1. Use an augmented matrix and elementary row operations to solve the system of linear equations.

$$
\begin{aligned}
& -3 x-3 y=3 \\
& -3 x-2 y=12
\end{aligned}
$$

A. $x=-8$
$y=11$
B. $x=-6$
$y=13$
C. $\begin{aligned} & x=-7 \\ & y=12\end{aligned}$
D. $x=-14$
$y=5$
E. $x=-13$
$y=6$
F. There is no solution.
G. There are infinitely many solutions.
H. $\begin{aligned} & x=-10 \\ & y=9\end{aligned}$
$y=9$
2. A small boat can go 21 km downstream in 2 hr but only 18 km upstream in 2 hr . Determine the rate of the boat and the rate of the current.
A. The speed of the boat is $9.4 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $1.6 \mathrm{~km} / \mathrm{hr}$.
B. The speed of the boat is $9.8 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $0.8 \mathrm{~km} / \mathrm{hr}$.
C. The speed of the boat is $10.3 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $0.7 \mathrm{~km} / \mathrm{hr}$.
D. The speed of the boat is $10.5 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $0.4 \mathrm{~km} / \mathrm{hr}$.
E. The speed of the boat is $10.6 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $0.3 \mathrm{~km} / \mathrm{hr}$.
F. The speed of the boat is $9.7 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $1.5 \mathrm{~km} / \mathrm{hr}$.
G. The speed of the boat is $9.1 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $1.3 \mathrm{~km} / \mathrm{hr}$.
H. The speed of the boat is $9.5 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $0.1 \mathrm{~km} / \mathrm{hr}$.
3. Write a system of linear equations in x and y that is represented by the augmented matrix. $\left[\begin{array}{ll|l}4 & -6 & 0 \\ 1 & -2 & 9\end{array}\right]$
A. $\quad x-2 y=0$
B. $6 x-y=0$
$4 x-y=9$
C. $6 x-2 y=0$
D. $\quad 4 x-6 y=0$
$x-2 y=9$
$6 x-2 y=9$
E. $\begin{gathered}6 x-2 y=9 \\ x-4 y=0\end{gathered}$
F. $\quad x-4 y=9$
G. $\quad 2 x-4 y=0$
$6 x-y=9$
H. $\begin{gathered}2 x-6 y=9 \\ 4 x-y=0\end{gathered}$
4. Write a system of linear equations in x and y that is represented by the augmented matrix. $\left[\begin{array}{ll|l}1 & 0 & 8 \\ 0 & 1 & 7\end{array}\right]$
A. $\begin{gathered}0 y=8 \\ x+y=7\end{gathered}$
B. $0 y=7$
B. $x+y=8$
C. $\begin{aligned} & x=8 \\ & y=7\end{aligned}$
D. $\begin{aligned} & y=8 \\ & x=7\end{aligned}$
E. $\quad x+y=8$
F. $x+y=7$
F. $x+y=8$
G. $\begin{array}{r}y=7 \\ \hline\end{array}$
$y=8$
H. $\begin{aligned} & x=7 \\ & y=8\end{aligned}$
5. Write an augmented matrix for the system of equations.

$$
\begin{aligned}
& x=8 \\
& y=5
\end{aligned}
$$

A. $\left[\begin{array}{ll|l}0 & 0 & 8 \\ 1 & 1 & 5\end{array}\right]$
B. $\left[\begin{array}{ll|l}1 & 0 & 5 \\ 0 & 1 & 8\end{array}\right]$
C. $\left[\begin{array}{ll|l}0 & 1 & 5 \\ 0 & 1 & 8\end{array}\right]$
D. $\left[\begin{array}{ll|l}0 & 1 & 8 \\ 1 & 0 & 5\end{array}\right]$
E. $\left[\begin{array}{ll|l}1 & 0 & 8 \\ 0 & 1 & 5\end{array}\right]$
F. $\left[\begin{array}{ll|l}1 & 1 & 5 \\ 1 & 1 & 8\end{array}\right]$
G. $\left[\begin{array}{ll|l}0 & 0 & 5 \\ 1 & 1 & 8\end{array}\right]$
H. $\left[\begin{array}{ll|l}1 & 1 & 8 \\ 0 & 0 & 5\end{array}\right]$
6. Use an augmented matrix and elementary row operations to solve the system of linear equations.

$$
\begin{aligned}
& 2 x+3 y=2 \\
& -2 x-2 y=6
\end{aligned}
$$

A. There is no solution.
B. $x=-14$
B. $y=5$
C. $x=-11$
. $y=8$
D. $\quad x=-8$
E. $\begin{aligned} & x=-9 \\ & y=10\end{aligned}$
F. There are infinitely many solutions.
G. $x=-15$
G. $y=4$
H. $\begin{aligned} & x=-12 \\ & y=7\end{aligned}$
7. Write a system of linear equations in x and y that is represented by the augmented matrix. $\left[\begin{array}{cc|c}4 & 7 & 2 \\ 1 & -6 & 5\end{array}\right]$
A. $6 x+4 y=2$
A. $7 x-y=5$
B. $x+4 y=5$
B. $6 x-7 y=2$
C. $\quad 4 x+7 y=2$
($x-6 y=5$
D. $\quad 4 x+y=5$
E. $\quad x+6 y=2$
E. $4 x-7 y=5$
F. $\begin{gathered}7 x+6 y=5 \\ x-4 y=2\end{gathered}$
G. $\quad \begin{array}{r}7 x+y=2 \\ 6 x-4 y=5\end{array}$
. $6 x-4 y=5$
H. $\begin{gathered}6 x+7 y=5 \\ 4 x-y=2\end{gathered}$
8. Use an augmented matrix and elementary row operations to solve the system of linear equations.

$$
\begin{aligned}
& x+3 y=3 \\
& -x-3 y=-3
\end{aligned}
$$

A. There are infinitely many solutions.
B. $\begin{aligned} & x=-2 \\ & y=3\end{aligned}$
C. $\quad x=1$
D. $x=-3$
D. $y=2$
E. $\begin{aligned} & x=-4 \\ & y=1\end{aligned}$
F. $\begin{aligned} & x=-5 \\ & y=0\end{aligned}$
G. There is no solution.
H. $\begin{aligned} & x=3 \\ & y=8\end{aligned}$

