
1. Find the interval on which the function f(x) graphed below is decreasing.

	4	Ту IIII	
	4		
	2		
	Δ		
			x
-4	-2	2	4
	_2		

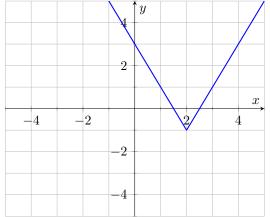
A. The function f(x) is decreasing on $(0.5, \infty)$.

- B. The function f(x) is decreasing on $(-\infty, -3) \cup (1, \infty)$
- C. The function f(x) is decreasing on $(-\infty,1)\cup(-3,\infty)$
- D. The function f(x) is decreasing on $(-\infty, -0.5)$.
- E. The function f(x) is decreasing on (1, -3)
- F. The function f(x) is decreasing on $(-\infty, 0.5)$.
- G. The function f(x) is decreasing on (-3, 1)
- H. The function f(x) is decreasing on $(-0.5, \infty)$.

2. Use the graph of the linear function to find interval(s) where the function negative.

- A. The function f(x) is negative on $(-3, \infty)$
- B. The function f(x) is negative on \mathbb{R}
- C. The function f(x) is negative on $(-\infty, -3)$
- D. The function f(x) is negative on \emptyset
- E. The function f(x) is negative on $(-\infty, 1.5)$
- F. The function f(x) is negative on $(1.5, \infty)$
- G. The function f(x) is negative on $(-\infty, 1.5) \cup (-3, \infty)$
- H. The function f(x) is negative on $(-\infty, -3) \cup (1.5, \infty)$

- 3. Find the interval on which the function $f(x) = -x^2 2x + 3$ is positive.
- A. The function f(x) is positive on (-3, 3).
- B. The function f(x) is positive on $(-\infty, -3) \cup (-1, \infty)$.
- C. The function f(x) is positive on $(-\infty, 3) \cup (-1, \infty)$.
- D. The function f(x) is positive on (3, -3).
- E. The function f(x) is positive on (-3, 1).
- F. The function f(x) is positive on (-1, 1).
- G. The function f(x) is positive on $(-\infty, -3) \cup (1, \infty)$.
- H. The function f(x) is positive on $(-\infty, 3) \cup (1, \infty)$.


- 4. Use the graph of the linear function to find interval(s) where the function f(x) = 2x 1 is negative.
- A. The function f(x) is negative on $(-\infty, 0.5)$
- B. The function f(x) is negative on \mathbb{R}
- C. The function f(x) is negative on $(0.5, \infty)$
- D. The function f(x) is negative on $(-\infty, -1) \cup (0.5, \infty)$
- E. The function f(x) is negative on $(-\infty, 0.5) \cup (-1, \infty)$
- F. The function f(x) is negative on $(-1, \infty)$
- G. The function f(x) is negative on $(-\infty, -1)$
- H. The function f(x) is negative on \emptyset

- 5. Find interval(s) on which the function $f(x) = 0.5x^2 + 3x + 1$ is decreasing.
- A. The function f(x) is decreasing on $(3, \infty)$.
- B. The function f(x) is decreasing on (-5, -1)
- C. The function f(x) is decreasing on (-1, -5)
- D. The function f(x) is decreasing on $(-\infty, 3)$.
- E. The function f(x) is decreasing on $(-\infty, -1) \cup (-5, \infty)$
- F. The function f(x) is decreasing on $(-\infty, -5) \cup (-1, \infty)$
- G. The function f(x) is decreasing on $(-\infty, -3)$.
- H. The function f(x) is decreasing on $(-3, \infty)$.

- 6. Find the interval(s) where the absolute value function f(x) = -2|x+1| + 1 is positive.
- A. The function f(x) is positive on $(-\infty, -0.5) \cup (-1.5, \infty)$
- B. The function f(x) is positive on $(-0.5, 0) \cup (-1.5, 0)$
- C. The function f(x) is positive on (-0.5, -1.5)
- D. The function f(x) is positive on $(0, -0.5) \cup (0, -1.5)$
- E. The function f(x) is positive on \mathbb{R} .
- F. The function f(x) is positive on (-1.5, -0.5)
- G. The function f(x) is positive on (0, -1).
- H. The function f(x) is positive on $(-\infty, -1.5) \cup (-0.5, \infty)$

- 7. Find the interval(s) where the absolute value function f(x) = 2|x-2| 2 is negative.
- A. The function f(x) is negative on (3,1)
- B. The function f(x) is negative on $(0,3) \cup (0,1)$
- C. The function f(x) is negative on (0, 2).
- D. The function f(x) is negative on $(3,0) \cup (1,0)$
- E. The function f(x) is negative on (1,3)
- F. The function f(x) is negative on \mathbb{R} .
- G. The function f(x) is negative on $(-\infty, 1) \cup (3, \infty)$
- H. The function f(x) is negative on $(-\infty, 3) \cup (1, \infty)$

8. Use the graph of the absolute value function to find intervals where the function positive.

- A. The function f(x) is positive on $(2.5, 0) \cup (1.5, 0)$
- B. The function f(x) is positive on (1.5, 2.5)
- C. The function f(x) is positive on $(-\infty, 1.5) \cup (2.5, \infty)$
- D. The function f(x) is positive on $(0, 2.5) \cup (0, 1.5)$
- E. The function f(x) is positive on \mathbb{R} .
- F. The function f(x) is positive on (2.5, 1.5)
- G. The function f(x) is positive on $(-\infty, 2.5) \cup (1.5, \infty)$
- H. The function f(x) is positive on (0,3).