1. Use the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to calculate the slope m of a line passing through the points $(2,7)$ and $(-2,6)$
A. $-\frac{1}{4}$
B. Undefined
C. $\frac{7}{12}$
D. $\frac{1}{12}$
E. $\frac{1}{4}$
F. $-\frac{7}{12}$
G. $\frac{5}{12}$
H. $\frac{1}{2}$
2. Evaluate the expression $-b^{2}-8 c^{2}$ at the values $b=1$ and $c=4$.
A. -121
B. -135
C. -122
D. -126
E. -134
F. -138
G. -133
H. -129
3. The terms in a sequence $\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\}$ can be computed from the formula $a_{n}=7 n-3$. Calculate the 4 th term of this sequence.
A. 24
B. 21
C. 18
D. 17
E. 33
F. 34
G. 30
H. 25
4. The distance D travelled by an object moving at a constant rate R (the speed, or velocity) over a time T is calculated by the formula $D=R T$. Calculate the distance travelled by the San Andreas fault moving at a rate of $35 \mathrm{~mm} /$ year for 3 years.
A. 89.3 mm
B. 126 mm
C. 78.8 mm
D. 131.3 mm
E. 120.7 mm
F. 105 mm
G. 99.8 mm
H. 115.5 mm
5. Evaluate the expression $-6 z^{2}+2 z+1$ at the value $z=3$.
A. -39
B. -41
C. -46
D. -44
E. -47
F. -43
G. -40
H. -48
6. Evaluate the expression at the values $z=-1$ and $c=2$.

$$
\frac{-3 z^{2}+6 c^{2}}{-5 z-8 c}
$$

A. $-\frac{52}{33}$
B. $-\frac{137}{66}$
C. $-\frac{51}{44}$
D. Undefined
E. $-\frac{53}{22}$
F. $-\frac{21}{11}$
G. $-\frac{74}{33}$
H. $-\frac{117}{44}$
7. Use the formula $I=P R T$ to calculate the interest for an investment of $\$ 2000$ at 7.25 percent for 1 year. Round your answer to the nearest dollar.
A. 145
B. 217
C. 206
D. 228
E. 187
F. 196
G. 166
H. 177
8. Evaluate the expression at the value $c=3$.

$$
\frac{4 c^{2}+3 c-6}{-5 c^{2}-2 c-5}
$$

A. $-\frac{53}{56}$
B. $-\frac{5}{168}$
C. $\frac{23}{168}$
D. Undefined
E. $-\frac{39}{56}$
F. $-\frac{61}{168}$
G. $-\frac{257}{168}$
H. $-\frac{229}{168}$

