1. Determine whether the relation below is a function. If it is a function, identify the domain and range.

x	y
2	-8
-1	1
0	0
1	1
2	8

A. The relation is a function with domain $D=\{-8,1,0,1,8\}$ and range $R=\{2,-1,0,1,2\}$.
B. The relation is a function with domain $D=\{-8,1,1,8\}$ and range $R=\{2,-1,1,2\}$.
C. The relation is a function with domain $D=\{2,-1,1,2\}$ and range $R=\{-8,1,1,8\}$.
D. The relation is not a function.
E. The relation is a function with domain $D=\{2,-1,0,1,2\}$ and range $R=\{-8,1,0,1,8\}$.
2. Determine whether the relation below is a function. If it is a function, identify the domain and range.

$$
\{(3,2),(-3,2),(0,13),(13,0)\}
$$

A. The relation is a function with domain $D=\{3,-3,13,0\}$ and range $R=\{2,13\}$.
B. The relation is a function with domain $D=\{3,-3,13,0\}$ and range $R=\{2,0,13\}$.
C. The relation is a function with domain $D=\{2,2,0,13\}$ and range $R=\{3,-3,13,0\}$.
D. The relation is a function with domain $D=\{2,0,13\}$ and range $R=\{3,-3,13,0\}$.
E. The relation is not a function.
3. Use the vertical line test to determine whether each graph represents a function. If it is a function, identify the domain and range.

A. The relation is a function with domain $D=\{-2,-1,1,2\}$ and range $R=\{1,3\}$.
B. The relation is a function with domain $D=\{-2,-1,0,1,2\}$ and range $R=\{1,3,4\}$.
C. The relation is not a function.
D. The relation is a function with domain $D=\{1,3\}$ and range $R=\{-2,-1,1,2\}$.
E. The relation is a function with domain $D=\{1,3,4\}$ and range $R=\{-2,-1,0,1,2\}$.
4. Determine whether the relation below is a function. If it is a function, identify the domain and range.

$$
\begin{array}{rlr}
D & & R \\
\hline 3 & \rightarrow & -5 \\
3 & \rightarrow & 0 \\
3 & \rightarrow & 4
\end{array}
$$

A. The relation is a function with domain $D=\{-5,0,4\}$ and range $R=\{3\}$.
B. The relation is not a function.
C. The relation is a function with domain $D=\{3\}$ and range $R=\{-5,0,4\}$.
D. The relation is a function with domain $D=\{-5,0,4\}$ and range $R=\{3,3,3\}$.
E. The relation is a function with domain $D=\{3,3,3\}$ and range $R=\{-5,0,4\}$.
5. Use the table to answer the question: Is 3 an input value or an output value?

x	y
-1	1
2	3
5	5
8	7

A. 3 is an output value.
B. 3 is an input value.
6. Use the vertical line test to determine whether each graph represents a function. If it is a function, identify the domain and range.

A. The relation is a function with domain $D=(-\infty,-1)$ and range $R=(2, \infty) \cup(2, \infty)$
B. The relation is a function with domain $D=(-\infty,-1]$ and range $R=[2, \infty) \cup[2, \infty)$.
C. The relation is a function with domain $D=\{-5,-4,-3,-2,-1,2,3,4,5\}$ and range $R=\{2,3,4,5\}$.
D. The relation is a function with domain $D=\mathbb{R}$ and range $R=\mathbb{R}$.
E. The relation is a function with domain $D=(-\infty,-1] \cup[2, \infty)$ and range $R=[2, \infty)$.
F. The relation is a function with domain $D=\{2,3,4,5\}$ and range $R=\{-5,-4,-3,-2,-1,2,3,4,5\}$.
G. The relation is not a function.
H. The relation is a function with domain $D=(-\infty,-1) \cup(2, \infty)$ and range $R=(2, \infty)$.
7. Determine whether the relation below is a function. If it is a function, identify the domain and range.

x	y
-3	-1
-2	0
-1	1
0	2
1	3

A. The relation is a function with domain $D=\{-1,1,2,3\}$ and range $R=\{-3,-2,1,1\}$.
B. The relation is a function with domain $D=\{-3,-2,-1,0,1\}$ and range $R=\{-1,0,1,2,3\}$.
C. The relation is a function with domain $D=\{-3,-2,1,1\}$ and range $R=\{-1,1,2,3\}$.
D. The relation is not a function.
E. The relation is a function with domain $D=\{-1,0,1,2,3\}$ and range $R=\{-3,-2,-1,0,1\}$.
8. Use the given graph to determine the domain and range of the function.

A. The domain is $D=[-1,1)$ and the range is $R=\mathbb{R}$.
B. The domain is $D=\mathbb{R}$ and the range is $R=[-1,1]$.
C. The domain is $D=\mathbb{R}$ and the range is $R=(-\infty,-1] \cup(1, \infty)$.
D. The domain is $D=(-\infty,-1] \cup[1, \infty)$ and the range is $R=\mathbb{R}$.
E. The domain is $D=\mathbb{R}$ and the range is $R=(-\infty,-1] \cup[1, \infty)$.
F. The domain is $D=\mathbb{R}$ and the range is $R=[-1,1)$.
G. The domain is $D=[-1,1]$ and the range is $R=\mathbb{R}$.

