1. The notation \sqrt{x} is read "the principal _____ of x."

A. argument

B. value

C. square root

D. radical

2. Simplify the expression -|-0.03|.

A. -0.03

B. 1

C. 0

D. 0.03

3. A real number that is a terminating decimal is a(n) _____ number.

A. irrational

- B. rational
- C. absolute
- D. infinite

4. Write the interval pictured below in interval notation.

-4	-3
A. $(-4, -3]$	
B. $-4 \le x < -3$	
C. $-3 \le x \le -4$	
D. $[-4, -3)$	
E. $(-3, -4]$	
F. $-4 \le x \le -3$	
G. $(-4, -3]$	
H. $-4 < x \le -3$	

- A. -5 < x
- B. -5 > x
- C. $-5 \ge x$
- D. $-5 \leq x$

6. Insert <, =, or > to make the statement true: |8.3| _____ -|-2.9|.

- A. =
- B. >
- C. <

7. The notation $x \neq y$ is read "x is _____ y."

A. is less than

- B. not equal to
- C. is greater than
- D. is not admissable with

8. The notation x < y is read "x is _____ y."

- A. less than or equal to
- B. less than
- C. greater than or equal to
- D. greater than