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1.1: Notes About These Notes
This book originated from my class notes for Math 286 at the University of Illinois at Urbana-Champaign (UIUC) in Fall 2008 and
Spring 2009. It is a first course on differential equations for engineers. Using this book, I also taught Math 285 at UIUC, Math 20D
at University of California, San Diego (UCSD), and Math 4233 at Oklahoma State University (OSU). Normally these courses are
taught with Edwards and Penney, Differential Equations and Boundary Value Problems: Computing and Modeling [EP], or Boyce
and DiPrima’s Elementary Differential Equations and Boundary Value Problems [BD], and this book aims to be more or less a
drop-in replacement. Other books I used as sources of information and inspiration are E.L. Ince’s classic (and inexpensive)
Ordinary Differential Equations [I], Stanley Farlow’s Differential Equations and Their Applications [F], now available from Dover,
Berg and McGregor’s Elementary Partial Differential Equations [BM], and William Trench’s free book Elementary Differential
Equations with Boundary Value Problems [T]. See the Further Reading chapter at the end of the book.

1.1.1: Organization
The organization of this book to some degree requires chapters be done in order. Later chapters can be dropped. The dependence of
the material covered is roughly:

There are a few references in chapters 4 and 5 to chapter 3 (some linear algebra), but these references are not essential and can be
skimmed over, so chapter 3 can safely be dropped, while still covering chapters 4 and 5. Chapter 6 does not depend on chapter 4
except that the PDE section 6.5 makes a few references to chapter 4, although it could, in theory, be covered separately. The more
in-depth appendix A on linear algebra can replace the short review Section 3.2 for a course that combines linear algebra and ODE.

1.1.2: Typical Types of Courses
Several typical types of courses can be run with the book. There are the two original courses at UIUC, both cover ODE as well
some PDE. Either, there is the 4 hours-a-week for a semester (Math 286 at UIUC):

Introduction (0.2), chapter 1 (1.1-1.7), chapter 2, chapter 3, chapter 4 (4.1-4.9), chapter 5 (or 6 or 7 or 8).

Or, the second course at UIUC is at 3 hours-a-week (Math 285 at UIUC):

Introduction (0.2), chapter 1 (1.1-1.7), chapter 2, chapter 4 (4.1-4.9), (and maybe chapter 5, 6 or 7).

A semester-long course at 3 hours a week that doesn’t cover either systems or PDE will cover, beyond the introduction, chapter 1,
chapter 2, chapter 6, and chapter 7, (with sections skipped as above). On the other hand, a typical course that covers systems will
probably need to skip Laplace and power series and cover chapter 1, chapter 2, chapter 3, and chapter 8.

If sections need to be skipped in the beginning, a good core of the sections on single ODE is: 0.2, 1.1-1.4, 1.6, 2.1, 2.2, 2.4-2.6.

The complete book can be covered at a reasonably fast pace at approximately 76 lectures (without appendix A) or 86 lectures (with
appendix A replacing Section 3.2). This is not accounting for exams, review, or time spent in a computer lab. A two-quarter or a
two-semester course can be easily run with the material. For example (with some sections perhaps strategically skipped):

Semester 1: Introduction, chapter 1, chapter 2, chapter 6, chapter 7. 
Semester 2: Chapter 3, chapter 8, chapter 4, chapter 5.

A combined course on ODE with linear algebra can run as:

Introduction, chapter 1 (1.1-1.7), chapter 2, appendix A, chapter 3 (w/o Section 3.2), (possibly chapter 8).
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The chapter on the Laplace transform (chapter 6), the chapter on Sturm–Liouville (chapter 5), the chapter on power series (chapter
7), and the chapter on nonlinear systems (chapter 8), are more or less interchangeable and can be treated as "topics". If chapter 8 is
covered, it may be best to place it right after chapter 3, and chapter 5 is best covered right after chapter 4. If time is short, the first
two sections of chapter 7 make a reasonable self-contained unit.

1.1.3: Computer Resources
The book’s website https://www.jirka.org/diffyqs/ contains the following resources:

1. Interactive SAGE demos.
2. Online WeBWorK homeworks (using either your own WeBWorK installation or Edfinity) for most sections, customized for this

book.
3. The PDFs of the figures used in this book.

I taught the UIUC courses using IODE (https://faculty.math.illinois.edu/iode/). IODE is a free software package that works with
Matlab (proprietary) or Octave (free software). The graphs in the book were made with the Genius software (see
https://www.jirka.org/genius.html). I use Genius in class to show these (and other) graphs.

The LaTeX source of the book is also available for possible modification and customization at github
(https://github.com/jirilebl/diffyqs).
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1.2: Introduction to Differential Equations

1.2.1: Differential Equations

The laws of physics are generally written down as differential equations. Therefore, all of science and engineering use differential
equations to some degree. Understanding differential equations is essential to understanding almost anything you will study in your
science and engineering classes. You can think of mathematics as the language of science, and differential equations are one of the
most important parts of this language as far as science and engineering are concerned. As an analogy, suppose all your classes from
now on were given in Swahili. It would be important to first learn Swahili, or you would have a very tough time getting a good
grade in your classes.

You saw many differential equations already without perhaps knowing about it. And you even solved simple differential equations
when you took calculus. Let us see an example you may not have seen:

Here  is the dependent variable and  is the independent variable. Equation  is a basic example of a differential equation. It
is an example of a first order differential equation, since it involves only the first derivative of the dependent variable. This
equation arises from Newton’s law of cooling where the ambient temperature oscillates with time.

1.2.2: Solutions of Differential Equations
Solving the differential equation means finding  in terms of . That is, we want to find a function of , which we call , such that
when we plug , , and  into , the equation holds; that is, the left hand side equals the right hand side. It is the same idea
as it would be for a normal (algebraic) equation of just  and . We claim that

is a solution. How do we check? We simply plug  into equation ! First we need to compute . We find that 
. Now let us compute the left-hand side of .

Yay! We got precisely the right-hand side. But there is more! We claim  is also a solution. Let us try,

We plug into the left-hand side of 

And it works yet again!

So there can be many different solutions. For this equation all solutions can be written in the form

for some constant . Different constants  will give different solutions, so there are really infinitely many possible solutions. See
Figure  for the graph of a few of these solutions. We will see how we find these solutions a few lectures from now.

+x = 2 cos t.
dx

dt
(1.2.1)

x t (1.2.1)

x t t x

x t dx
dt

(1.2.1)

x t

x = x(t) = cos t+sin t

x (1.2.1) dx

dt

= −sin t+cos tdx

dt
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dx

dt
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dx
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x

x = cos t+sin t+e−t

= −sin t+cos t− .
dx

dt
e−t
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+x = + = 2 cos t.
dx

dt
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Figure : Few solutions of .

Solving differential equations can be quite hard. There is no general method that solves every differential equation. We will
generally focus on how to get exact formulas for solutions of certain differential equations, but we will also spend a little bit of time
on getting approximate solutions. And we will spend some time on understanding the equations without solving them.

Most of this book is dedicated to ordinary differential equations or ODEs, that is, equations with only one independent variable,
where derivatives are only with respect to this one variable. If there are several independent variables, we get partial differential
equations or PDEs.

Even for ODEs, which are very well understood, it is not a simple question of turning a crank to get answers. When you can find
exact solutions, they are usually preferable to approximate solutions. It is important to understand how such solutions are found.
Although in real applications you will leave much of the actual calculations to computers, you need to understand what they are
doing. It is often necessary to simplify or transform your equations into something that a computer can understand and solve. You
may even need to make certain assumptions and changes in your model to achieve this.

To be a successful engineer or scientist, you will be required to solve problems in your job that you never saw before. It is
important to learn problem solving techniques, so that you may apply those techniques to new problems. A common mistake is to
expect to learn some prescription for solving all the problems you will encounter in your later career. This course is no exception.

Below is a video on verifying a solution to a differential equation.

1.2.3: Differential Equations in Practice

Figure 

So how do we use differential equations in science and engineering? First, we have some real-world problem we wish to
understand. We make some simplifying assumptions and create a mathematical model. That is, we translate the real-world situation
into a set of differential equations. Then we apply mathematics to get some sort of a mathematical solution. There is still something

1.2.1 +x = 2 cos tdx

dt

Verifying Solutions to Differential EquatiVerifying Solutions to Differential Equati……
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left to do. We have to interpret the results. We have to figure out what the mathematical solution says about the real-world problem
we started with.

Learning how to formulate the mathematical model and how to interpret the results is what your physics and engineering classes
do. In this course, we will focus mostly on the mathematical analysis. Sometimes we will work with simple real-world examples so
that we have some intuition and motivation about what we are doing.

Let us look at an example of this process. One of the most basic differential equations is the standard exponential growth model.
Let  denote the population of some bacteria on a Petri dish. We assume that there is enough food and enough space. Then the rate
of growth of bacteria is proportional to the population—a large population grows quicker. Let  denote time (say in seconds) and 
the population. Our model is

for some positive constant .

Suppose there are  bacteria at time  and  bacteria  seconds later. How many bacteria will there be  minute from
time  (in  seconds)?

Figure : Bacteria growth in the first  seconds.

Solution

First we need to solve the equation. We claim that a solution is given by

where  is a constant. Let us try:

And it really is a solution.

OK, now what? We do not know , and we do not know . But we know something. We know , and we know 
. Let us plug these conditions in and see what happens.

Therefore,  or . So

At one minute, , the population is . See Figure .

Let us talk about the interpretation of the results. Does our solution mean that there must be exactly  bacteria on the plate
at ? No! We made assumptions that might not be true exactly, just approximately. If our assumptions are reasonable, then
there will be approximately  bacteria. Also, in real life  is a discrete quantity, not a real number. However, our model has
no problem saying that for example at  seconds, .

P

t P

= kP ,
dP

dt

k > 0

 Example 1.2.1
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dt
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200 = P (10) = 100 .ek10
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Normally, the  in  is known, and we want to solve the equation for different initial conditions. What does that mean?
Take  for simplicity. Suppose we want to solve the equation  subject to  (the initial condition). Then the
solution turns out to be (exercise)

We call  the general solution, as every solution of the equation can be written in this form for some constant . We
need an initial condition to find out what  is, in order to find the particular solution we are looking for. Generally, when we say
"particular solution," we just mean some solution.

Below is a video on verifying a solution to a differential equation and finding a particular solution.

1.2.4: Fundamental Equations
A few equations appear often and it is useful to just memorize what their solutions are. Let us call them the four fundamental
equations. Their solutions are reasonably easy to guess by recalling properties of exponentials, sines, and cosines. They are also
simple to check, which is something that you should always do. No need to wonder if you remembered the solution correctly.

First such equation is

for some constant . Here  is the dependent and  the independent variable. The general solution for this equation is

We saw above that this function is a solution, although we used different variable names.

Next,

for some constant . The general solution for this equation is

Check that the  given is really a solution to the equation.

Next, take the second order differential equation

k = kPP ′

k = 1 = PdP

dt
P (0) = 1000

P (t) = 1000 .et

P (t) = Cet C

C

Ex 1: Verify a Solution to a Differential EEx 1: Verify a Solution to a Differential E……

= ky,
dy

dx

k > 0 y x

y(x) = C .ekx

= −ky,
dy
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for some constant . The general solution for this equation is

Since the equation is a second order differential equation, we have two constants in our general solution.

Check that the  given is really a solution to the equation.

Finally, consider the second order differential equation

for some constant . The general solution for this equation is

or

For those that do not know,  and  are defined by

They are called the hyperbolic cosine and hyperbolic sine. These functions are sometimes easier to work with than exponentials.
They have some nice familiar properties such as , , and  (no that is not a typo) and 

.

Check that both forms of the  given are really solutions to the equation.

In equations of higher order, you get more constants you must solve for to get a particular solution. The equation  has
the general solution ; simply integrate twice and don’t forget about the constant of integration. Consider the
initial conditions  and . We plug in our general solution and solve for the constants:

In other words,  is the particular solution we seek.

An interesting note about : The graph of  is the exact shape of a hanging chain. This shape is called a catenary. Contrary
to popular belief this is not a parabola. If you invert the graph of , it is also the ideal arch for supporting its weight. For
example, the gateway arch in Saint Louis is an inverted graph of —if it were just a parabola it might fall. The formula used in
the design is inscribed inside the arch:

1.2: Introduction to Differential Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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1.3: Classification of Differential Equations
There are many types of differential equations, and we classify them into different categories based on their properties. Let us
quickly go over the most basic classification. We already saw the distinction between ordinary and partial differential equations:

Ordinary differential equations or (ODE) are equations where the derivatives are taken with respect to only one variable. That
is, there is only one independent variable.
Partial differential equations or (PDE) are equations that depend on partial derivatives of several variables. That is, there are
several independent variables.

Let us see some examples of ordinary differential equations:

And of partial differential equations:

If there are several equations working together, we have a so-called system of differential equations. For example,

is a simple system of ordinary differential equations. Maxwell's equations for electromagnetics,

are a system of partial differential equations. The divergence operator  and the curl operator  can be written out in partial
derivatives of the functions involved in the , , and  variables.

The next bit of information is the order of the equation (or system). The order is simply the order of the largest derivative that
appears. If the highest derivative that appears is the first derivative, the equation is of first order. If the highest derivative that
appears is the second derivative, then the equation is of second order. For example, Newton’s law of cooling above is a first order
equation, while the mechanical vibrations equation is a second order equation. The equation governing transversal vibrations in a
beam,

is a fourth order partial differential equation. It is fourth order as at least one derivative is the fourth derivative. It does not matter
that the derivative in  is only of second order.

In the first chapter, we will start attacking first order ordinary differential equations, that is, equations of the form . In
general, lower order equations are easier to work with and have simpler behavior, which is why we start with them.

