1. Solve the following linear system by the addition method. $\left\{\begin{array}{c} -2x+y=0\\ 2x+2y=0 \end{array}\right\}$

A. There are infinitely many solutions.

- B. (0, 0).
- C. (1, 1).
- D. (3,3).
- E. (2, 2).
- F. There is no solution.
- G. (-1, -1).

H. (-3, -3).

2. Solve the following linear system by the addition method. $\begin{cases} -3x + 2y = 1 \\ -3x + 3y = -12 \end{cases}$

- A. There are infinitely many solutions.
- B. (-12, -16).
- C. (-10, -14).
- D. (-5, -9).
- E. There is no solution.
- F. (-7, -11).
- G. (-9, -13).
- H. (-8, -12).

3. Solve the following linear system by the addition method. $\begin{cases} 3x - y = 3 \\ -9x + 9y = -12 \end{cases}$

A. There is no solution.

B.
$$(\frac{5}{6}, -\frac{1}{2})$$
.

- C. $\left(-\frac{7}{6}, -\frac{5}{2}\right)$.
- D. $\left(-\frac{13}{6}, -\frac{7}{2}\right)$.
- E. $(\frac{17}{6}, \frac{3}{2})$.
- F. $(\frac{29}{6}, \frac{7}{2})$.
- G. There are infinitely many solutions.
- H. $(\frac{23}{6}, \frac{5}{2})$.

4. Billy Bob has two test scores in a psychology class. The mean of these scores is 75 and their range is 15. Use this information to write a system of equations which models this situation.

А.	The	system	is	{	$\frac{x-y}{2} = 75$ $x+y = 15$	}.
В.	The	system	is	{	$\frac{x-y}{2} = 15$ $x-y = 75$	}.
C.	The	system	is	{	$\begin{array}{l} x+\frac{y}{2}=15\\ \frac{x}{2}+y=75 \end{array}$	}.
D.	The	system	is	{	$\frac{x-y}{2} = 15$ $x+y = 75$	}.
E.	The	system	is	{	$\frac{x-y}{2} = 75$ $x-y = 15$	}.
F.	The	system	is	{	$\frac{x+y}{2} = 15$ $x-y = 75$	}.
G.	The	system	is	{	$\frac{x+y}{2} = 75$ $x-y = 15$	$\bigg\}.$
H.	The	system	is	{	$\begin{array}{l} x+\frac{y}{2}=75\\ \frac{x}{2}-y=15 \end{array}$	}.

5. Solve the following linear system by the addition method. $\left\{\begin{array}{l} -\frac{x}{2} + \frac{y}{3} = -\frac{1}{2} \\ \frac{x}{7} - \frac{y}{9} = 0 \end{array}\right\}$

- A. (5, 7).
- B. (6, 8).
- C. (4, 6).
- D. There is no solution.
- E. (8, 10).
- F. (7,9).
- G. There are infinitely many solutions.

H. (10, 12).

- 6. Solve the following linear system by the addition method. $\begin{cases} -3x + 2y = 3\\ 3x y = 3 \end{cases}$
- A. (3, 6).
- B. There are infinitely many solutions.
- C. (1, 4).
- D. (2, 5).
- E. There is no solution.
- F. (6, 9).
- G. (5, 8).
- H. (7, 10).

7. The sum of double one number and thrice a second number is 3. The sum of two times one number and twice a second number is 5. Write a system of equations which models this situation.

А.	The system is	5 {	$ \begin{array}{l} 4x - 2y = 3\\ 2x + y = 5 \end{array} $
В.	The system is	, {	$ \begin{array}{l} 3x - 4y = 3\\ 4x - 3y = 5 \end{array} $
C.	The system is	5 {	$ \begin{array}{l} 2x - 2y = 3\\ 2x + 2y = 5 \end{array} \right\}. $
D.	The system is	5 {	$ \begin{array}{l} 2x + 3y = 3\\ 2x + 2y = 5 \end{array}\right\}. $
E.	The system is	, {	$ \begin{array}{c} 2x - y = 3\\ 2x - 2y = 5 \end{array} $
F.	The system is	, {	$ \begin{array}{c} 2x + 3y = 3\\ 2x + 2y = 5 \end{array} \right\}. $
G.	The system is	5 {	$ \begin{array}{c} x - 2y = 3\\ 3x + 4y = 5 \end{array} \right\}.$
H.	The system is	5 {	$\begin{cases} x - 4y = 3\\ 3x - 2y = 5 \end{cases}$

8. Solve the following linear system by the addition method. $\begin{cases} 3x - 3y = 2\\ 6x + 6y = -6 \end{cases}$

- A. There are infinitely many solutions.
- B. $(\frac{23}{6}, \frac{19}{6})$.
- C. $\left(-\frac{13}{6}, -\frac{17}{6}\right)$.
- D. $\left(-\frac{1}{6}, -\frac{5}{6}\right)$.
- E. $\left(-\frac{25}{6}, -\frac{29}{6}\right)$.
- F. $(\frac{17}{6}, \frac{13}{6})$.
- G. There is no solution.
- H. $(\frac{5}{6}, \frac{1}{6})$.