- 1. Solve the following linear inequality $-5x 1 \le 5x < -5x + 3$.
- A. $-\frac{11}{10} \le x < -\frac{7}{10}$
- B. $\frac{19}{30} < x \le \frac{7}{30}$
- C. $-\frac{1}{10} \le x < \frac{3}{10}$
- D. $\frac{33}{10} < x \le \frac{29}{10}$
- E. $\frac{29}{10} \le x < \frac{33}{10}$
- F. $\frac{7}{30} \le x < \frac{19}{30}$
- G. $\frac{3}{10} < x \le -\frac{1}{10}$
- H. $-\frac{7}{10} < x \le -\frac{11}{10}$

- 2. Solve the following linear inequality 2x 1 < -5x < 2x + 3 and express your answer in interval notation.
- A. $x \in (-\frac{10}{7}, -\frac{6}{7})$
- B. $x \in (\frac{1}{7}, -\frac{3}{7})$
- C. $x \in (-\frac{6}{7}, -\frac{10}{7})$
- D. $x \in \left[-\frac{10}{7}, -\frac{6}{7} \right]$
- E. $x \in (-\frac{3}{7}, \frac{1}{7})$
- F. $x \in \left[-\frac{6}{7}, -\frac{10}{7} \right]$
- G. $x \in [\frac{1}{7}, -\frac{3}{7}]$
- H. $x \in [-\frac{3}{7}, \frac{1}{7}]$

- 3. Solve the following linear inequality $2x + 2 \ge 0$ AND 3x + 3 < 2.
- A. $-2 < x < -\frac{4}{3}$
- B. The inequality is true for all values of x. Therefore, it is a contradiction.
- C. $x \ge 2 \text{ OR } x < \frac{8}{3}$
- D. $-\frac{1}{3} < x \le -1$
- E. $-\frac{1}{3} \le x \le -1$
- F. $-1 < x < -\frac{1}{3}$
- G. $-\frac{4}{3} < x < -2$
- H. $-1 \le x < -\frac{1}{3}$

- 4. Solve the following linear inequality 5x-4>5 AND $2x+1\leq 3$ and express you answer in interval notation.
- A. $x \in [1, \frac{9}{5})$
- B. $x \in [\frac{9}{5}, 1)$
- C. $x \in (-\infty, -1] \cap [-\frac{1}{5}, \infty)$
- D. $x \in (-\infty, -\frac{1}{5}) \cup (-1, \infty)$
- E. The inequality has no solution x. Therefore, it is a contradiction.
- F. $x \in (1, \frac{9}{5}]$
- G. $x \in (-\infty, -\frac{1}{5}] \cup [-1, \infty)$
- H. $x \in (-\infty, -1) \cap (-\frac{1}{5}, \infty)$

5. Solve the following linear inequality $3x \ge 4$ OR $2x - 1 \le 0$ and express you answer in interval notation.

- A. $x \in (-\infty, \frac{1}{2}) \cap (\frac{4}{3}, \infty)$
- B. $x \in (-\infty, \frac{1}{2}] \cup [\frac{4}{3}, \infty)$
- C. $x \in (-\infty, \frac{3}{4}] \cap [\frac{19}{12}, \infty)$
- D. $x \in \mathbb{R} = (-\infty, \infty)$
- E. $x \in (-\infty, \frac{9}{2}) \cap (\frac{16}{3}, \infty)$
- F. $x \in (-\infty, -\frac{2}{3}] \cap [-\frac{3}{2}, \infty)$
- G. $x \in (-\infty, \frac{16}{3}] \cup \left[\frac{9}{2}, \infty\right)$
- H. $x \in (-\infty, -\frac{2}{3}) \cup (-\frac{3}{2}, \infty)$

6. Solve the following linear inequality -5x - 1 < 4x < -5x + 1.

- A. $-\frac{4}{9} < x < -\frac{2}{9}$
- B. $\frac{1}{9} < x < -\frac{1}{9}$
- C. $-\frac{1}{9} < x < \frac{1}{9}$
- D. $-\frac{7}{18} < x < -\frac{11}{18}$
- E. $-\frac{2}{9} < x < -\frac{4}{9}$
- F. $\frac{35}{9} < x < \frac{37}{9}$
- G. $-\frac{11}{18} < x < -\frac{7}{18}$
- H. $\frac{37}{9} < x < \frac{35}{9}$

7. Solve the following linear inequality $4x - 3 \ge 4$ AND 3x - 4 < -2 and express you answer in interval notation.

A.
$$x \in (-\infty, \frac{19}{4}) \cup (\frac{11}{3}, \infty)$$

B.
$$x \in (-\infty, \frac{11}{3}] \cap [\frac{19}{4}, \infty)$$

C.
$$x \in (-\infty, -\frac{5}{4}] \cup [-\frac{7}{3}, \infty)$$

D.
$$x \in (\frac{2}{3}, \frac{7}{4}]$$

E.
$$x \in [\frac{2}{3}, \frac{7}{4})$$

F.
$$x \in (-\infty, -\frac{7}{3}) \cap (-\frac{5}{4}, \infty)$$

G.
$$x \in (\frac{7}{4}, \frac{2}{3}]$$

H. The inequality has no solution x. Therefore, it is a contradiction.

8. Solve the following linear inequality 3x - 5 > 5 OR 4x < -2.

A.
$$x < \frac{1}{3}$$
 OR $x > -\frac{7}{2}$

B.
$$x > \frac{1}{3}$$
 OR $x < -\frac{7}{2}$

C.
$$x < \frac{11}{3} \text{ OR } x > -\frac{1}{6}$$

D. The inequality is true for all values of x. Therefore, it is an unconditional inequality.

E.
$$x > \frac{10}{3}$$
 OR $x < -\frac{1}{2}$

F.
$$x > \frac{11}{3}$$
 OR $x < -\frac{1}{6}$

G.
$$x > \frac{16}{3}$$
 OR $x < \frac{3}{2}$

H.
$$x < \frac{10}{3}$$
 OR $x > -\frac{1}{2}$