We also distinguish how the dependent variables appear in the equation (or system). In particular, we say an equation is linear if the
dependent variable (or variables) and their derivatives appear linearly, that is only as first powers, they are not multiplied together,
and no other functions of the dependent variables appear. In other words, the equation is a sum of terms, where each term is some
function of the independent variables or some function of the independent variables multiplied by a dependent variable or its

= ky,
dy

dt

= k(A−y),
dy

dt

m +c +kx = f(t).
xd2

dt2

dx

dt

(Exponential growth)

(Newton's law of cooling)

(Mechanical vibrations)

(1.3.1)
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derivative. Otherwise, the equation is called nonlinear. For example, an ordinary differential equation is linear if it can be put into
the form

The functions , , …,  are called the coefficients. The equation is allowed to depend arbitrarily on the independent variable.
So

is still a linear equation as  and its derivatives only appear linearly.

All the equations and systems above as examples are linear. It may not be immediately obvious for Maxwell’s equations unless you
write out the divergence and curl in terms of partial derivatives. Let us see some nonlinear equations. For example ,

is a nonlinear second order partial differential equation. It is nonlinear because  and  are multiplied together. The equation

is a nonlinear first order differential equation as there is a second power of the dependent variable .

A linear equation may further be called homogenous if all terms depend on the dependent variable. That is, if no term is a function
of the independent variables alone. Otherwise, the equation is called homogeneous or inhomogeneous. For example, the
exponential growth equation, the wave equation, or the transport equation above are homogeneous. The mechanical vibrations
equation above is nonhomogeneous as long as  is not the zero function. Similarly, if the ambient temperature  is nonzero,
Newton’s law of cooling is nonhomogeneous. A homogeneous linear ODE can be put into the form

Compare to  and notice there is no function .

If the coefficients of a linear equation are actually constant functions, then the equation is said to have constant coefficients. The
coefficients are the functions multiplying the dependent variable(s) or one of its derivatives, not the function  standing alone. A
constant coefficient nonhomogeneous ODE is an equation of the form

where  are all constants, but  may depend on the independent variable . The mechanical vibrations equation above
is a constant coefficient nonhomogeneous second order ODE. The same nomenclature applies to PDEs, so the transport equation,
heat equation and wave equation are all examples of constant coefficient linear PDEs.

Finally, an equation (or system) is called autonomous if the equation does not depend on the independent variable. For autonomous
ordinary differential equations, the independent variable is then thought of as time. Autonomous equation means an equation that
does not change with time. For example, Newton’s law of cooling is autonomous, so is equation . On the other hand,
mechanical vibrations or  are not autonomous.

Below is a video on defining and classifying differential equations.
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1.E: Introduction (Exercises)

1.E.1: title="0.2: Introduction to Differential Equations"
href="/Bookshelves/Differential_Equations/Book:_Differential_Equations_for_Engineers_(Lebl)/0:_Intr
oduction/0.2:_Introduction_to_Differential_Equations">Introduction to Differential Equations

Show that  is a solution to .

Show that  is not a solution to .

Is  a solution to ? Justify.

Let . Now try a solution of the form  for some (unknown) constant . Is this a solution for some ?
If so, find all such .

Verify that  is a solution to . Find  to solve for the initial condition .

Verify that  is a solution to . Find  and  to solve for the initial conditions 
 and .

Find a solution to  using your knowledge of derivatives of functions that you know from basic calculus.

Solve:

a. 

b. 

c. 

d. 

Is there a solution to , such that ?
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The population of city  was  thousand  years ago, and the population of city  was  thousand  years ago.
Assuming constant growth, you can use the exponential population model (like for the bacteria). What do you estimate the
population is now?

Suppose that a football coach gets a salary of one million dollars now, and a raise of  every year (so exponential model,
like population of bacteria). Let  be the salary in millions of dollars, and  is time in years.

a. What is  and .
b. Approximately how many years will it take for the salary to be  million.
c. Approximately how many years will it take for the salary to be  million.
d. Approximately how many years will it take for the salary to be  million.

Show that  is a solution to .

Answer

Compute  and . Then .

Is  a solution to ? Justify.

Answer

Yes.

Let . Try a solution of the form . Is this a solution for some ? If so, find all such .

Answer

 is a solution for  and .

Verify that  is a solution to . Find  and  so that  satisfies  and .

Answer

, 

Solve  and .

Answer

 Exercise 1.E. 0.2.10

X 100 20 X 120 10

 Exercise 1.E. 0.2.11

10%

s t

s(0) s(1)

10

20

30

 Exercise 1.E. 0.2.12

x = e−2t +4 +4x = 0x′′ x′

= −2x′ e−2t = 4x′′ e−2t (4 ) +4(−2 ) +4( ) = 0e−2t e−2t e−2t

 Exercise 1.E. 0.2.13

y = x2 −2y = 0x2y′′

 Exercise 1.E. 0.2.14

x − = 0y′′ y′ y = xr r r

y = xr r = 0 r = 2

 Exercise 1.E. 0.2.15

x = +C1e
t C2 − = 0x′′ x′ C1 C2 x x(0) = 10 (0) = 100x′

= 100C1 = −90C2

 Exercise 1.E. 0.2.16

= 8φ
dφ

ds
φ(0) = −9

φ = −9e8s
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Solve:

a. 

b. 

c. 

d. 

Answer
a. 
b. 
c. 
d. 

1.E.2: title="0.3: Classification of Differential Equations"
href="/Bookshelves/Differential_Equations/Book:_Differential_Equations_for_Engineers_(Lebl)/0:_Intr
oduction/0.3:_Classification_of_Differential_Equations">Classification of Differential Equations

Classify the following equations. Are they ODE or PDE? Is it an equation or a system? What is the order? Is it linear or
nonlinear, and if it is linear, is it homogeneous, constant coefficient? If it is an ODE, is it autonomous?

a. 

b. 

c. 

d. 

e. 

f. 

If  is a vector, we have the divergence  and curl 

. Notice that curl of a vector is still a vector. Write out Maxwell’s equations in

terms of partial derivatives and classify the system.

Suppose  is a linear function, that is,  for constants  and . What is the classification of equations of the
form .

Write down an explicit example of a third order, linear, nonconstant coefficient, nonautonomous, nonhomogeneous system of
two ODE such that every derivative that could appear, does appear.

 Exercise 1.E. 0.2.17

= −4x, x(0) = 9
dx

dt

= −4x, x(0) = 1, (0) = 2
xd2

dt2
x′

= 3p, p(0) = 4
dp

dq

= 4T , T (0) = 0, (0) = 6
Td2

dx2
T ′

x = 9e−4t

x = cos(2t) +sin(2t)

p = 4e3q

T = 3 sinh(2x)

 Exercise 1.E. 0.3.1

sin(t) +cos(t)x =
xd2

dt2
t2

+3 = xy
∂u

∂x

∂u

∂y
+3y+5x = 0, +x−y = 0y′′ x′′

+u = 0
u∂2

∂t2

u∂2

∂s2

+ t = tx′′ x2

= 0
xd4

dt4

 Exercise 1.E. 0.3.2

= ( , , )u⃗  u1 u2 u3 ∇ ⋅ = + +u⃗  ∂u1

∂x

∂u2

∂y

∂u3

∂z

∇ × = ( − ,   − ,   − )u⃗  ∂u3

∂y

∂u2

∂z

∂u1

∂z

∂u3

∂x

∂u2

∂x

∂u1

∂y

 Exercise 1.E. 0.3.3

F F (x, y) = ax+by a b

F ( , y) = 0y′

 Exercise 1.E. 0.3.4

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98019?pdf


1.E.4 https://math.libretexts.org/@go/page/98019

Classify the following equations. Are they ODE or PDE? Is it an equation or a system? What is the order? Is it linear or
nonlinear, and if it is linear, is it homogeneous, constant coefficient? If it is an ODE, is it autonomous?

a. 

b. 

c. 

d. 
e. 

f. 

Answer
a. PDE, equation, second order, linear, nonhomogeneous, constant coefficient.
b. ODE, equation, first order, linear, nonhomogeneous, not constant coefficient, not autonomous.
c. ODE, equation, seventh order, linear, homogeneous, constant coefficient, autonomous.
d. ODE, equation, second order, linear, nonhomogeneous, constant coefficient, autonomous.
e. ODE, system, second order, nonlinear.
f. PDE, equation, second order, nonlinear.

Write down the general zeroth order linear ordinary differential equation. Write down the general solution.

Answer

equation: , solution: .

For which  is  linear. Hint: there are two answers.

Answer

 or 

1.E: Introduction (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 1.E. 0.3.5

+3 = sin(x)
v∂2

∂x2

v∂2

∂y2

+cos(t)x = + t+1
dx

dt
t2

= 3F (x)
Fd7

dx7

+8 = 1y′′ y′

+ ty = 0, + txy = 0x′′ x′ y′′

= +
∂u

∂t

u∂2

∂s2
u2

 Exercise 1.E. 0.3.6

a(x)y = b(x) y =
b(x)

a(x)

 Exercise 1.E. 0.3.7

k + =dx

dt
xk tk+2

k = 0 k = 1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98019?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/01%3A_Introduction/1.E%3A_Introduction_(Exercises)
https://creativecommons.org/licenses/by-sa/4.0


1

CHAPTER OVERVIEW

2: First order ODEs
2.1: Integrals as solutions
2.2: Slope fields
2.3: Separable Equations
2.4: Linear equations and the integrating factor
2.5: Existence and Uniqueness of Solutions of Nonlinear Equations

2.5E: Existence and Uniqueness of Solutions of Nonlinear Equations (Exercises)

2.6: Substitution
2.7: Autonomous equations
2.8: Numerical methods- Euler’s method
2.9: Exact Equations
2.10: First Order Linear PDE
2.E: First order ODEs (Exercises)

This page titled 2: First order ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

https://libretexts.org/
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.01%3A_Integrals_as_solutions
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.02%3A_Slope_fields
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.03%3A_Separable_Equations
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.04%3A_Linear_equations_and_the_integrating_factor
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.05%3A_Existence_and_Uniqueness_of_Solutions_of_Nonlinear_Equations
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.05%3A_Existence_and_Uniqueness_of_Solutions_of_Nonlinear_Equations/2.5E%3A_Existence_and_Uniqueness_of_Solutions_of_Nonlinear_Equations_(Exercises)
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.06%3A_Substitution
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.07%3A_Autonomous_equations
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.08%3A_Numerical_methods-_Eulers_method
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.09%3A_Exact_Equations
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.10%3A_First_Order_Linear_PDE
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.E%3A_First_order_ODEs_(Exercises)
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs
https://creativecommons.org/licenses/by-sa/4.0
https://math.okstate.edu/people/lebl/


2.1.1 https://math.libretexts.org/@go/page/98021

2.1: Integrals as solutions
A first order ODE is an equation of the form

or just

In general, there is no simple formula or procedure one can follow to find solutions. In the next few lectures we will look at special
cases where solutions are not difficult to obtain. In this section, let us assume that  is a function of  alone, that is, the equation is

We could just integrate (antidifferentiate) both sides with respect to .

that is

This  is actually the general solution. So to solve Equation , we find some antiderivative of  and then we add an
arbitrary constant to get the general solution.

Now is a good time to discuss a point about calculus notation and terminology. Calculus textbooks muddy the waters by talking
about the integral as primarily the so-called indefinite integral. The indefinite integral is really the antiderivative (in fact the
whole one-parameter family of antiderivatives). There really exists only one integral and that is the definite integral. The only
reason for the indefinite integral notation is that we can always write an antiderivative as a (definite) integral. That is, by the
fundamental theorem of calculus we can always write  as

Hence the terminology to integrate when we may really mean to antidifferentiate. Integration is just one way to compute the
antiderivative (and it is a way that always works, see the following examples). Integration is defined as the area under the graph, it
only happens to also compute antiderivatives. For sake of consistency, we will keep using the indefinite integral notation when we
want an antiderivative, and you should always think of the definite integral.

Find the general solution of .

Solution

Elementary calculus tells us that the general solution must be . Let us check: . We have gotten precisely
our equation back.

Normally, we also have an initial condition such as  for some two numbers  and   is usually 0, but not
always). We can then write the solution as a definite integral in a nice way. Suppose our problem is .
Then the solution is

Let us check! We compute , via the fundamental theorem of calculus, and by Jupiter,  is a solution. Is it the one
satisfying the initial condition? Well, . It is!

= f(x, y)
dy

dx

= f(x, y)y′

f x

= f(x)y′ (2.1.1)

x

∫ (x)dx = ∫ f(x)dx+Cy′

y(x) = ∫ f(x)dx+C

y(x) 2.1.1 f(x)

∫ f(x)dx+C

f(t)dt+C∫
x

x0

 Example 2.1.1

= 3y′ x2

y = +Cx3 = 3y′ x2

y( ) =x0 y0 x0 y0 x0

= f(x), y( ) =y′ x0 y0

y(x) = f(s)ds+∫
x

x0

y0 (2.1.2)

= f(x)y′ y

y( ) = f(x)dx+ =x0 ∫
x0

x0
y0 y0
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Do note that the definite integral and the indefinite integral (antidifferentiation) are completely different beasts. The definite
integral always evaluates to a number. Therefore, Equation  is a formula we can plug into the calculator or a computer,
and it will be happy to calculate specific values for us. We will easily be able to plot the solution and work with it just like with
any other function. It is not so crucial to always find a closed form for the antiderivative.

Below is a video on using integration to solve a differential equation.

Solve

By the preceding discussion, the solution must be

Solution

Here is a good way to make fun of your friends taking second semester calculus. Tell them to find the closed form solution. Ha
ha ha (bad math joke). It is not possible (in closed form). There is absolutely nothing wrong with writing the solution as a
definite integral. This particular integral is in fact very important in statistics.

