

1. Using the graph below of $y = -2x^2 - x + 2$, determine how many real number solutions of $-2x^2 - x + 2 = 0$.

A. This equation has 3 real number solutions

B. This equation has infinitely many solutions

C. This equation has 1 real number solution.

D. This equation has 4 real number solutions

E. This equation has 5 real number solutions

F. This equation has 6 real number solutions

G. This equation has 2 real number solutions

H. This equation has no real number solutions.

2. Solve the quadratic equation and completely simplify your answer. $16s^2 - 8s - 179 = 0$

A. $s = \frac{1 \pm \sqrt{3}}{4}$ B. $s = \frac{1 \pm 6\sqrt{5}}{4}$ C. $s = \frac{1 \pm \sqrt{30}}{4}$ D. $s = \frac{1 \pm \sqrt{10}}{4}$ E. $s = \frac{1 \pm 2\sqrt{3}}{4}$ F. $s = \frac{1 \pm 2\sqrt{5}}{4}$ G. $s = \frac{1 \pm \sqrt{15}}{4}$ H. $s = \frac{1 \pm 6\sqrt{5}}{4}$ 3. Solve the quadratic equation. Leave the radical unsimplified. $-9\phi^2-8\phi=7$

- A. $\phi = \frac{-8 \pm \sqrt{104}}{-18}$ B. $\phi = \frac{-8 \pm \sqrt{33}}{18}$ C. $\phi = \frac{8 \pm \sqrt{31}}{-18}$ D. $\phi = \frac{8 \pm \sqrt{188}}{-18}$ E. $\phi = \frac{-8 \pm \sqrt{32}}{18}$ F. $\phi = \frac{-8 \pm \sqrt{97}}{-18}$ G. $\phi = \frac{8 \pm \sqrt{109}}{-18}$
- H. This equation has no real number solutions.

- 4. How many real number solutions does the equation $-4x^2 + 8x 4 = 0$ have?
- A. This equation has infinitely many solutions
- B. This equation has 5 real number solutions
- C. This equation has 3 real number solutions
- D. This equation has 1 real number solution
- E. This equation has 2 real number solutions.
- F. This equation has no real number solutions.
- G. This equation has 4 real number solutions
- H. This equation has 6 real number solutions

5. Solve the quadratic equation. Leave the radical unsimplified. $5\beta^2 + 2\beta = -7$

A.
$$\beta = \frac{-2\pm\sqrt{292}}{10}$$

B. $\beta = \frac{2\pm\sqrt{40}}{-10}$
C. $\beta = \frac{2\pm\sqrt{33}}{-10}$

D. This equation has no real number solutions.

E.
$$\beta = \frac{2\pm\sqrt{17}}{10}$$

F. $\beta = \frac{-2\pm\sqrt{232}}{10}$
G. $\beta = \frac{2\pm\sqrt{152}}{10}$
H. $\beta = \frac{-2\pm\sqrt{136}}{10}$

6. Solve the quadratic equation. Leave the radical unsimplified. $-2\xi^2 + 7\xi - 4 = 0$

- A. $\xi = \frac{7 \pm \sqrt{21}}{-4}$ B. $\xi = \frac{-7 \pm \sqrt{112}}{-4}$ C. $\xi = \frac{7 \pm \sqrt{153}}{4}$ D. $\xi = \frac{-7 \pm \sqrt{15}}{-4}$ E. $\xi = \frac{7 \pm \sqrt{141}}{4}$ F. $\xi = \frac{7 \pm \sqrt{349}}{-4}$
- G. This equation has no real number solutions.

H.
$$\xi = \frac{-7 \pm \sqrt{297}}{-4}$$

7. Solve the quadratic equation and completely simplify your answer. $9w^2 + 12w - 26 = 0$

A.
$$w = \frac{2\pm\sqrt{30}}{3}$$

B. $w = \frac{-2\pm 6}{3}$
C. $w = \frac{-2\pm 2\sqrt{15}}{3}$
D. $w = \frac{-2\pm\sqrt{30}}{3}$
E. $w = \frac{-2\pm\sqrt{30}}{3}$
F. $w = \frac{2\pm 6\sqrt{5}}{3}$
G. $w = \frac{2\pm 2\sqrt{15}}{3}$
H. $w = \frac{2\pm 1}{3}$

8. Solve the quadratic equation. Leave the radical unsimplified. $3v^2 = 5v + 1$

A. This equation has no real number solutions.

B.
$$v = \frac{5 \pm \sqrt{37}}{6}$$

C. $v = \frac{-5 \pm \sqrt{132}}{6}$
D. $v = \frac{-5 \pm \sqrt{176}}{-6}$
E. $v = \frac{-5 \pm \sqrt{176}}{-6}$
F. $v = \frac{-5 \pm \sqrt{132}}{6}$
G. $v = \frac{5 \pm \sqrt{20}}{6}$
H. $v = \frac{5 \pm \sqrt{64}}{6}$