1. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{\kappa+1}{\kappa}+\frac{8}{\kappa-4}=\frac{8 \kappa-4}{\kappa^{2}-4 \kappa}
$$

A. This equation has no solution.
B. $\kappa=4$
C. $\kappa=0$
D. $\kappa=0$ or $\kappa=4$
E. $\kappa=-1$
F. $\kappa=0$ or $\kappa=0$
G. $\kappa=3$
H. $\kappa=0$ or $\kappa=3$
2. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{\theta+7}{36 \theta^{2}-42 \theta-18}=\frac{\theta}{6 \theta-9}-\frac{\theta}{6 \theta+2}
$$

A. $\theta=\frac{7}{10}$
B. $\theta=\frac{27}{10}$
C. This equation has no solution.
D. $\theta=\frac{9}{20}$
E. $\theta=0$ or $\theta=-\frac{13}{10}$
F. $\theta=\frac{6}{5}$
G. $\theta=0$ or $\theta=\frac{11}{30}$
H. $\theta=0$ or $\theta=\frac{1}{30}$
3. Electrical Resistance The total resistance R in a parallel circuit with two individual resistors r_{1} and r_{2} can be calculated by using the formula

$$
\frac{1}{R}=\frac{1}{r_{1}}+\frac{1}{r_{2}} .
$$

The resistance planned by an electrical technician for a parallel electric circuit with two resistors is 16.88Ω. The resistance of r_{2} must be 6 times the resistance of r_{1}. Determine the resistance of each resistor. Round your answer to the nearest hundredth of an ohm.

A. $r_{1}=19.93 \Omega$ and $r_{2}=119.56 \Omega$.
B. $r_{1}=19.11 \Omega$ and $r_{2}=114.66 \Omega$.
C. $r_{1}=19.69 \Omega$ and $r_{2}=118.16 \Omega$.
D. $r_{1}=19.34 \Omega$ and $r_{2}=116.06 \Omega$.
E. $r_{1}=19.58 \Omega$ and $r_{2}=117.46 \Omega$.
F. $r_{1}=20.16 \Omega$ and $r_{2}=120.96 \Omega$.
G. $r_{1}=20.51 \Omega$ and $r_{2}=123.06 \Omega$.
H. $r_{1}=20.04 \Omega$ and $r_{2}=120.26 \Omega$.
4. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{\rho+1}{\rho}+\frac{8}{\rho-4}=\frac{9 \rho-4}{\rho^{2}-4 \rho}
$$

A. $\rho=4$
B. $\rho=0$ or $\rho=0$
C. $\rho=6$
D. $\rho=0$ or $\rho=10$
E. $\rho=10$
F. $\rho=0$ or $\rho=4$
G. $\rho=0$
H. This equation has no solution.
5. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{2}{\varphi+4}-3=\frac{1}{\varphi+4}
$$

A. $\varphi=-\frac{43}{15}$
B. $\varphi=-\frac{17}{3}$
C. $\varphi=-4$
D. $\varphi=-\frac{13}{3}$
E. $\varphi=-\frac{5}{3}$
F. This equation has no solution.
G. $\varphi=-\frac{11}{3}$
H. $\varphi=-\frac{53}{12}$
6. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{4}{j+4}-5=\frac{4}{j+4}
$$

A. $j=-\frac{10}{3}$
B. $j=-\frac{14}{3}$
C. $j=-4$
D. $j=-\frac{24}{5}$
E. $j=-\frac{22}{5}$
F. $j=-2$
G. This equation has no solution.
H. $j=-\frac{17}{5}$
7. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{v^{2}-7 v+8}{9 v^{2}+23 v-12}+\frac{2}{v+3}=\frac{v}{9 v-4}
$$

A. $v=-\frac{4}{5}$
B. $v=-\frac{1}{5}$
C. $v=0$ or $v=-\frac{3}{4}$
D. $v=0$ or $v=-\frac{2}{3}$
E. $v=-\frac{2}{5}$
F. This equation has no solution.
G. $v=0$ or $v=-1$
H. $v=0$
8. Solve the rational equation. Be sure to check for extraneous solutions.

$$
\frac{1}{\kappa^{2}-13 \kappa+36}-\frac{1}{\kappa^{2}+4 \kappa-32}+\frac{7}{\kappa^{2}-\kappa-72}=0
$$

A. $\kappa=0$ or $\kappa=\frac{47}{21}$
B. This equation has no solution.
C. $\kappa=0$ or $\kappa=\frac{11}{7}$
D. $\kappa=\frac{62}{35}$
E. $\kappa=-\frac{3}{7}$
F. $\kappa=\frac{11}{7}$
G. $\kappa=4$
H. $\kappa=0$ or $\kappa=\frac{62}{35}$