Using this method, we can also solve equations of the form

Let us write the equation in Leibniz notation.

Now we use the inverse function theorem from calculus to switch the roles of  and  to obtain

What we are doing seems like algebra with  and . It is tempting to just do algebra with  and  as if they were
numbers. And in this case it does work. Be careful, however, as this sort of hand-waving calculation can lead to trouble,
especially when more than one independent variable is involved. At this point we can simply integrate,

Finally, we try to solve for .

2.1.2

Solving Basic Differential Equations witSolving Basic Differential Equations wit……

 Example 2.1.2

= ,   y(0) = 1.y′ e−x2

y(x) = ds+1.∫
x

0

e−s2

= f(y)y′

= f(y)
dy

dx

x y

=
dy

dx

1

f(y)

dx dy dx dy

x(y) = ∫ dy+C
1

f(y)

y
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Previously, we guessed  (for some ) has the solution . We can now find the solution without guessing.
First we note that  is a solution. Henceforth, we assume . We write

We integrate to obtain

where  is an arbitrary constant. Now we solve for  (actually for  ).

If we replace  with an arbitrary constant  we can get rid of the absolute value bars (which we can do as  was
arbitrary). In this way, we also incorporate the solution . We get the same general solution as we guessed before, 

.

Find the general solution of .

Solution

First we note that  is a solution. We can now assume that . Write

We integrate to get

We solve for . So the general solution is

Note the singularities of the solution. If for example , then the solution as we approach . See Figure .
Generally, it is hard to tell from just looking at the equation itself how the solution is going to behave. The equation  is
very nice and defined everywhere, but the solution is only defined on some interval  or . Usually when this
happens we only consider one of these the solution. For example if we impose a condition , then the solution is 

, and we would consider this solution only for  on the interval . In the figure, it is the left side of the graph.

Figure : Plot of .

Below is a video on using integration to solve an inital value problem.

 Example 2.1.3

= kyy′ k > 0 y = Cekx

y = 0 y ≠ 0

=
dx

dy

1

ky

x(y) = x = ln|y| +D
1

k

D y |y|

|y| = =ekx−kD e−kDekx

e−kD C D

y = 0

y = Cekx

 Example 2.1.4

=y′ y2

y = 0 y ≠ 0

=
dx

dy

1

y2

x = +C
−1

y

y =
1

C −x

y = or y = 0
1

C −x

C = 1 x = 1 2.1.1

=y′ y2

(−∞,C) (C, ∞)

y(0) = 1

y = 1
1−x

x (−∞, 1)

2.1.1 y = 1
1−x
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Classical problems leading to differential equations solvable by integration are problems dealing with velocity, acceleration and
distance. You have surely seen these problems before in your calculus class.

Suppose a car drives at a speed  meters per second, where  is time in seconds. How far did the car get in 2 seconds
(starting at )? How far in 10 seconds?

Solution

Let  denote the distance the car traveled. The equation is

We can just integrate this equation to get that

We still need to figure out . We know that when , then . That is, . So

Thus  and

Now we just plug in to get where the car is at 2 and at 10 seconds. We obtain

Suppose that the car accelerates at a rate of . At time  the car is at the 1 meter mark and is traveling at 10 / . Where
is the car at time .

Solution

Well this is actually a second order problem. If  is the distance traveled, then  is the velocity, and  is the acceleration. The
equation with initial conditions is

What if we say . Then we have the problem

Once we solve for , we can integrate and find .

First order differential equations - SolvinFirst order differential equations - Solvin……

 Example 2.1.5

et/2 t

t = 0

x

=x′ et/2

x(t) = 2 +Cet/2

C t = 0 x = 0 x(0) = 0

0 = x(0) = 2 +C = 2 +Ce0/2

C = −2

x(t) = 2 −2et/2

x(2) = 2 −2 ≈ 3.44~meters,    x(10) = 2 −2 ≈ 294~meterse2/2 e10/2

 Example 2.1.6

t2 m

s2
t = 0 m

s

t = 10

x x′ x′′

= , x(0) = 1, (0) = 10x′′ t2 x′

= vx′

= , v(0) = 10v′ t2

v x
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This page titled 2.1: Integrals as solutions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.
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2.2: Slope fields
 

The general first order equation we are studying looks like

In general, we cannot simply solve these kinds of equations explicitly. It would be nice if we could at least figure out the shape and
behavior of the solutions, or if we could find approximate solutions. At this point it may be good to first try the Lab I and/or Project
I from the IODE website.

2.2.1: Slope fields
The equation  gives you a slope at each point in the -plane. And this is the slope a solution  would have at 
if its value was . In other words,  is the slope of a solution whose graph runs through the point . At a point , we
plot a short line with the slope . For example, if , then at point  we draw a short line of slope 

. So, if  is a solution and , then the equation mandates that . See Figure .

Figure : The slope  at .

To get an idea of how solutions behave, we draw such lines at lots of points in the plane, not just the point . We would
ideally want to see the slope at every point, but that is just not possible. Usually we pick a grid of points fine enough so that it
shows the behavior, but not too fine so that we can still recognize the individual lines. We call this picture the of the equation. See
Figure  for the slope field of the equation . Usually in practice, one does not do this by hand, but has a computer do
the drawing.

Below is a video on slope fields.

Suppose we are given a specific initial condition . A solution, that is, the graph of the solution, would be a curve that
follows the slopes we drew. For a few sample solutions, see Figure . It is easy to roughly sketch (or at least imagine) possible
solutions in the slope field, just from looking at the slope field itself. You simply sketch a line that roughly fits the little line
segments and goes through your initial condition.

= f(x, y)y′

= f(x, y)y′ (x, y) y(x) x

y f(x, y) (x, y) (x, y)

f(x, y) f(x, y) = xy (2, 1.5)

xy = 2 ×1.5 = 3 y(x) y(2) = 1.5 (2) = 3y′ 2.2.1

2.2.1 = xyy′ (2, 1.5)

(2, 1.5)

2.2.2 = xyy′

Slope FieldsSlope Fields

y( ) =x0 y0

2.2.3
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Figure : Slope field of .

Figure : Slope field of  with a graph of solutions satisfying , , and .

By looking at the slope field we get a lot of information about the behavior of solutions without having to solve the equation. For
example, in Figure  we see what the solutions do when the initial conditions are ,  and . A small
change in the initial condition causes quite different behavior. We see this behavior just from the slope field and imagining what
solutions ought to do.

We see a different behavior for the equation . The slope field and a few solutions is in see Figure . If we think of
moving from left to right (perhaps  is time and time is usually increasing), then we see that no matter what  is, all solutions
tend to zero as  tends to infinity. Again that behavior is clear from simply looking at the slope field itself.

Figure : Slope field of  with a graph of a few solutions.

Below is a video on choosing which differential equation corresponds to the given slope field.

2.2.3 = xyy′

2.2.3 = xyy′ y(0) = 0.2 y(0) = 0 y(0) = −0.2

2.2.3 y(0) > 0 y(0) = 0 y(0) < 0

= −yy′ 2.2.4

x y(0)

x

2.2.4 = −yy′
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2.2.2: Existence and uniqueness
We wish to ask two fundamental questions about the problem

i. Does a solution exist?
ii. Is the solution unique (if it exists)?

What do you think is the answer? The answer seems to be yes to both does it not? Well, pretty much. But there are cases when the
answer to either question can be no.

Since generally the equations we encounter in applications come from real life situations, it seems logical that a solution always
exists. It also has to be unique if we believe our universe is deterministic. If the solution does not exist, or if it is not unique, we
have probably not devised the correct model. Hence, it is good to know when things go wrong and why.

Attempt to solve

Solution

Integrate to find the general solution . Note that the solution does not exist at . See Figure  on the
following page. The equation may have been written as the seemingly harmless .

Figure : Slope field of 

Ex: Determine Which Differential EquatiEx: Determine Which Differential Equati……

= f(x, y), y( ) =y′ x0 y0

 Example 2.2.1

= , y(0) = 0.y′ 1

x

y = ln|x| +C x = 0 2.2.5

x = 1y′

2.2.5 = .y′ 1

x
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Solve:

Solution

Figure : Slope field of  with two solutions satisfying 

Note that  is a solution. But another solution is the function

It is hard to tell by staring at the slope field that the solution is not unique. Is there any hope? Of course there is. We have the
following theorem, known as Picard’s theorem.

Picard’s theorem on existence and uniqueness

If  is continuous (as a function of two variables) and  exists and is continuous near some , then a solution to

exists (at least for  in some small interval) and is unique.

Note that the problems ,  and ,  do not satisfy the hypothesis of the theorem. Even if we can

use the theorem, we ought to be careful about this existence business. It is quite possible that the solution only exists for a short
while.

For some constant , solve:

.

Solution

We know how to solve this equation. First assume that , so  is not equal to zero at least for some  near 0. So ,

so , so . If , then  so

 Example 2.2.2

= 2 , y(0) = 0.y′ |y|
−−

√

2.2.6 = 2y′ |y|
−−

√ y(0) = 0.

y = 0

y(x) = {x2

−x2
if x ≥ 0
if x < 0

1

 Theorem 2.2.1

f(x, y)
∂f

∂y
( , )x0 y0

= f(x, y), y( ) =y′ x0 y0

x

=y′ 1

x
y(0) = 0 = 2y′ |y|

−−
√ y(0) = 0

 Example 2.2.3

A

= y(0) = Ay′ y2

A ≠ 0 y x =x′ 1

y2

x = − +C
1

y
y =

1

C −x
y(0) = A C =

1

A

y =
1

−x
1

A
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If , then  is a solution.

For example, when  the solution “blows up” at . Hence, the solution does not exist for all  even if the equation is nice
everywhere. The equation  certainly looks nice.

For most of this course we will be interested in equations where existence and uniqueness holds, and in fact holds “globally” unlike
for the equation .

2.2.3: Footnotes
[1] Named after the French mathematician Charles Émile Picard (1856 – 1941)
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2.3: Separable Equations
 

When a differential equation is of the form , we can just integrate: . Unfortunately this method no
longer works for the general form of the equation . Integrating both sides yields

Notice the dependence on  in the integral.

2.3.0.1: Separable equations

Let us suppose that the equation is separable. That is, let us consider

for some functions  and . Let us write the equation in the Leibniz notation

Then we rewrite the equation as

Now both sides look like something we can integrate. We obtain

If we can find closed form expressions for these two integrals, we can, perhaps, solve for 

Take the equation

First note that  is a solution, so assume  from now on, so that we can divide by . Write the equation as 
then

We compute the antiderivatives to get

Or

where  is some constant. Because  is a solution and because of the absolute value we actually can write:

for any number  (including zero or negative).

We check:

= f(x)y′ y = ∫ f(x)dx+C

= f(x, y)y′

y = ∫ f(x, y)dx+C

y

= f(x)g(y),y′

f(x) g(y)

= f(x)g(y)
dy

dx

= f(x)dx
dy

g(y)

∫ = ∫ f(x)dx+C
dy

g(y)

y.

 Example 2.3.1

= xyy′

y = 0 y ≠ 0 y = xy,
dy

dx

∫ = ∫ xdx+C.
dy

y

ln|y| = +C
x2

2

|y| = = = De +C
x2

2 e
x2

2 eC e
x2

2

D > 0 y = 0

y = De
x2

2

D
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Yay!

We should be a little bit more careful with this method. You may be worried that we were integrating in two different variables.
We seemingly did a different operation to each side. Let us work through this method more rigorously. Take

We rewrite the equation as follows. Note that  is a function of  and so is 

We integrate both sides with respect to 

We use the change of variables formula (substitution) on the left hand side:

And we are done.

2.3.1: Implicit solutions
It is clear that we might sometimes get stuck even if we can do the integration. For example, take the separable equation

We separate variables,

We integrate to get

or perhaps the easier looking expression (where )

It is not easy to find the solution explicitly as it is hard to solve for . We, therefore, leave the solution in this form and call it an
implicit solution. It is still easy to check that an implicit solution satisfies the differential equation. In this case, we differentiate
with respect to , and remember that  is a function of , to get

Multiply both sides by  and divide by  and you will get exactly the differential equation. We leave this computation to
the reader.

If you have an implicit solution, and you want to compute values for , you might have to be tricky. You might get multiple
solutions  for each , so you have to pick one. Sometimes you can graph  as a function of , and then flip your paper. Sometimes
you have to do more.

= Dx = x(D ) = xyy′ e
x2

2 e
x2

2

= f(x)g(y)
dy

dx

y = y(x) x !
dy

dx

= f(x)
1

g(y)

dy

dx

x.

∫ dx = ∫ f(x)dx+C
1

g(y)

dy

dx

∫ dy = ∫ f(x)dx+C
1

g(y)

=y′ xy

+1y2

dy =(y+ ) dy = xdx
+1y2

y

1

y

+ ln |y| = +C
y2

2

x2

2

D = 2C

+2ln |y| = +Dy2 x2

y

x y x

(2y+ ) = 2xy′ 2

y

y 2( +1)y2

y

y x x y

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98023?pdf


2.3.3 https://math.libretexts.org/@go/page/98023

Computers are also good at some of these tricks. More advanced mathematical software usually has some way of plotting solutions
to implicit equations. For example, for  if you plot all the points  that are solutions to , you find the
two curves in Figure . This is not quite a graph of a function. For each  there are two choices of . To find a function you
would have to pick one of these two curves. You pick the one that satisfies your initial condition if you have one. For example, the
top curve satisfies the condition . So for each  we really got two solutions. As you can see, computing values from an
implicit solution can be somewhat tricky. But sometimes, an implicit solution is the best we can do.

Figure : The implicit solution  to .

The equation above also has the solution . So the general solution is

These outlying solutions such as  are sometimes called singular solutions.

