1. Complete the square by filling in the missing number. $x^{2}+\frac{3}{2} x+$ \qquad
A. $\frac{25}{64}$
B. $\frac{16}{25}$
C. $\frac{9}{16}$
D. $\frac{49}{100}$
E. $\frac{1}{64}$
F. $\frac{4}{25}$
G. $\frac{9}{100}$
H. $\frac{4}{9}$
2. Multiply the polynomials. $\left(4 r^{2}-8\right)\left(4 r^{2}+8\right)$
A. $64 r^{4}-16$
B. $16 r^{4}-64 r^{2}+64$
C. $16 r^{4}-64$
D. $16 r^{2}-64$
E. $16 r^{4}+64 r^{2}-64$
3. Below is a graph of the system of linear equations $\left\{\begin{array}{l}y=\frac{1}{2} x+2 \\ y=\frac{3}{2} x-2\end{array}\right\}$. Use this graph to solve the linear inequality $\frac{1}{2} x+2 \geq \frac{3}{2} x-2$.

A. $x \geq 5$
B. $x \leq 7$
C. $x \geq 7$
D. $x \leq 5$
E. $x \leq 4$
F. $x \geq 4$
4. Factor the following quadratic polynomial. $20 a^{2}-43 a-12$
A. $(4 a-1)(5 a+12)$
B. Not factorable. This trinomial is prime.
C. $(4 a-2)(5 a+6)$
D. $(4 a+2)(5 a-6)$
E. $(20 a-2)(a+6)$
F. $(4 a+1)(5 a-12)$
G. $(20 a+2)(a-6)$
H. $(4 a-2)(5 a-6)$
5. Multiply the polynomials. $\left(-7 r^{2}-6 r+6\right)(5 r+3)$
A. $-36 r^{3}-51 r^{2}+12 r+18$
B. $-35 r^{3}-51 r^{2}+12 r+23$
C. $-35 r^{3}-51 r^{2}+12 r+18$
D. $-35 r^{3}-57 r^{2}+12 r+18$
E. $-35 r^{3}-51 r^{2}+9 r+18$
6. Solve the following linear system by substitution. $\left\{\begin{array}{l}-9 x+7 y=0 \\ 3 x-2 y=0\end{array}\right\}$
A. $(-3,-3)$.
B. $(1,1)$.
C. There is no solution.
D. $(4,4)$.
E. $(2,2)$.
F. There are infinitely many solutions.
G. $(-2,-2)$.
H. $(0,0)$.
7. Use the slope-intercept form of each line to determine the number of solutions of the system $\left\{\begin{array}{l}y=-\frac{1}{2} x+2 \\ y=\frac{1}{2} x+3\end{array}\right\}$; then classify each system as a consistent system of independent equations, an inconsistent system, or a consistent system of dependent equations.
A. The system has two solutions. Therefore, it is a inconsistent system of dependent equations.
B. The system has infinitely many solutions. Therefore, it is a consistent system of dependent equations.
C. The system has no solutions. Therefore, it is an inconsistent system of equations.
D. The system has two solutions. Therefore, it is a consistent system of independent equations.
E. The system has one solution. Therefore, it is an inconsistent system of dependent equations.
F. The system has one solution. Therefore, it is a consistent system of independent equations.
G. The system has no solutions. Therefore, it is a consistent system of independent equations.
H. The system has infinitely many solutions. Therefore, it is an inconsistent system of dependent equations.
8. Solve the following linear inequality $3 x-4>0$ AND $x+4<-4$.
A. $-\frac{31}{4}<x<\frac{19}{12}$
B. $x>-\frac{2}{3}$ OR $x<-10$
C. $x<-\frac{2}{3}$ OR $x>-10$
D. $x>\frac{13}{3}$ OR $x<-5$
E. The inequality has no solutions. Therefore, it is a contradiction.
F. $\frac{19}{12}<x<-\frac{31}{4}$
G. $x<\frac{13}{3}$ OR $x>-5$
H. $-8<x<\frac{4}{3}$
9. Solve the quadratic equation using the quadratic formula. Leave the radical unsimplified. $9 \gamma^{2}=6 \gamma+3$
A. $\gamma=\frac{6 \pm \sqrt{3}}{18}$
B. $\gamma=\frac{6 \pm \sqrt{109}}{18}$
C. $\gamma=\frac{6 \pm \sqrt{144}}{18}$
D. $\gamma=\frac{-6 \pm \sqrt{97}}{18}$
E. $\gamma=\frac{-6 \pm \sqrt{124}}{-18}$
F. $\gamma=\frac{-6 \pm \sqrt{236}}{18}$
G. $\gamma=\frac{-6 \pm \sqrt{113}}{-18}$
H. This equation has no real number solutions.
10. Factor the expression by grouping. $8 \beta \gamma-6 \gamma v+20 \beta w-15 w v$
A. $(5 w+3 v)(4 \beta-2 \gamma)$
B. $(5 w)(4 \beta-3 v+2 \gamma)$
C. $(4 \beta+3 v)(2 \gamma+5 w)$
D. $(4 \beta-3 v)(2 \gamma-5 w)$
E. $(2 \gamma)(4 \beta-3 v+5 w)$
F. $(2 \gamma)(5 w+3 v+4 \beta)$
G. $(4 \beta)(5 w+3 v+2 \gamma)$
H. $(4 \beta-3 v)(2 \gamma+5 w)$
11. Completely factor using the forms for perfect square trinomials. $49 c^{2}-84 c+36$
A. $(6 c+7)(6 c-8)$
B. $(7 c-6)(3 c+6)$
C. Not factorable. This trinomial is prime.
D. $(49 c-6)(c-6)$
E. $(7 c+6)(7 c-6)$
F. $(7 c-6)(7 c-6)$
G. $(7 c-1)(7 c+36)$
H. $(7 c+6)(3 c+6)$
12. Solve the following linear inequality $-2(-4 x+4) \leq-(x-5)$.
A. $x \geq-\frac{13}{27}$
B. $x \leq-\frac{26}{9}$
C. $x \leq \frac{13}{27}$
D. $x \leq \frac{13}{9}$
E. $x \geq \frac{13}{18}$
F. $x \leq-\frac{13}{9}$
G. $x \geq-\frac{13}{3}$
H. $x \geq \frac{52}{9}$
13. Simplify the expression. $\left(\frac{4 x^{5}}{a^{3}}\right)^{4}$
A. $\frac{4 x^{20}}{a^{12}}$
B. $4 x^{20} a^{12}$
C. $4 x^{9} a^{7}$
D. $\frac{256 x^{20}}{a^{12}}$
E. $\frac{4 x^{9}}{a^{7}}$
F. $16 x^{9} a^{7}$
G. $\frac{256 x^{9}}{a^{7}}$
H. $256 x^{9} a^{7}$
14. Solve the following linear system by the addition method. $\left\{\begin{array}{l}-x+y=0 \\ -2 x+3 y=4\end{array}\right\}$
A. There is no solution.
B. $(3,3)$.
C. $(0,0)$.
D. $(5,5)$.
E. $(4,4)$.
F. $(8,8)$.
G. $(7,7)$.
H. There are infinitely many solutions.
15. Billy Bob made an investment of $\$ 11000$. One part of the investement went into a bond fund which paid a rate of 4 percent per year, and the rest of the investment went into stocks which earn interest at a rate of 9 percent per year. If the total interest on both investments was $\$ 822$ after one year, write a system of equations which, when solved, give the amounts which were invested at each rate.
A. The system is $\left\{\begin{array}{c}x+y=822 \\ 4 x+y=9 \cdot 11000\end{array}\right\}$.
B. The system is $\left\{\begin{array}{c}x+y=822 \\ 0.04 x+0.09 y=11000\end{array}\right\}$.
C. The system is $\left\{\begin{array}{c}x+y=11000 \\ 0.04 x+0.09 y=822\end{array}\right\}$.
D. The system is $\left\{\begin{array}{l}x+y=11000 \\ 4 x+9 y=822\end{array}\right\}$.
E. The system is $\left\{\begin{array}{c}x+0.04 y=11000 \\ 0.09 x+y=822\end{array}\right\}$.
F. The system is $\left\{\begin{array}{c}0.04 x+y=11000 \\ x+0.09 y=822\end{array}\right\}$.
G. The system is $\left\{\begin{aligned} x+y & =822 \\ 4 x+9 y & =11000\end{aligned}\right\}$.
H. The system is $\left\{\begin{aligned} x+y & =11000 \\ 0.04 x+y & =0.09 \cdot 822\end{aligned}\right\}$.
16. Solve the following equation $|x-5|=|-2 x+5|$.
A. $\frac{10}{3}$ or 0
B. $-\frac{5}{3}$ or -3
C. $-\frac{5}{6}$ or $-\frac{1}{4}$
D. $-\frac{40}{3}$ or 3
E. $\frac{10}{9}$ or -1
F. -10 or $-\frac{1}{3}$
G. 10 or -4
H. $\frac{40}{3}$ or $\frac{1}{4}$
17. Use the given table of values for a linear function to determine the equation of this line in slope-intercept

