F. $h = \frac{7}{4}$
- G. $h = \frac{9}{5}$
- H. This equation has no real solution.

19. Represent the expression by using exponential notation, and evaluate each expression.

 $\sqrt[7]{128}$

- A. $128^{\frac{1}{8}} = -6$
- B. $128^{-\frac{1}{7}} = 5$
- C. $128^{\frac{1}{7}} = 2$
- D. $128^{-\frac{1}{8}} = -6$
- E. $128^{\frac{1}{8}} = 10$
- $F. 128^{-\frac{1}{8}} = 10$
- G. $128^{\frac{1}{7}} = 5$
- H. $128^{-\frac{1}{7}} = 2$

20. Represent each expression by using radical notation, and evaluate the expression.

- A. $\sqrt[3]{4^2} = \frac{64}{125}$
- B. $\sqrt{4^3} = 8$
- C. $\sqrt[3]{4^2} = \frac{27}{1000}$
- D. $\sqrt{4^3} = 125$
- E. $\sqrt{4^3} = \frac{27}{1000}$
- F. $\sqrt{4^3} = \frac{64}{125}$
- G. $\sqrt[3]{4^2} = 8$
- H. $\sqrt[3]{4^2} = 125$

Answers

- 1. E.
- 2. F.
- 3. H.
- 4. E.
- 5. G.
- 6. C.
- 7. H.
- 8. C.
- 9. E.
- 10. E.
- 11. G.
- 12. C.
- 13. D.
- 14. F.
- 15. B.
- 16. B.
- 17. D.
- 18. H.
- 19. C.
- 20. B.