Below is a video on solving a separable differential equation.

Solve , 

Solution

First factor the right hand side to obtain

Separate variables, integrate, and solve for 

C = 0 (x, y) +2 ln |y| =y2 x2

2.3.1 x y

y(1) = 1 C

2.3.1 + 2 ln |y| =y2 x2 =y′ xy

+1y2

y = 0

+2 ln |y| = +C, and y = 0.y2 x2

y = 0

Differential Equations: Differential Equations: Separation of VarSeparation of Var……

 Example 2.3.2

= 1 − + −x2y′ x2 y2 x2y2 y(1) = 0.

= (1 − ) (1 + )x2y′ x2 y2
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Solve for the initial condition,  to get  (or , or , etc.). The particular solution
we seek is, therefore,

Juan made a cup of coffee, and Juan likes to drink coffee only once reaches 60 degrees Celsius and will not burn him. Initially
at time  minutes, Juan measured the temperature and the coffee was 89 degrees Celsius. One minute later, Juan measured
the coffee again and it had 85 degrees. The temperature of the room (the ambient temperature) is 22 degrees. When should
Juan start drinking?

Solution

Let  be the temperature of the coffee in degrees Celsius, and let  be the ambient (room) temperature, also in degrees
Celsius. states that the rate at which the temperature of the coffee is changing is proportional to the difference between the
ambient temperature and the temperature of the coffee. That is,

for some constant . For our setup , , . We separate variables and integrate (let  and  denote
arbitrary constants)

That is, . We plug in the first condition: , and hence . So .
The second condition says . Solving for  we get . Now we solve for the
time  that gives us a temperature of 60 degrees. Namely, we solve

to get  minutes. So Juan can begin to drink the coffee at just over 9 minutes from the time Juan made it.
That is probably about the amount of time it took us to calculate how long it would take. See Figure .

y′

1 +y2

y′

1 +y2

arctan(y)

y

= ,
1 −x2

x2

= −1,
1

x2

= − −x+C,
1

x2

= tan(− −x+C)
1

x

(2.3.1)

0 = tan(−2 +C) C = 2 C = 2 +π C = 2 +2π

y = tan( −x+2).
−1

x

 Example 2.3.3

t = 0

T A

= k(A−T ),
dT

dt

k A = 22 T (0) = 89 T (1) = 85 C D

1

T −A

dT

dt

ln(T −A)

T −A

T

= −k,

= −kt+C, (note thatT −A > 0)

= D ,e−kt

= A+De−kt

(2.3.2)

T = 22 +De−kt 89 = T (0) = 22 +D D = 67 T = 22 +67 e−kt

85 = T (1) = 22 +67 e−k k k = −ln ≈ 0.061685−22
67

t

60 = 22 +67e−0.0616t

t = − ≈ 9.21
ln

60−22

67

0.0616
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Figure : Graphs of the coffee temperature function . On the left, horizontal lines are drawn at temperatures , ,
and . Vertical lines are drawn at  and . Notice that the temperature of the coffee hits  at , and  at 

. On the right, the graph is over a longer period of time, with a horizontal line at the ambient temperature .

Find the general solution to  (including singular solutions).

Solution

First note that  is a solution (a singular solution). Now assume that .

So the general solution is,
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89 t = 1 t = 9.21 85 t = 1 60
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3

y

y
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2
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2
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2.4: Linear equations and the integrating factor
 

One of the most important types of equations we will learn how to solve are the so-called linear equations. In fact, the majority of
the course is about linear equations. In this lecture we focus on the first order linear equation. A first order equation is linear if we
can put it into the form:

Here the word “linear” means linear in  and ; no higher powers nor functions of  or  appear. The dependence on  can be
more complicated.

Solutions of linear equations have nice properties. For example, the solution exists wherever  and  are defined, and has
the same regularity (read: it is just as nice). But most importantly for us right now, there is a method for solving linear first order
equations. The trick is to rewrite the left hand side of  as a derivative of a product of  with another function. To this end we
find a function  such that

This is the left hand side of  multiplied by . So if we multiply  by , we obtain

Now we integrate both sides. The right hand side does not depend on  and the left hand side is written as a derivative of a
function. Afterwards, we solve for . The function  is called the integrating factor and the method is called the integrating
factor method.

We are looking for a function , such that if we differentiate it, we get the same function back multiplied by . That seems
like a job for the exponential function! Let

We compute:

Of course, to get a closed form formula for , we need to be able to find a closed form formula for the integrals appearing above.
 
Below is a video on solving a differential equation using an integrating factor.

+p(x)y = f(x).y′ (2.4.1)

y y′ y y′ x

p(x) f(x)

(2.4.1) y

r(x)

r(x) +r(x)p(x)y = [r(x)y]y′ d

dx

(2.4.1) r(x) (2.4.1) r(x)

[r(x)y] = r(x)f(x)
d

dx

y

y r(x)

r(x) p(x)

r(x) = e∫ p(x)dx

+p(x)yy′

+ p(x)ye∫ p(x)dxy′ e∫ p(x)dx

[ y]
d

dx
e∫ p(x)dx

ye∫ p(x)dx

y

= f(x),

= f(x),e∫ p(x)dx

= f(x),e∫ p(x)dx

= ∫ f(x)dx+C,e∫ p(x)dx

= (∫ f(x)dx+C) .e− ∫ p(x)dx e∫ p(x)dx

(2.4.2)
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Solve

Solution

First note that  and . The integrating factor is . We multiply both sides of the
equation by  to get

We integrate

Next, we solve for the initial condition , so . The solution is

Note that we do not care which antiderivative we take when computing . You can always add a constant of integration,
but those constants will not matter in the end.

Try it! Add a constant of integration to the integral in the integrating factor and show that the solution you get in the end is the
same as what we got above. An advice: Do not try to remember the formula itself, that is way too hard. It is easier to remember
the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to know how to write the solution in definite integral
form. A definite integral is something that you can plug into a computer or a calculator. Suppose we are given

. Look at the solution and write the integrals as definite integrals.

Solving Linear First-Order Differential EqSolving Linear First-Order Differential Eq……

 Example 2.4.1

+2xy = , y(0) = −1y′ ex−x2

p(x) = 2x f(x) = ex−x2
r(x) = =e∫ p(x)dx ex

2

r(x)

+2x yex
2
y′ ex

2

[ y]
d

dx
ex

2

= ,ex−x2
ex

2

= .ex
(2.4.3)

yex
2

y

= +C,ex

= +C .ex−x2

e−x2 (2.4.4)

−1 = y(0) = 1 +C C = −2

y = −2 .ex−x2

e−x2

e∫ p(x)dx

 Exercise 2.4.1

+p(x)y = f(x), y( ) =y′ x0 y0

y(x) = ( f(t)dt+ )e∫ p(s)ds−x
x0 ∫

x

x0

e
p(s)ds∫ t

x0 y0 (2.4.5)
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You should be careful to properly use dummy variables here. If you now plug such a formula into a computer or a calculator, it
will be happy to give you numerical answers.

Check that  in formula .

Write the solution of the following problem as a definite integral, but try to simplify as far as you can. You will not be able to
find the solution in closed form.

Before we move on, we should note some interesting properties of linear equations. First, for the linear initial value problem 
, , there is always an explicit formula  for the solution. Second, it follows from the

formula  that if  and  are continuous on some interval , then the solution  exists and is differentiable
on . Compare with the simple nonlinear example we have seen previously, , and compare to Theorem 1.2.1.

Let us discuss a common simple application of linear equations. This type of problem is used often in real life. For example,
linear equations are used in figuring out the concentration of chemicals in bodies of water (rivers and lakes).

Figure 

A  liter tank contains  kilograms of salt dissolved in  liters of water. Solution of water and salt (brine) with
concentration of  kilograms per liter is flowing in at the rate of  liters a minute. The solution in the tank is well stirred and
flows out at a rate of  liters a minute. How much salt is in the tank when the tank is full?

Solution

Let us come up with the equation. Let  denote the kilograms of salt in the tank, let  denote the time in minutes. For a small
change  in time, the change in  (denoted ) is approximately

Dividing through by  and taking the limit  we see that

In our example, we have

 Exercise 2.4.2

y( ) =x0 y0 (2.4.5)

 Exercise 2.4.3

+y = , y(0) = 10y′ e −xx2

 Note

+p(x)y = f(x)y′ y( ) =x0 y0 (2.4.5)

(2.4.5) p(x) f(x) (a, b) y(x)

(a, b) =y′ y2

 Example 2.4.2
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100 10 60
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3

x t

Δt x Δx

Δx ≈ (rate in x concentration in)Δt−(rate out x concentration out)Δt.

Δt Δt → 0

= (rate in x concentration in) −(rate out x concentration out)
dx

dt

rate in

concentration in

rate out

concentration out

= 5,

= 0.1,

= 3,

= = .
x

volume

x

60 +(5 −3)t

(2.4.6)
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Our equation is, therefore,

Or in the form 

Let us solve. The integrating factor is

We multiply both sides of the equation to get

We need to find . We know that at , . So

or

We are interested in  when the tank is full. So we note that the tank is full when , or when . So

See Figure  for the graph of  over .

Figure : Graph of the solution  kilograms of salt in the tank at time .

The concentration at the end is approximately  /  and we started with  or  / .

Playlist of Videos on Integrating Factor
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dx

dt
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d
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2.5: Existence and Uniqueness of Solutions of Nonlinear Equations
Although there are methods for solving some nonlinear equations, it is impossible to find useful formulas for the solutions of most.
Whether we are looking for exact solutions or numerical approximations, it is useful to know conditions that imply the existence
and uniqueness of solutions of initial value problems for nonlinear equations. In this section we state such a condition and illustrate
it with examples.

Figure 2.5.1 : An open rectangle

Some terminology: an open rectangle  is a set of points  such that

(Figure 2.5.1 ). We’ll denote this set by . “Open” means that the boundary rectangle (indicated by the
dashed lines in Figure 2.5.1 ) is not included in .

The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value problems for first order
nonlinear differential equations. We omit the proof, which is beyond the scope of this book.

a. If  is continuous on an open rectangle

that contains  then the initial value problem

has at least one solution on some open subinterval of  that contains 
b. If both  and  are continuous on  then Equation  has a unique solution on some open subinterval of  that

contains 

It’s important to understand exactly what Theorem 2.5.1 says.

(a) is an existence theorem. It guarantees that a solution exists on some open interval that contains , but provides no
information on how to find the solution, or to determine the open interval on which it exists. Moreover, (a) provides no
information on the number of solutions that Equation  may have. It leaves open the possibility that Equation  may
have two or more solutions that differ for values of  arbitrarily close to . We will see in Example 2.5.6 that this can happen.
(b) is a uniqueness theorem. It guarantees that Equation  has a unique solution on some open interval (a,b) that contains 

. However, if , Equation  may have more than one solution on a larger interval that contains .
For example, it may happen that  and all solutions have the same values on , but two solutions  and  are
defined on some interval  with , and have different values for ; thus, the graphs of the  and 
“branch off” in different directions at . (See Example 2.5.7 and Figure 2.5.3 ). In this case, continuity implies that 

 (call their common value ), and  and  are both solutions of the initial value problem

R (x, y)

a < x < b and c < y < d

R : {a < x < b, c < y < d}

R

 Theorem 2.5.1 : existence and uniqueness

f

R : {a < x < b, c < y < d}

( , )x0 y0

= f(x, y), y( ) =y′ x0 y0 (2.5.1)

(a, b) .x0

f fy R 2.5.1 (a, b)

x0

x0

2.5.1 2.5.1

x x0

2.5.1

x0 (a, b) ≠ (−∞, ∞) 2.5.1 (a, b)

b < ∞ (a, b) y1 y2

(a, )b1 > bb1 b < x < b1 y1 y2

x = b

(b) = (b)y1 y2 y y1 y2

y = f(x, y), y(b) = ȳ̄̄ (2.5.2)
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that differ on every open interval that contains . Therefore  or  must have a discontinuity at some point in each open rectangle
that contains , since if this were not so,  would have a unique solution on some open interval that contains . We leave it
to you to give a similar analysis of the case where .

Consider the initial value problem

Since

are continuous for all , Theorem 2.5.1 implies that if  is arbitrary, then Equation  has a unique solution on
some open interval that contains .

Consider the initial value problem

Here

are continuous everywhere except at . If , there’s an open rectangle  that contains  that does
not contain . Since  and  are continuous on , Theorem 2.5.1 implies that if  then Equation 
has a unique solution on some open interval that contains .

Consider the initial value problem

Here

are continuous everywhere except on the line . If , there’s an open rectangle  that contains  that does
not intersect the line . Since  and  are continuous on , Theorem 2.5.1 implies that if , Equation  has a
unique solution on some open interval that contains .

In Example 2.2.4, we saw that the solutions of

are

b f fy
(b, y) 2.5.2 b

a > −∞

 Example 2.5.1

= , y( ) = .y′ −x2 y2

1 + +x2 y2
x0 y0 (2.5.3)

f(x, y) = and (x, y) = −
−x2 y2

1 + +x2 y2
fy

2y(1 +2 )x2

(1 + +x2 y2)2

(x, y) ( , )x0 y0 2.5.3

x0

 Example 2.5.2

= , y( ) = .y′ −x2 y2

+x2 y2
x0 y0 (2.5.4)

f(x, y) = and (x, y) = −
−x2 y2

+x2 y2
fy

4 yx2

( +x2 y2)2

(0, 0) ( , ) ≠ (0, 0)x0 y0 R ( , )x0 y0

(0, 0) f fy R ( , ) ≠ (0, 0)x0 y0 2.5.4

x0

 Example 2.5.3

= , y( ) = .y′ x+y

x−y
x0 y0 (2.5.5)

f(x, y) = and (x, y) =
x+y

x−y
fy

2x

(x−y)2

y = x ≠y0 x0 R ( , )x0 y0

y = x f fy R ≠y0 x0 2.5.5

x0

 Example 2.5.4

= 2xy′ y2 (2.5.6)
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where  is an arbitrary constant. In particular, this implies that no solution of Equation  other than  can equal zero
for any value of . Show that Theorem  implies this.