form | x | y |
| :---: | :---: |
| 0 | 0 |
| 2 | -7 |
| 4 | -14 |
| 6 | -21 |
| 8 | -28 |

A. The equation of the line is $f(x)=-\frac{9}{2} x+5$.
B. The equation of the line is $f(x)=-\frac{1}{2} x+4$.
C. The equation of the line is $f(x)=-\frac{7}{2} x$.
D. The equation of the line is $f(x)=-\frac{11}{2} x-2$.
E. The equation of the line is $f(x)=\frac{1}{2} x-4$.
F. The equation of the line is $f(x)=-\frac{5}{2} x+1$.
G. The equation of the line is $f(x)=-\frac{15}{2} x-1$.
H. The equation of the line is $f(x)=-\frac{3}{2} x-5$.
18. Factor the following quadratic polynomial. $\phi^{2}-18 \phi-36$
A. $(\phi-6)(\phi-6)$
B. Not factorable. This trinomial is prime.
C. $(\phi-7)(\phi+6)$
D. $(\phi-6)(\phi+6)$
E. $(\phi+7)(\phi-6)$
F. $(\phi+6)(\phi+6)$
G. $(\phi-7)(\phi-6)$
H. $(\phi+7)(\phi+6)$
19. Calculate the slope m of a line passing through the points $(4,2)$ and $(-8,-3)$
A. $-\frac{1}{4}$
B. $-\frac{1}{3}$
C. $\frac{3}{4}$
D. $\frac{5}{12}$
E. $\frac{13}{12}$
F. $\frac{2}{3}$
G. Undefined
H. $\frac{11}{12}$
20. Factor the polynomial by grouping. $b \alpha+b x+6 \alpha+6 x$
A. $(b-6)(\alpha+x)$
B. $(x+6)(\alpha+b)$
C. $(b+\alpha)(6+x)$
D. $(\alpha+6)(b+x)$
E. $(x-6)(\alpha+b)$
F. $(\alpha+6)(b-x)$
G. $(b+6)(\alpha+x)$
H. $(b+x)(\alpha+6)$

Answers

1. C.
2. C.
3. E.
4. F.
5. C.
6. H.
7. F.
8. E.
9. C.
10. H.
11. F.
12. D.
13. D .
14. E.
15. C.
16. A.
17. C.
18. B.
19. D.
20. G.
