1. Find the interval on which the function $f(x)$ graphed below is decreasing.

A. The function $f(x)$ is decreasing on $(0.5, \infty)$.
B. The function $f(x)$ is decreasing on $(-\infty,-3) \cup(1, \infty)$
C. The function $f(x)$ is decreasing on $(-\infty, 1) \cup(-3, \infty)$
D. The function $f(x)$ is decreasing on $(-\infty,-0.5)$.
E. The function $f(x)$ is decreasing on $(1,-3)$
F. The function $f(x)$ is decreasing on $(-\infty, 0.5)$.
G. The function $f(x)$ is decreasing on $(-3,1)$
H. The function $f(x)$ is decreasing on $(-0.5, \infty)$.
2. Use the graph of the linear function to find interval(s) where the function negative.

A. The function $f(x)$ is negative on $(-3, \infty)$
B. The function $f(x)$ is negative on \mathbb{R}
C. The function $f(x)$ is negative on $(-\infty,-3)$
D. The function $f(x)$ is negative on \emptyset
E. The function $f(x)$ is negative on $(-\infty, 1.5)$
F. The function $f(x)$ is negative on $(1.5, \infty)$
G. The function $f(x)$ is negative on $(-\infty, 1.5) \cup(-3, \infty)$
H. The function $f(x)$ is negative on $(-\infty,-3) \cup(1.5, \infty)$
3. Find the interval on which the function $f(x)=-x^{2}-2 x+3$ is positive.
A. The function $f(x)$ is positive on $(-3,3)$.
B. The function $f(x)$ is positive on $(-\infty,-3) \cup(-1, \infty)$.
C. The function $f(x)$ is positive on $(-\infty, 3) \cup(-1, \infty)$.
D. The function $f(x)$ is positive on $(3,-3)$.
E. The function $f(x)$ is positive on $(-3,1)$.
F. The function $f(x)$ is positive on $(-1,1)$.
G. The function $f(x)$ is positive on $(-\infty,-3) \cup(1, \infty)$.
H. The function $f(x)$ is positive on $(-\infty, 3) \cup(1, \infty)$.
4. Use the graph of the linear function to find interval(s) where the function $f(x)=2 x-1$ is negative.
A. The function $f(x)$ is negative on $(-\infty, 0.5)$
B. The function $f(x)$ is negative on \mathbb{R}
C. The function $f(x)$ is negative on $(0.5, \infty)$
D. The function $f(x)$ is negative on $(-\infty,-1) \cup(0.5, \infty)$
E. The function $f(x)$ is negative on $(-\infty, 0.5) \cup(-1, \infty)$
F. The function $f(x)$ is negative on $(-1, \infty)$
G. The function $f(x)$ is negative on $(-\infty,-1)$
H. The function $f(x)$ is negative on \emptyset
5. Find interval(s) on which the function $f(x)=0.5 x^{2}+3 x+1$ is decreasing.
A. The function $f(x)$ is decreasing on $(3, \infty)$.
B. The function $f(x)$ is decreasing on $(-5,-1)$
C. The function $f(x)$ is decreasing on $(-1,-5)$
D. The function $f(x)$ is decreasing on $(-\infty, 3)$.
E. The function $f(x)$ is decreasing on $(-\infty,-1) \cup(-5, \infty)$
F. The function $f(x)$ is decreasing on $(-\infty,-5) \cup(-1, \infty)$
G. The function $f(x)$ is decreasing on $(-\infty,-3)$.
H. The function $f(x)$ is decreasing on $(-3, \infty)$.
6. Find the interval(s) where the absolute value function $f(x)=-2|x+1|+1$ is positive.
A. The function $f(x)$ is positive on $(-\infty,-0.5) \cup(-1.5, \infty)$
B. The function $f(x)$ is positive on $(-0.5,0) \cup(-1.5,0)$
C. The function $f(x)$ is positive on $(-0.5,-1.5)$
D. The function $f(x)$ is positive on $(0,-0.5) \cup(0,-1.5)$
E. The function $f(x)$ is positive on \mathbb{R}.
F. The function $f(x)$ is positive on $(-1.5,-0.5)$
G. The function $f(x)$ is positive on $(0,-1)$.
H. The function $f(x)$ is positive on $(-\infty,-1.5) \cup(-0.5, \infty)$
7. Find the interval(s) where the absolute value function $f(x)=2|x-2|-2$ is negative.
A. The function $f(x)$ is negative on $(3,1)$
B. The function $f(x)$ is negative on $(0,3) \cup(0,1)$
C. The function $f(x)$ is negative on $(0,2)$.
D. The function $f(x)$ is negative on $(3,0) \cup(1,0)$
E. The function $f(x)$ is negative on $(1,3)$
F. The function $f(x)$ is negative on \mathbb{R}.
G. The function $f(x)$ is negative on $(-\infty, 1) \cup(3, \infty)$
H. The function $f(x)$ is negative on $(-\infty, 3) \cup(1, \infty)$
8. Use the graph of the absolute value function to find intervals where the function positive.

A. The function $f(x)$ is positive on $(2.5,0) \cup(1.5,0)$
B. The function $f(x)$ is positive on $(1.5,2.5)$
C. The function $f(x)$ is positive on $(-\infty, 1.5) \cup(2.5, \infty)$
D. The function $f(x)$ is positive on $(0,2.5) \cup(0,1.5)$
E. The function $f(x)$ is positive on \mathbb{R}.
F. The function $f(x)$ is positive on $(2.5,1.5)$
G. The function $f(x)$ is positive on $(-\infty, 2.5) \cup(1.5, \infty)$
H. The function $f(x)$ is positive on $(0,3)$.