We’ll obtain a contradiction by assuming that Equation  has a solution  that equals zero for some value of , but is not
identically zero. If  has this property, there’s a point  such that , but  for some value of  in every
open interval that contains . This means that the initial value problem

has two solutions  and  that differ for some value of  on every open interval that contains . This contradicts
Theorem 2.5.1 (b), since in Equation  the functions

are both continuous for all , which implies that Equation  has a unique solution on some open interval that contains 
.

Below is a video on finding values where there is no guarantee of existence and uniqueness of a solution to a differential equation.

Consider the initial value problem

a. For what points  does Theorem  imply that Equation  has a solution?
b. For what points  does Theorem  imply that Equation  has a unique solution on some open interval that

contains ?

Solution a

Since

is continuous for all , Theorem 2.5.1 implies that Equation  has a solution for every .

Solution b

Here

y ≡ 0 and y = − ,
1

+cx2

c 2.5.6 y ≡ 0

x 2.5.1b

2.5.6 y1 x

y1 x0 ( ) = 0y1 x0 (x) ≠ 0y1 x

x0

= 2x , y( ) = 0y′ y2 x0 (2.5.7)

y ≡ 0 y = y1 x x0

2.5.6

f(x, y) = 2x and (x, y) = 4xy.y2 fy

(x, y) 2.5.7

x0

Find Values Excluded to Guarantee ExisFind Values Excluded to Guarantee Exis……

 Example 2.5.5

= x , y( ) = .y′ 10

3
y2/5 x0 y0 (2.5.8)

( , )x0 y0 2.5.1a 2.5.8

( , )x0 y0 2.5.1b 2.5.8

x0

f(x, y) = x
10

3
y2/5

(x, y) 2.5.8 ( , )x0 y0

(x, y) = xfy
4

3
y−3/5
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is continuous for all  with . Therefore, if  there’s an open rectangle on which both  and  are continuous,
and Theorem 2.5.1 implies that Equation  has a unique solution on some open interval that contains .

If  then  is undefined, and therefore discontinuous; hence, Theorem 2.5.1 does not apply to Equation  if 
.

Example 2.5.5 leaves open the possibility that the initial value problem

has more than one solution on every open interval that contains . Show that this is true.

Solution

By inspection,  is a solution of the differential equation

Since  satisfies the initial condition , it is a solution of Equation .

Now suppose  is a solution of Equation  that is not identically zero. Separating variables in Equation  yields

on any open interval where  has no zeros. Integrating this and rewriting the arbitrary constant as  yields

Therefore

Since we divided by  to separate variables in Equation , our derivation of Equation  is legitimate only on open
intervals where  has no zeros. However, Equation  actually defines  for all , and differentiating Equation 
shows that

Therefore Equation  satisfies Equation  on  even if , so that . In
particular, taking  in Equation  yields

as a second solution of Equation . Both solutions are defined on , and they differ on every open interval that
contains  (Figure 2.5.2 ). In fact, there are four distinct solutions of Equation  defined on  that differ
from each other on every open interval that contains . Can you identify the other two?

(x, y) y ≠ 0 ≠ 0y0 f fy
2.5.8 x0

y = 0 (x, y)fy 2.5.8

= 0y0

 Example 2.5.6

= x , y(0) = 0y′ 10

3
y2/5 (2.5.9)

= 0x0

y ≡ 0

= x .y′ 10

3
y2/5 (2.5.10)

y ≡ 0 y(0) = 0 2.5.9

y 2.5.10 2.5.10

= xy−2/5y′ 10

3

y 5c/3

= ( +c).
5

3
y3/5 5

3
x2

y = ( +c .x2 )5/3 (2.5.11)

y 2.5.10 2.5.11

y 2.5.11 y x 2.5.11

= x( +c = x , −∞ < x < ∞y′ 10

3
x2 )2/3 10

3
y2/5

2.5.11 2.5.10 (−∞, ∞) c ≤ 0 y( ) = y(− ) = 0|c|
−−√ |c|

−−√
c = 0 2.5.11

y = x10/3

2.5.9 (−∞, ∞)

= 0x0 2.5.9 (−∞, ∞)

= 0x0
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Figure 2.5.2 : Two solutions (  and ) of Equation  that differ on every interval containing 

From Example 2.5.5 , the initial value problem

has a unique solution on some open interval that contains . Find a solution and determine the largest open interval 
on which it is unique.

Solution

Let  be any solution of Equation . Because of the initial condition  and the continuity of , there’s an open
interval  that contains  on which  has no zeros, and is consequently of the form Equation . Setting  and 

 in Equation  yields , so

for  in . Therefore every solution of Equation  differs from zero and is given by Equation  on ; that is,
Equation  is the unique solution of Equation  on . This is the largest open interval on which Equation 

 has a unique solution. To see this, note that Equation  is a solution of Equation  on . From
Exercise 2.2.15, there are infinitely many other solutions of Equation  that differ from Equation  on every open
interval larger than . One such solution is

Figure 2.5.3 : Two solutions of Equation  on (−1,1) that coincide on (−1, 1), but on no larger open interval. (right)

y = 0 y = x1/2 2.5.9 = 0x0

 Example 2.5.7

= x , y(0) = −1y′ 10

3
y2/5 (2.5.12)

= 0x0 (a, b)

y 2.5.12 y(0) = −1 y

I = 0x0 y 2.5.11 x = 0

y = −1 2.5.11 c = −1

y = ( −1x2 )5/3 (2.5.13)

x I 2.5.12 2.5.13 (−1, 1)

2.5.13 2.5.12 (−1, 1)

2.5.12 2.5.13 2.5.12 (−∞, ∞)

2.5.12 2.5.13

(−1, 1)

y = {
( −1 ,x2 )5/3

0,

−1 ≤ x ≤ 1,

|x| > 1.

2.5.12

 Example 2.5.8
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From Example 2.5.5 ), the initial value problem

has a unique solution on some open interval that contains . Find the solution and determine the largest open interval on
which it is unique.

Solution

Let  be any solution of Equation . Because of the initial condition  and the continuity of , there’s an open
interval  that contains  on which  has no zeros, and is consequently of the form Equation . Setting  and 

 in Equation  yields , so

for  in . Therefore every solution of Equation  differs from zero and is given by Equation  on ; that is,
Equation  is the unique solution of Equation  on . Figure 2.5.4 ) shows the graph of this solution.

Figure 2.5.4 : The unique solution of Equation .
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= x , y(0) = 1y′ 10

3
y2/5 (2.5.14)

= 0x0

y 2.5.14 y(0) = 1 y

I = 0x0 y 2.5.11 x = 0

y = 1 2.5.11 c = 1

y = ( +1x2 )5/3 (2.5.15)

x I 2.5.14 2.5.15 (−∞, ∞)

2.5.15 2.5.14 (−∞, ∞)

2.5.14
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2.5E: Existence and Uniqueness of Solutions of Nonlinear Equations (Exercises)

Q2.3.1

In Exercises 2.3.1-2.3.13, find all  for which Theorem 2.3.1 implies that the initial value problem 
 has (a) a solution and (b) a unique solution on some open interval that contains .

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Q2.3.2
14. Apply Theorem 2.3.1 to the initial value problem

for a linear equation, and compare the conclusions that can be drawn from it to those that follow from Theorem 2.1.2.

15.

a. Verify that the function

is a solution of the initial value problem

on . HINT: You'll need the definition

to verify that  satisfies the differential equation at .
b. Verify that if  or  for ,  and , , then the function

( , )x0 y0

= f(x, y),  y( ) =y′ x0 y0 x0

=y′ +x2 y2

sin x

=y′ +yex

+x2 y2

= tanxyy′

=y′ +x2 y2

ln xy

= ( + )y′ x2 y2 y1/3

= 2xyy′

= ln(1 + + )y′ x2 y2

=y′ 2x+3y

x−4y

= ( +y′ x2 y2)1/2

= x( −1y′ y2 )2/3

= ( +y′ x2 y2)2

= (x +yy′ )1/2

=y′ tan y

x−1

+p(x)y = q(x), y( ) =y′ x0 y0 (2.5E.1)

y ={
( −1 ,x2 )5/3

0,

−1 < x < 1,

|x| ≥ 1,
(2.5E.2)

= x , y(0) = −1y′ 10

3
y2/5 (2.5E.3)

(−∞, ∞)

( ) =y′ x̄̄̄ lim
x→x̄̄̄

y(x) −y( )x̄̄̄

x − x̄̄̄
(2.5E.4)

y = ±1x̄̄̄

= 0ϵi 1 i = 1 2 a b > 1
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is a solution of the initial value problem of a on .

16. Use the ideas developed in Exercise 2.3.15 to find infinitely many solutions of the initial value problem

on .

17. Consider the initial value problem

a. For what points  does Theorem 2.3.1 imply that (A) has a solution?
b. For what points  does Theorem 2.3.1 imply that (A) has a unique solution on some open interval that contains ?

18. Find nine solutions of the initial value problem

that are all defined on  and differ from each other for values of  in every open interval that contains .

19. From Theorem 2.3.1, the initial value problem

has a unique solution on an open interval that contains . Find the solution and determine the largest open interval on which it
is unique.

20.

a. From Theorem 2.3.1, the initial value problem

has a unique solution on some open interval that contains . Determine the largest such open interval, and find the
solution on this interval.

b. Find infinitely many solutions of (A), all defined on .

21. Prove:

a. If

and  is in , then  is a solution of

on .
b. If  and  are continuous on an open rectangle that contains  and (A) holds, no solution of  other than 

 can equal  at any point in .
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y =

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

( − ,ϵ1 x2 a2)5/3

0,

( −1 ,x2 )5/3

0,

( − ,ϵ2 x2 b2)5/3

−∞ < x < −a,

−a ≤ x ≤ −1,

−1 < x < 1,

1 ≤ x ≤ b,

b < x < ∞,

(2.5E.5)

(−∞, ∞)

= , y(0) = 1y′ y2/5 (2.5E.6)

(−∞, ∞)

= 3x(y −1 , y( ) = .y′ )1/3 x0 y0 (A)

( , )x0 y0

( , )x0 y0 x0

= 3x(y −1 , y(0) = 1y′ )1/3 (2.5E.7)

(−∞, ∞) x = 0x0

= 3x(y −1 , y(0) = 9y′ )1/3 (2.5E.8)

= 0x0

= 3x(y −1 , y(3) = −7y′ )1/3 (A)

= 3x0

(−∞, ∞)

f(x, ) = 0, a < x < b,y0 (A)

x0 (a, b) y ≡ y0

= f(x, y), y( ) =y′ x0 y0

(a, b)

f fy ( , )x0 y0 = f(x, y)y′

y ≡ y0 y0 (a, b)
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2.6: Substitution
Just as when solving integrals, one method to try is to change variables to end up with a simpler equation to solve.

2.6.1: Substitution
The equation

is neither separable nor linear. What can we do? How about trying to change variables, so that in the new variables the equation is
simpler. We use another variable , which we treat as a function of . Let us try

We need to figure out  in terms of ,  and . We differentiate (in ) to obtain . So . We plug this into the
equation to get

In other words, . Such an equation we know how to solve by separating variables:

So

for some constant . Note that  and  are also solutions.

Now we need to “unsubstitute” to obtain

and also the two solutions  or , and  or . We solve the first equation for .

Note that  gives , but no value of  gives the solution .

Substitution in differential equations is applied in much the same way that it is applied in calculus. You guess. Several different
substitutions might work. There are some general things to look for. We summarize a few of these in a table.

When you see Try substituting

Usually you try to substitute in the “most complicated” part of the equation with the hopes of simplifying it. The above table is just
a rule of thumb. You might have to modify your guesses. If a substitution does not work (it does not make the equation any

= (x−y+1y′ )2 (2.6.1)

v x

v= x−y+1. (2.6.2)

y′ v′ v x x = 1 −v′ y′ = 1 −y′ v′

1 − =v′ v2 (2.6.3)

= 1 −v′ v2

dv= dx
1

1 −v2
(2.6.4)

ln = x+C, or = , or = D ,
1

2

∣
∣
∣
v+1

v−1

∣
∣
∣

∣
∣
∣
v+1

v−1

∣
∣
∣ e2x+2C v+1

v−1
e2x

D v= 1 v= −1

= D
x−y+2

x−y
e2x (2.6.5)

x−y+1 = 1 y = x x−y+1 = −1 y = x+2 y

x−y+2

x−y+2

−y+yDe2x

y(−1 +D )e2x

y

= (x−y)D ,e2x

= Dx −yD ,e2x e2x

= Dx −x−2,e2x

= Dx −x−2,e2x

= .
Dx −x−2e2x

D −1e2x

(2.6.6)

D = 0 y = x+2 D y = x

yy′ v = y2

y2y′ v = y3

(cosy)y′ v = siny

(siny)y′ v = cosy

y′ey v = ey
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simpler), try a different one.

2.6.2: Bernoulli Equations
There are some forms of equations where there is a general rule for substitution that always works. One such example is the so-
called Bernoulli equation.

This equation looks a lot like a linear equation except for the . If  or , then the equation is linear and we can solve it.
Otherwise, the substitution  transforms the Bernoulli equation into a linear equation. Note that  need not be an integer.

Solve

Solution

First, the equation is Bernoulli  ( and  ). We substitute

In other words, . So

and finally

Now the equation is linear. We can use the integrating factor method. In particular, we use formula (1.4.17). Let us assume that 
 so . This assumption is OK, as our initial condition is . Let us compute the integrating factor. Here 

from formula (1.4.17) is .

