1. Solve the logarithmic equation and round your answer to the nearest hundredth.

$$
\ln (c-9)+\ln (c-7)=\ln (c-4)
$$

A. $c \approx 11.03$
B. $c \approx 10.21$
C. $c \approx 11.1$
D. $c \approx 9.96$
E. $c \approx 10.01$
F. $c \approx 10.02$
G. $c \approx 10.79$
H. This equation has no solutions.
2. Find the exact solution to the equation. Express your answer in terms of base-10 logarithms.

$$
2^{3 \alpha-9}=4
$$

A. $\alpha=\frac{1}{9}\left(\frac{\log (2)}{\log (4)}-3\right)$
B. $\alpha=\frac{1}{3}\left(\frac{\log (4)}{\log (2)}+9\right)$
C. $\alpha=\frac{1}{3}\left(\frac{\log (4)}{\log (2)}-9\right)$
D. $\alpha=\frac{\log (2)}{9 \log (4)}+3$
E. $\alpha=\frac{\log (4)}{3 \log (2)}+9$
F. $\alpha=\frac{\log (4)}{3 \log (2)}-9$
G. $\alpha=\frac{1}{9}\left(\frac{\log (2)}{\log (4)}+3\right)$
H. $\alpha=\frac{\log (2)}{9 \log (4)}-3$
3. Solve the exponential equation and round your answer to the nearest hundredth.

$$
9.35 e^{0.05 y}=9.36
$$

A. $y \approx 0.86$
B. $y \approx-0.42$
C. $y \approx 0.02$
D. $y \approx 0.54$
E. $y \approx 0.16$
F. $y \approx-0.41$
G. $y \approx-0.51$
H. $y \approx-0.33$
4. Find the exact solution to the equation. Express your answer in terms of base-10 logarithms.

$$
2^{7 \omega-8}=5^{6 \omega+9}
$$

A. $\omega=\frac{7 \log 2-6 \log 5}{8 \log 2+9 \log 5}$
B. $\omega=\frac{8 \log 2+9 \log 5}{7 \log 2-6 \log 5}$
C. $\omega=\frac{7 \log 5-6 \log 2}{8 \log 5-9 \log 2}$
D. $\omega=\frac{7 \log 2-6 \log 5}{8 \log 2-9 \log 5}$
E. $\omega=\frac{8 \log 5+9 \log 2}{7 \log 5-6 \log 2}$
F. $\omega=\frac{8 \log 2-9 \log 5}{7 \log 2-6 \log 5}$
G. $\omega=\frac{8 \log 5-9 \log 2}{7 \log 5-6 \log 2}$
H. $\omega=\frac{7 \log 5-6 \log 2}{8 \log 5+9 \log 2}$
5. Solve the exponential equation and round your answer to the nearest hundredth.

$$
7^{2 s-4}=9^{3 s-8}
$$

A. $s \approx 3.97$
B. $s \approx 2.86$
C. $s \approx 3.01$
D. $s \approx 3.19$
E. $s \approx 4.38$
F. $s \approx 2.77$
G. $s \approx 3.63$
H. $s \approx 3.82$
6. The value V of a particular model of automobile after t years of depreciation is given by the formula

$$
V=34000 e^{-0.2 t}+1000
$$

Approximately how many years will it take for the value to depreciate to $\$ 12000$? Round your answer to the nearest hundredth.
A. It will take approximately $t=4.87$ years.
B. It will take approximately $t=5.91$ years.
C. It will take approximately $t=5.76$ years.
D. It will take approximately $t=5.23$ years.
E. It will take approximately $t=4.68$ years.
F. It will take approximately $t=4.91$ years.
G. It will take approximately $t=5.39$ years.
H. It will take approximately $t=5.64$ years.
7. Solve the exponential equation and round your answer to the nearest hundredth.

$$
8.22 e^{-0.85 \omega}=0.33
$$

A. $\omega \approx 3.15$
B. $\omega \approx 3.78$
C. $\omega \approx 3.24$
D. $\omega \approx 4.52$
E. $\omega \approx 3.31$
F. $\omega \approx 4.43$
G. $\omega \approx 4.29$
H. $\omega \approx 2.85$
8. Find the exact solution to the equation. Express your answer in terms of natural logarithms.

$$
2^{6 n+3}=9^{4 n-8}
$$

A. $n=\frac{-3 \ln 9-8 \ln 2}{6 \ln 9-4 \ln 2}$
B. $n=\frac{6 \ln 2-4 \ln 9}{-3 \ln 2+8 \ln 9}$
C. $n=\frac{-3 \ln 2-8 \ln 9}{6 \ln 2-4 \ln 9}$
D. $n=\frac{-3 \ln 9+8 \ln 2}{6 \ln 9-4 \ln 2}$
E. $n=\frac{6 \ln 9-4 \ln 2}{-3 \ln 9-8 \ln 2}$
F. $n=\frac{6 \ln 2-4 \ln 9}{-3 \ln 2-8 \ln 9}$
G. $n=\frac{-3 \ln 2+8 \ln 9}{6 \ln 2-4 \ln 9}$
H. $n=\frac{6 \ln 9-4 \ln 2}{-3 \ln 9+8 \ln 2}$