We now plug in to (1.4.17)

Note that the integral in this expression is not possible to find in closed form. As we said before, it is perfectly fine to have a
definite integral in our solution. Now “unsubstitute”

1

+p(x)y = q(x)y′ yn (2.6.7)

+p(x) y = q(x)y′ yn (2.6.8)

yn n = 0 n = 1

v= y1−n n

 Example 1.5.1: Bernoulli Equation

x +y(x+1) +x = 0,   y(1) = 1y′ y5

p(x) =
x+1

x
q(x) = −1

v= = , = −4y1−5 y−4 v′ y−5y′

( ) =
−1

4
y5v′ y′

x +y(x+1) +xy′ y5

+y(x+1) +x
−xy5

4
v′ y5

+ (x+1) +x
−x

4
v′ y−4

+v(x+1) +x
−x

4
v′

= 0,

= 0,

= 0,

= 0,

(2.6.9)

− v= 4v′ 4(x+1)

x

x > 0 |x| = x x = 1 p(s)
−4(s+1)

s

e p(s)ds∫ x

1

e− p(s)ds∫ x

1

= exp( ds) = = = ,∫
x

1

−4(s+1)

s
e−4x−4ln(x)+4 e−4x+4x−4 e−4x+4

x4

= =e4x+4ln(x)−4 e4x−4x4

(2.6.10)

v(x) = ( 4dt+1) ,e− p(s)ds∫ x

1 ∫
x

1

e p(s)ds∫ t

1

= ( 4 dt+1)e4x−4x4 ∫
x

1

e−4t+4

t4

(2.6.11)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98027?pdf


2.6.3 https://math.libretexts.org/@go/page/98027

2.6.3: Homogeneous Equations

Another type of equations we can solve by substitution are the so-called homogeneous equations. Suppose that we can write the
differential equation as

Here we try the substitutions

We note that the equation is transformed into

Hence an implicit solution is

Solve

Solution

We put the equation into the form . We substitute  to get the separable equation

which has a solution

We unsubstitute

We want , so

 

y−4

y

= (4 dt+1) ,e4x−4x4 ∫
x

1

e−4t+4

t4

=
e−x+1

x(4 dt+1)∫ x

1

e−4t+4

t4

1/4

(2.6.12)

= F ( )y′ y

x
(2.6.13)

v= and therefore = v+x
y

x
y′ v′ (2.6.14)

v+x = F (v) or x = F (v) −v or =v′ v′ v′

F (v) −v

1

x
(2.6.15)

∫ dv= ln|x| +C
1

F (v) −v
(2.6.16)

 Example 1.5.2

= +xy, y(1) = 1x2y′ y2

= +y′ ( )
y

x

2 y

x v=
y

x

x = +v−v=v′ v2 v2

∫ dv
1

v2

−1

v

v

= ln |x| +C,

= ln |x| +C,

= .
−1

ln |x| +C

(2.6.17)

y

x

y

= ,
−1

ln |x| +C

=
−x

ln |x| +C

(2.6.18)

y(1) = 1
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Thus  and the solution we are looking for is

2.6.4: Footnotes

[1] There are several things called Bernoulli equations, this is just one of them. The Bernoullis were a prominent Swiss family of
mathematicians. These particular equations are named for Jacob Bernoulli (1654–1705).

2.6.5: Contributors and Attributions
Jiří Lebl (Oklahoma State University).These pages were supported by NSF grants DMS-0900885 and DMS-1362337.

This page titled 2.6: Substitution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

1.5: Substitution by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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2.7: Autonomous equations
Let us consider general differential equation problems of the form

where the derivative of solutions depends only on  (the dependent variable). Such equations are called autonomous equations. If we think of  as time, the naming comes from the fact
that the equation is independent of time.

Let us come back to the cooling coffee problem (see Example 1.3.3). Newton’s law of cooling says that

where  is the temperature,  is time,  is some constant, and  is the ambient temperature. See Figure  for an example with  and .

Note the solution  (in the figure ). We call these constant solutions the equilibrium solutions. The points on the  axis where  are called critical points. The point 
 is a critical point. In fact, each critical point corresponds to an equilibrium solution. Note also, by looking at the graph, that the solution  is “stable” in that small

perturbations in  do not lead to substantially different solutions as  grows. If we change the initial condition a little bit, then as  we get . We call such critical points
stable. In this simple example it turns out that all solutions in fact go to  as . If a critical point is not stable we would say it is unstable.

Figure : The slope field and some solutions of .

Let us consider the logistic equation

for some positive  and . This equation is commonly used to model population if we know the limiting population , that is the maximum sustainable population. The logistic equation
leads to less catastrophic predictions on world population than . In the real world there is no such thing as negative population, but we will still consider negative  for the
purposes of the math (see Figure  for an example).

Figure : The slope field and some solutions of .

Note two critical points,  and . The critical point at . is stable. On the other hand the critical point at . is unstable.

It is not really necessary to find the exact solutions to talk about the long term behavior of the solutions. For example, from the above slope field plot, we can easily see that

Where DNE means “does not exist.” From just looking at the slope field we cannot quite decide what happens if . It could be that the solution does not exist for  all the way to
. Think of the equation , we have seen that it only exists for some finite period of time. Same can happen here. In our example equation above it will actually turn out that the

solution does not exist for all time, but to see that we would have to solve the equation. In any case, the solution does go to , but it may get there rather quickly.

If we are interested only in the long term behavior of the solution, we would be doing unnecessary work if we solved the equation exactly. We could draw the slope field, but it is easier
to just look at the or , which is a simple way to visualize the behavior of autonomous equations. In this case there is one dependent variable . We draw the -axis, we mark all the
critical points, and then we draw arrows in between. Since  is the dependent variable we draw the axis vertically, as it appears in the slope field diagrams above. If , we draw
an up arrow. If , we draw a down arrow. To figure this out, we could just plug in some  between the critical points,  will have the same sign at all  between two critical
points as long  is continuous. For example, , so  for , and the arrow above  is a down arrow. Next, , so  whenever 

, and the arrow points up. Finally,  so  when , and the arrow points down.

Figure 

Armed with the phase diagram, it is easy to sketch the solutions approximately: As time  moves from left to right, the graph of a solution goes up if the arrow is up, and it goes down if
the arrow is down.

Below is a video on solving an autonomous differential equation that describes logistic growth.

= f(x)
dx

dt

x t

= −k(x−A)
dx

dt

x t k A 2.7.1 k = 0.3 A = 5

x = A x = 5 x f(X) = 0

x = A x = A

x t t → ∞ x → A

A t → ∞

2.7.1 = 0.3(5 −x)x′

= kx(M −x)
dx

dt

k M M

= kxx′ x

2.7.2

2.7.2 = 0.1x(5 −x)x′

x = 0 x = 5 x = 5 x = 0

x(t) =lim
t→∞

⎧

⎩
⎨

5
0

DNE or −∞

ifx(0) > 0,
ifx(0) = 0,

ifx(0) < 0.

x(0) < 0 t

∞ =x′ x2

−∞

x x

x f(x) > 0

f(x) < 0 x f(x) x

f(x) f(6) = −0.6 < 0 f(x) < 0 x > 5 x = 5 f(1) = 0.4 > 0 f(x) > 0

0 < x < 5 f(−1) = −0.6 < 0 f(x) < 0 x < 0
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Try sketching a few solutions simply from looking at the phase diagram. Check with the preceding graphs if you are getting the type of curves.

Once we draw the phase diagram, we can easily classify critical points as stable or unstable.

Figure 

Since any mathematical model we cook up will only be an approximation to the real world, unstable points are generally bad news.

Let us think about the logistic equation with harvesting. Suppose an alien race really likes to eat humans. They keep a planet with humans on it and harvest the humans at a rate of 
million humans per year. Suppose  is the number of humans in millions on the planet and  is time in years. Let  be the limiting population when no harvesting is done and 
is some constant depending on how fast humans multiply. Our equation becomes

We expand the right hand side and solve for critical points

Solving for the critical points  and  from the quadratic equations:

Below is a video on solving an autonomous initial value problem.

Sketch a phase diagram for different possibilities. Note that these possibilities are , or , or  and  both complex (i.e. no real solutions). Hint: Fix some simple  and 
 and then vary .

For example, let  and . When , then  and  are distinct and positive. The slope field we get is in Figure . As long as the population starts above , which is
approximately 1.55 million, then the population will not die out. It will in fact tend towards  million. If ever some catastrophe happens and the population drops below ,
humans will die out, and the fast food restaurant serving them will go out of business.

Ex 1: Solve an Autonomous DE IVP - Logistic Growth Using SEx 1: Solve an Autonomous DE IVP - Logistic Growth Using S……

 Exercise 2.7.1

1

2.7.4

h

x t M k > 0

= kx(M −x) −h
dx

dt

= −k +kMx−h
dx

dt
x2

A B

A = , B =
kM + (kM −4hk)2

− −−−−−−−−−
√

2k

kM − (kM −4hk)2
− −−−−−−−−−

√

2k

Ex 2: Solve an Autonomous DE IVP - Logistic Growth Using SEx 2: Solve an Autonomous DE IVP - Logistic Growth Using S……

 Exercise 2.7.2
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Figure : Slope field and some solutions of .

When , then  and there is only one critical point and it is unstable. When the population starts above 4 million it will tend towards 4 million. If it ever drops below 4
million, humans will die out on the planet. This scenario is not one that we (as the human fast food proprietor) want to be in. A small perturbation of the equilibrium state and we are out
of business; there is no room for error (see Figure ).

Figure : The slope field and some solutions of .

Finally if we are harvesting at 2 million humans per year, there are no critical points. The population will always plummet towards zero, no matter how well stocked the planet starts (see
Figure ).

Figure : Slope field and some solutions of .

2.7.1: Footnotes

[1] Unstable points with one of the arrows pointing towards the critical point are sometimes called semistable.
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3. C.H. Edwards and D.E. Penney, Differential Equations and Boundary Value Problems: Computing and Modeling, 4th edition, Prentice Hall, 2008.
4. Stanley J. Farlow, An Introduction to Differential Equations and Their Applications, McGraw-Hill, Inc., Princeton, NJ, 1994. (Published also by Dover Publications, 2006.)
5. E.L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New York, NY, 1956.
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2.8: Numerical methods- Euler’s method
At this point it may be good to first try the Lab II and/or Project II from the IODE website: www.math.uiuc.edu/iode/. As we said before, unless  is of a special form, it is generally
very hard if not impossible to get a nice formula for the solution of the problem

If the equation can be solved in closed form, we should do that. But what if we have an equation that cannot be solved in closed form? What if we want to find the value of the solution at
some particular ? Or perhaps we want to produce a graph of the solution to inspect the behavior. In this section we will learn about the basics of numerical approximation of solutions.

The simplest method for approximating a solution is Euler's Method.  It works as follows: Take  and compute the slope . The slope is the change in  per unit change in 
. Follow the line for an interval of length  on the -axis. Hence if  at , then we say that  (the approximate value of  at ) is . Rinse, repeat! Let 

, and then compute , and . Now compute  and  using  and , etc. Consider the equation , , and . Then  and 
. We compute

We then draw an approximate graph of the solution by connecting the points , , ,…. For the first two steps of the method see Figure .

Figure : First two steps of Euler's method with  for the equation  with initial conditions .

More abstractly, for any , we compute

The line segments we get are an approximate graph of the solution. Generally it is not exactly the solution. See Figure  for the plot of the real solution and the approximation.

Figure : Two steps of Euler’s method (step size 1) and the exact solution for the equation  with initial conditions .

We continue with the equation , . Let us try to approximate  using Euler’s method. In Figures  and  we have graphically approximated  with step size
1. With step size 1, we have . The real answer is 3. We are approximately  off. Let us halve the step size. Computing  with , we find that , so an
error of about . Table  gives the values computed for various parameters.

Solve this equation exactly and show that .

The difference between the actual solution and the approximate solution we will call the error. We will usually talk about just the size of the error and we do not care much about its
sign. The main point is, that we usually do not know the real solution, so we only have a vague understanding of the error. If we knew the error exactly …what is the point of doing the
approximation?

Approximate Error

1 1.92593 1.07407  

0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656

0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184

0.03125 2.90412 0.09588 0.53385

0.015625 2.95035 0.04965 0.51779

0.0078125 2.97472 0.02528 0.50913

Table : Euler’s method approximation of  where of , .

We notice that except for the first few times, every time we halved the interval the error approximately halved. This halving of the error is a general feature of Euler’s method as it is a
first order method. In the IODE Project II you are asked to implement a second order method. A second order method reduces the error to approximately one quarter every time we
halve the interval (second order as ).

f(x, y)

= f(x, y), y( ) =y′ x0 y0

x

1 x0 k = f( , )x0 y0 y

x h x y = y0 x0 y1 y = +hx1 x0 = +hky1 y0

k = f( , )x1 y1 = +hx2 x1 = +hky2 y1 x3 y3 x2 y2 =y′ y2

3
y(0) = 1 h = 1 = 0x0

= 1y0

= +h = 0 +1 = 1,x1 x0

= +h = 1 +1 = 2,x2 x1

= +h f( , ) = 1 +1 ⋅ = ≈ 1.333,y1 y0 x0 y0
1

3

4

3

= +h f( , ) = +1 ⋅ = ≈ 1.926.y2 y1 x1 y1
4

3

( )4
3

2

3

52

27

(2.8.1)

( , )x0 y0 ( , )x1 y1 ( , )x2 y2 2.8.1

2.8.1 h = 1 =y′ y2

3
y(0) = 1

i = 0, 1, 2, 3, …

= +h, = +h f( , ).xi+1 xi yi+1 yi xi yi

2.8.2

2.8.2 =y′ y2

3
y(0) = 1

=y′ y2

3
y(0) = 1 y(2) 2.8.1 2.8.2 y(2)
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To get the error to be within 0.1 of the answer we had to already do 64 steps. To get it to within 0.01 we would have to halve another three or four times, meaning doing 512 to 1024
steps. That is quite a bit to do by hand. The improved Euler method from IODE Project II should quarter the error every time we halve the interval, so we would have to approximately
do half as many “halvings” to get the same error. This reduction can be a big deal. With 10 halvings (starting at ) we have 1024 steps, whereas with 5 halvings we only have to
do 32 steps, assuming that the error was comparable to start with. A computer may not care about this difference for a problem this simple, but suppose each step would take a second

to compute (the function may be substantially more difficult to compute than ). Then the difference is 32 seconds versus about 17 minutes. Note: We are not being altogether fair, a
second order method would probably double the time to do each step. Even so, it is 1 minute versus 17 minutes. Next, suppose that we have to repeat such a calculation for different
parameters a thousand times. You get the idea.

Below is a video on using Euler's Method to approximate the solution to a differential equation.

Note that in practice we do not know how large the error is! How do we know what is the right step size? Well, essentially we keep halving the interval, and if we are lucky, we can
estimate the error from a few of these calculations and the assumption that the error goes down by a factor of one half each time (if we are using standard Euler).

In the table above, suppose you do not know the error. Take the approximate values of the function in the last two lines, assume that the error goes down by a factor of 2. Can you
estimate the error in the last time from this? Does it (approximately) agree with the table? Now do it for the first two rows. Does this agree with the table?

Let us talk a little bit more about the example , . Suppose that instead of the value  we wish to find . The results of this effort are listed in Table  for
successive halvings of . What is going on here? Well, you should solve the equation exactly and you will notice that the solution does not exist at . In fact, the solution goes to
infinity when you approach .

Approximate 

1 3.16232

0.5 4.54329

0.25 6.86079

0.125 10.80321

0.0625 17.59893

0.03125 29.46004

0.015625 50.40121

0.0078125 87.75769

Table : Attempts to use Euler’s to approximate  where of , .

Another case when things can go bad is if the solution oscillates wildly near some point. Such an example is given in IODE Project II. The solution may exist at all points, but even a
much better numerical method than Euler would need an insanely small step size to approximate the solution with reasonable precision. And computers might not be able to easily
handle such a small step size.

In real applications we would not use a simple method such as Euler’s. The simplest method that would probably be used in a real application is the standard Runge-Kutta method (see
exercises). That is a fourth order method, meaning that if we halve the interval, the error generally goes down by a factor of 16 (it is fourth order as ).

Choosing the right method to use and the right step size can be very tricky. There are several competing factors to consider.

Computational time: Each step takes computer time. Even if the function  is simple to compute, we do it many times over. Large step size means faster computation, but perhaps
not the right precision.
Roundoff errors: Computers only compute with a certain number of significant digits. Errors introduced by rounding numbers off during our computations become noticeable
when the step size becomes too small relative to the quantities we are working with. So reducing step size may in fact make errors worse.
Stability: Certain equations may be numerically unstable. What may happen is that the numbers never seem to stabilize no matter how many times we halve the interval. We may
need a ridiculously small interval size, which may not be practical due to roundoff errors or computational time considerations. Such problems are sometimes called stiff. In the
worst case, the numerical computations might be giving us bogus numbers that look like a correct answer. Just because the numbers have stabilized after successive halving, does
not mean that we must have the right answer.

Below is a video on using Euler's Method to appoximation a solution to a differential equation.

h = 1

y2

3

Approximate a Solution to a DE Using Euler's MethodApproximate a Solution to a DE Using Euler's Method

 Exercise 2.8.2

=y′ y2

3
y(0) = 1 y(2) y(3) 2.8.2
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h y(3)

2.8.2 y(3) =y′ y2

3
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We have seen just the beginnings of the challenges that appear in real applications. Numerical approximation of solutions to differential equations is an active research area for engineers
and mathematicians. For example, the general purpose method used for the ODE solver in Matlab and Octave (as of this writing) is a method that appeared in the literature only in the
1980s.

2.8.1: Footnotes
[1] Named after the Swiss mathematician Leonhard Paul Euler (1707–1783). The correct pronunciation of the name sounds more like “oiler.”

This page titled 2.8: Numerical methods- Euler’s method is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

1.7: Numerical methods: Euler’s method by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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2.9: Exact Equations
Another type of equation that comes up quite often in physics and engineering is an . Suppose  is a function of two
variables, which we call the . The naming should suggest potential energy, or electric potential. Exact equations and potential
functions appear when there is a conservation law at play, such as conservation of energy. Let us make up a simple example. Let

We are interested in the lines of constant energy, that is lines where the energy is conserved; we want curves where ,
for some constant . In our example, the curves  are circles. See Figure .

Figure : Solutions to  for various .

We take the total derivative of :

For convenience, we will make use of the notation of  and . In our example,

We apply the total derivative to , to find the differential equation . The differential equation we obtain in such
a way has the form

An equation of this form is called exact if it was obtained as  for some potential function . In our simple example, we
obtain the equation

Since we obtained this equation by differentiating , the equation is exact. We often wish to solve for  in terms of .
In our example,

An interpretation of the setup is that at each point  is a vector in the plane, that is, a direction and a magnitude. As 
and  are functions of , we have a vector field. The particular vector field  that comes from an exact equation is a so-called
conservative vector field, that is, a vector field that comes with a potential function , such that

Let  be a path in the plane starting at  and ending at . If we think of  as force, then the work required to move
along  is

F (x, y)

F (x, y) = + .x2 y2

F (x, y) = C

C + = Cx2 y2 2.9.1

2.9.1 F (x,y) = + = Cx2 y2 C

F

dF = dx+ dy.
∂F

∂x

∂F

∂y

=Fx
∂F
∂x

=Fy
∂F
∂y

dF = 2x dx+2y dy.

F (x, y) = C dF = 0

M dx+N dy = 0, or M +N = 0.
dy

dx

dF = 0 F

2x dx+2y dy = 0, or 2x+2y = 0.
dy

dx

+ = Cx2 y2 y x

y = ± .−C 2 x2− −−−−−−
√

= (M ,N)v ⃗  M

N (x, y) v ⃗ 

F (x, y)

=( , ) .v ⃗ 
∂F

∂x

∂F

∂y

γ ( , )x1 y1 ( , )x2 y2 v ⃗ 
γ

( ) ⋅ d = M dx+N dy = F ( , ) −F ( , ).∫
γ

v ⃗ r ⃗  r ⃗  ∫
γ

x2 y2 x1 y1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98030?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/02%3A_First_order_ODEs/2.09%3A_Exact_Equations


2.9.2 https://math.libretexts.org/@go/page/98030

That is, the work done only depends on endpoints, that is where we start and where we end. For example, suppose  is
gravitational potential. The derivative of  given by  is the gravitational force. What we are saying is that the work required to
move a heavy box from the ground floor to the roof, only depends on the change in potential energy. That is, the work done is the
same no matter what path we took; if we took the stairs or the elevator. Although if we took the elevator, the elevator is doing the
work for us. The curves  are those where no work need be done, such as the heavy box sliding along without
accelerating or breaking on a perfectly flat roof, on a cart with incredibly well oiled wheels.

An exact equation is a conservative vector field, and the implicit solution of this equation is the potential function.

2.9.1: Solving exact equations

Now you, the reader, should ask: Where did we solve a differential equation? Well, in applications we generally know  and ,
but we do not know . That is, we may have just started with , or perhaps even

It is up to us to find some potential  that works. Many different  will work; adding a constant to  does not change the
equation. Once we have a potential function , the equation  gives an implicit solution of the ODE.

Below is a video on solving an exact first order differential equation.

Below is another video on solving an exact first order differential equation.

Let us find the general solution to . Forget we knew what  was.

Solution

F

F v ⃗ 

F (x, y) = C

M N

F 2x+2y = 0
dy

dx

x+y = 0.
dy

dx

F F F

F F (x, y(x)) = C

Exact First Order Differential Equations -Exact First Order Differential Equations -……

Exact First Order Differential Equations -Exact First Order Differential Equations -……

 Example 2.9.1

2x+2y = 0
dy

dx
F

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98030?pdf
https://www.youtube.com/watch?v=Mj3y5B5voNk
https://www.youtube.com/watch?v=Mj3y5B5voNk
https://www.youtube.com/watch?v=_NX_DZ3as2c
https://www.youtube.com/watch?v=_NX_DZ3as2c


2.9.3 https://math.libretexts.org/@go/page/98030

If we know that this is an exact equation, we start looking for a potential function . We have  and . If 
exists, it must be such that . Integrate in the  variable to find

for some function . The function  is the , though it is only constant as far as  is concerned, and may still depend on .
Now differentiate  in  and set it equal to , which is what  is supposed to be:

Integrating, we find . We could add a constant of integration if we wanted to, but there is no need. We found 
. Next for a constant , we solve

for  in terms of . In this case, we obtain  as we did before.

Why did we not need to add a constant of integration when integrating ? Add a constant of integration, say , and
see what  you get. What is the difference from what we got above, and why does it not matter?

The procedure, once we know that the equation is exact, is:

i. Integrate  in  resulting in .
ii. Differentiate this  in , and set that equal to , so that we may find  by integration.

The procedure can also be done by first integrating in  and then differentiating in . Pretty easy huh? Let’s try this again.

Consider now .

OK, so  and . We try to proceed as before. Suppose  exists. Then . We integrate:

for some function . Differentiate in  and set equal to :

But there is no way to satisfy this requirement! The function  cannot be written as  plus a function of . The equation is not
exact; no potential function  exists.

But there is no way to satisfy this requirement! The function  cannot be written as  plus a function of . The equation is not
exact; no potential function  exists

Below is a video on solving an exact first order differential equation.

F M = 2x N = 2y F

(x, y) = 2xFx x

F (x, y) = +A(y),x2 (2.9.1)

A(y) A x y

(2.9.1) y N Fy

2y = (x, y) = (y).Fy A′

A(y) = y2

F (x, y) = +x2 y2 C

F (x, y(x)) = C.

y x y = ± −C 2 x2
− −−−−−−

√

 Exercise 2.9.1

(y) = 2yA′ 3
F

= MFx x F (x, y) = something +A(y)
F y N A(y)

y x

 Example 2.9.2

2x+y+xy = 0
dy

dx

M = 2x+y N = xy F (x, y) = 2x+yFx

F (x, y) = +xy+A(y)x2

A(y) y N

N = xy = (x, y) = x+ (y).Fy A′

xy x y

F

xy x y

F
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Below is another video on solving an exact first order differential equation.

Below is another video on solving an exact first order differential equation.

Below is another video on solving an exact first order differential equation.

Ex 1: Ex 1: Solve an Exact Differential EquationSolve an Exact Differential Equation

Ex 2: Ex 2: Solve an Exact Differential EquationSolve an Exact Differential Equation

Ex 3: Ex 3: Solve an Exact Differential EquationSolve an Exact Differential Equation
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Is there an easier way to check for the existence of , other than failing in trying to find it? Turns out there is. Suppose 
and . Then as long as the second derivatives are continuous,

Let us state it as a theorem. Usually this is called the Poincaré Lemma.

Pointcaré

If  and  are continuously differentiable functions of , and , then near any point there is a function 

such that  and .

The theorem doesn’t give us a global  defined everywhere. In general, we can only find the potential locally, near some initial
point. By this time, we have come to expect this from differential equations.

Let us return to Example  where  and . Notice  and , which are clearly not equal. The
equation is not exact.

Solve

Solution

We write the equation as

so  and . Then

The equation is exact. Integrating  in , we find

Differentiating in  and setting to , we find

Ex 4: Ex 4: Solve an Exact Differential EquationSolve an Exact Differential Equation

F M = Fx

N = Fy

= = = .
∂M

∂y

F∂2

∂y∂x

F∂2

∂x∂y

∂N

∂x

1

 Theorem 2.9.1

M N (x, y) =∂M
∂y

∂N
∂x

F (x, y)

M = ∂F
∂x

N = ∂F
∂y

F

2.9.2 M = 2x+y N = xy = 1My = yNx

 Example 2.9.3

= , y(0) = 1.
dy

dx

−2x−y

x−1

(2x+y) +(x−1) = 0,
dy

dx

M = 2x+y N = x−1

= 1 = .My Nx

M x

F (x, y) = +xy+A(y).x2

y N

x−1 = x+ (y).A′
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So , and  will work. Take . We wish to solve . First let us
find . As  then . Therefore , so . Now we solve  for 
to get

Solve

Solution

We leave to the reader to check that .

This vector field  is not conservative if considered as a vector field of the entire plane minus the origin. The problem is
that if the curve  is a circle around the origin, say starting at  and ending at  going counterclockwise, then if 
existed we would expect

That is nonsense! We leave the computation of the path integral to the interested reader, or you can consult your multivariable
calculus textbook. So there is no potential function  defined everywhere outside the origin .

If we think back to the theorem, it does not guarantee such a function anyway. It only guarantees a potential function locally,
that is only in some region near the initial point. As  we start at the point . Considering  and integrating 
in  or  in , we find

The implicit solution is . Solving, . That is, the solution is a straight line. Solving  gives
us that , and so  is the desired solution. See Figure , and note that the solution only exists for .

Figure : Solution to , , with initial point marked.

Solve

Solution

The reader should check that this equation is exact. Let  and . We follow the procedure for exact
equations

(y) = −1A′ A(y) = −y F (x, y) = +xy−yx2 +xy−y = Cx2

C y(0) = 1 F (0, 1) = C +0 ×1 −1 = C02 C = −1 +xy−y = −1x2 y

y = .
− −1x2

x−1

 Example 2.9.4

− dx+ dy = 0, y(1) = 2.
y

+x2 y2

x

+x2 y2

=My Nx

(M ,N)
γ (1, 0) (1, 0) F

0 = F (1, 0) −F (1, 0) = dx+ dy = dx+ dy = 2π.∫
γ

Fx Fy ∫
γ

−y

+x2 y2

x

+x2 y2

F (0, 0)

y(1) = 2 (1, 2) x > 0 M

x N y

F (x, y) = arctan( ).
y

x

arctan( ) = C
y

x
y = tan(C)x y(1) = 2

tan(C) = 2 y = 2x 2.9.1 x > 0

2.9.1 − dx+ dy = 0
y

+x2 y2

x

+x2 y2 y(1) = 2

 Example 2.9.5

+ +2y(x+1) = 0.x2 y2 dy

dx

M = +x2 y2 N = 2y(x+1)
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and

Therefore  or  and . We try to solve . We easily solve for 
and then just take the square root:

When , the term in front of  vanishes. You can also see that our solution is not valid in that case. However, one
could in that case try to solve for  in terms of  starting from the implicit solution . The solution is
somewhat messy and we leave it as implicit.

2.9.2: Integrating factors

Sometimes an equation  is not exact, but it can be made exact by multiplying with a function . That is,
perhaps for some nonzero function ,

is exact. Any solution to this new equation is also a solution to .

In fact, a linear equation

is always such an equation. Let  be the integrating factor for a linear equation. Multiply the equation by  and
write it in the form of .

Then , so , while , so . In other words, we have an
exact equation. Integrating factors for linear functions are just a special case of integrating factors for exact equations.

But how do we find the integrating factor ? Well, given an equation

 should be a function such that

Therefore,

At first it may seem we replaced one differential equation by another. True, but all hope is not lost.

A strategy that often works is to look for a  that is a function of  alone, or a function of  alone. If  is a function of  alone, that
is , then we write  instead of , and  is just zero. Then

In particular,  ought to be a function of  alone (not depend on ). If so, then we have a linear equation

F (x, y) = +x +A(y),
1

3
x3 y2

2y(x+1) = 2xy+ (y).A′

(y) = 2yA′ A(y) = y2 F (x, y) = +x +1
3
x3 y2 y2 F (x, y) = C y2

= , so y = ± .y2
C −( )1

3
x3

x+1

C −( )1
3
x3

x+1

− −−−−−−−−

√

x = −1
dy

dx

x y +x + = C1
3
x3 y2 y2

M dx+N dy = 0 u(x, y)
u(x, y)

u(x, y)M(x, y)dx+u(x, y)N(x, y)dy = 0

M dx+N dy = 0

+p(x)y = f(x), or (p(x)y−f(x)) dx+dy = 0
dy

dx

r(x) = e∫ p(x) dx r(x)

M +N = 0
dy

dx

r(x)p(x)y−r(x)f(x) +r(x) = 0.
dy

dx

M = r(x)p(x)y−r(x)f(x) = r(x)p(x)My N = r(x) = (x) = r(x)p(x)Nx r′

u

M dx+N dy = 0,

u

[uM] = M +u = [uN] = N +u .
∂

∂y
uy My

∂

∂x
ux Nx

( − )u = N − M .My Nx ux uy

u x y u x

u(x) (x)u′ ux uy
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Letting , we solve using the standard integrating factor method, to find . The constant in the
solution is not relevant, we need any nonzero solution, so we take . Then  is the integrating factor.

Similarly we could try a function of the form . Then

In particular,  ought to be a function of  alone. If so, then we have a linear equation

Letting , we find . We take . So  is the integrating factor.

Solve

Solution

Let  and . Compute

As this is not zero, the equation is not exact. We notice

is a function of  alone. We compute the integrating factor

We multiply our given equation by  to obtain

which is an exact equation that we solved in Example . The solution was

Solve

Solution

First compute

− u = 0.u′
−My Nx

N

P (x) =
−My Nx

N
u(x) = Ce∫ P(x) dx

C = 1 u(x) = e∫ P(x) dx

u(y)

u = − .
−My Nx

M
u′

−My Nx

M
y

+ u = 0.u′
−My Nx

M

Q(y) =
−My Nx

M
u(y) = Ce− ∫ Q(y) dy C = 1 u(y) = e− ∫ Q(y) dy

 Example 2.9.6

+2y = 0.
+x2 y2

x+1

dy

dx

M =
+x2 y2

x+1
N = 2y

− = −0 = .My Nx

2y

x+1

2y

x+1

P (x) = = =
−My Nx

N

2y

x+1

1

2y

1

x+1

x

= = x+1.e∫ P(x) dx eln(x+1)

(x+1)

+ +2y(x+1) = 0,x2 y2 dy

dx

2.9.5

y = ± .
C −( )1

3
x3

x+1

− −−−−−−−−

√

 Example 2.9.7
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As this is not zero, the equation is not exact. We observe

is a function of  alone. We compute the integrating factor

Therefore we look at the exact equation

The reader should double check that this equation is exact. We follow the procedure for exact equations

and

Consequently  or . Thus . It is not possible to solve  for  in terms of
elementary functions, so let us be content with the implicit solution:

We are looking for the general solution and we divided by  above. We should check what happens when , as the
equation itself makes perfect sense in that case. We plug in  to find the equation is satisfied. So  is also a solution.

2.9.3: Footnotes
[1] Named for the French polymath Jules Henri Poincaré (1854–1912).

2.9: Exact Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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2.10: First Order Linear PDE
We only considered ODE so far, so let us solve a linear first order PDE. Consider the equation

where  is a function of  and . The initial condition  is now a function of  rather than just a number. In
these problems, it is useful to think of  as position and  as time. The equation describes the evolution of a function of  as time
goes on. Below, the coefficients , , , and the function  are mostly going to be constant or zero. The method we describe works
with nonconstant coefficients, although the computations may get difficult quickly.

This method we use is the . The idea is that we find lines along which the equation is an ODE that we solve. We will see this
technique again for second order PDE when we encounter the wave equation in Section 4.8.

Consider the equation

This particular equation, , is called the transport equation.

The data will propagate along curves called characteristics. The idea is to change to the so-called characteristic coordinates. If
we change to these coordinates, the equation simplifies. The change of variables for this equation is

Let’s see what the equation becomes. Remember the chain rule in several variables.

The equation in the coordinates  and  becomes

or in other words

That is trivial to solve. Treating  as simply a parameter, we have obtained the ODE .

The solution is a function that does not depend on  (but it does depend on ). That is, there is some function  such that

The initial condition says that:

so . In other words,

Everything is simply moving right at speed  as  increases. The curve given by the equation

is called the characteristic. See Figure . In this case, the solution does not change along the characteristic.

a(x, t) +b(x, t) +c(x, t)u = g(x, t), u(x, 0) = f(x), −∞ < x < ∞, t > 0,ux ut

u(x, t) x t u(x, 0) = f(x) x

x t x

a b c g

 Example 2.10.1

+α = 0, u(x, 0) = f(x).ut ux

+α = 0ut ux

ξ = x−αt, s = t.

= + = −α + ,ut uξξt usst uξ us

= + = .ux uξξx ussx uξ
(2.10.1)

ξ s

+α = 0,(−α + )uξ us
  

ut

( )uξ
 
ux

= 0.us

ξ = 0du

ds

s ξ A

u = A(ξ) = A(x−αt).

f(x) = u(x, 0) = A(x−α0) = A(x),

A = f

u(x, t) = f(x−αt).

α t

ξ = constant
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Figure : Characteristic curves.

In the  coordinates, the characteristic curves satisfy , and are in fact lines. The slope of characteristic lines
is , and for each different  we get a different characteristic line.

We see why  is called the transport equation: everything travels at some constant speed. Sometimes this is called
. An example application is material being moved by a river where the material does not diffuse and is simply carried along. In
this setup,  is the position along the river,  is the time, and  the concentration the material at position  and time . See
Figure  for an example.

Figure : Example of “transport” in  (that is, ) where the initial condition  is a peak at the origin.
On the left is a graph of the initial condition . On the right is a graph of the function , that is at time .
Notice it is the same graph shifted one unit to the right.

We use similar idea in the more general case:

We change coordinates to the characteristic coordinates. Let us call these coordinates . These are coordinates where 
 becomes differentiation in the  variable.

Along the characteristic curves (where  is constant), we get a new ODE in the  variable. In the transport equation, we got the
simple . In general, we get the linear equation

We think of everything as a function of  and , although we are thinking of  as a parameter rather than an independent variable.
So the equation is an ODE. It is a linear ODE that we can solve using the integrating factor.

To find the characteristics, think of a curve given parametrically . We try to have the curve satisfy

Why? Because when we think of  and  as functions of  we find, using the chain rule,

So we get the ODE , which then describes the value of the solution  of the PDE along this characteristic curve. It is also
convenient to make sure that  corresponds to , that is . It will be convenient also for . See Figure 

.

2.10.1

(x, t) t = (x−ξ)1
α

1
α ξ

+α = 0ut ux

x t u(x, t) x t

2.10.2

2.10.2 − = 0ut ux α = 1 f(x)
u(x, 0) u(x, 1) t = 1

a +b +cu = g, u(x, 0) = f(x).ux ut

(ξ, s)

a +bux ut s

ξ s

= 0du

ds

+cu = g.
du

ds
(2.10.2)

ξ s ξ

(x(s), t(s))

= a, = b.
dx

ds

dt

ds

x t s

+cu = +cu = a +b +cu = g.
du

ds
( + )ux

dx

ds
ut

dt

ds
  

du

ds

ux ut

(2.10.2) u

s = 0 t = 0 t(0) = 0 x(0) = ξ
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Figure : General characteristic curve.

Consider

We find the characteristics, that is, the curves given by

So

for some  and . At  we want , and  should be . So we let  and :

The ODE is , and . So, the ODE to solve along the characteristic is

The general solution of this equation, treating  as a parameter, is , for some constant . At , our
initial condition is that  is , since at  we have . Given this initial condition, we find . So,

Substitute  and  to find  in terms of  and :

See Figure  for a plot of  as a function of two variables.

2.10.3

 Example 2.10.2

+ +u = x, u(x, 0) = .ux ut e−x2

= 1, = 1.
dx

ds

dt

ds

x = s+ , t = s+ ,c1 c2

c1 c2 s = 0 t = 0 x ξ = ξc1 = 0c2

x = s+ξ, t = s.

+u = xdu

ds
x = s+ξ

+u = s+ξ.
du

ds

ξ u = C +s+ξ−1e−s C s = 0

u e−ξ2

s = 0 x = ξ C = −ξ+1e−ξ2

u = ( −ξ+1) +s+ξ−1e−ξ2

e−s

= +(1 −ξ) +s+ξ−1.e− −sξ2

e−s
(2.10.3)

ξ = x− t s = t u x t

u = +(1 −ξ) +s+ξ−1e− −sξ2

e−s

= +(1 −x+ t) +x−1.e− −t(x−t)
2

e−t
(2.10.4)

2.10.4 u(x, t)
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Figure : Plot of the solution  to , .

When the coefficients are not constants, the characteristic curves are not going to be straight lines anymore.

Consider the following variable coefficient equation:

We find the characteristics, that is, the curves given by

So

At , we wish to get the line , and  should be . So

OK, the ODE we need to solve is

This is for a fixed . At , we should get that  is , so that is our initial condition. Consequently,

We make a few closing remarks. One thing to keep in mind is that we would get into trouble if the coefficient in front of , that is
the , is ever zero. Let us consider a quick example of what can go wrong:

This problem has no solution. If we had a solution, it would imply that , but 
. The problem is that the characteristic curve is now the line , and the solution is

already provided on that line!

As long as  is nonzero, it is convenient to ensure that  is positive by multiplying by  if necessary, so that positive  means
positive .

Another remark is that if  or  in the equation are variable, the computations can quickly get out of hand, as the expressions for
the characteristic coordinates become messy and then solving the ODE becomes even messier. In the examples above,  was

2.10.4 u(x, t) + +u = xux ut u(x, 0) = e−x2

 Example 2.10.3

x + +2u = 0, u(x, 0) = cos(x).ux ut (2.10.5)

= x, = 1.
dx

ds

dt

ds

x = , t = s+ .c1e
s c2

s = 0 t = 0 x ξ

x = ξ , t = s.es

+2u = 0.
du

ds

ξ s = 0 u cos(ξ)

u = cos(ξ) = cos(x ).e−2s e−2t e−t

ut
b

+u = 0, u(x, 0) = sin(x).ux

(x, 0) = cos(x)ux
(x, 0) +u(x, 0) = cos(x) +sin(x) ≠ 0ux t = 0

b b −1 s

t

a b

b
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always , meaning we got  in the characteristic coordinates. If  is not constant, your expression for  will be more
complicated.

Finding the characteristic coordinates is really a system of ODE in general if  depends on  or if  depends on . In that case, we
would need techniques of systems of ODE to solve, see Chapter 3 or Chapter 8. In general, if  and  are not linear functions or
constants, finding closed form expressions for the characteristic coordinates may be impossible.

Finally, the method of characteristics applies to nonlinear first order PDE as well. In the nonlinear case, the characteristics depend
not only on the differential equation, but also on the initial data. This leads to not only more difficult computations, but also the
formation of singularities where the solution breaks down at a certain point in time. An example application where first order
nonlinear PDE come up is traffic flow theory, and you have probably experienced the formation of singularities: traffic jams. But
we digress.

2.10: First Order Linear PDE is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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2.E: First order ODEs (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted
for a one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic
calculus sequence.

2.E.1: 1.1: Integrals as solutions

Solve for , and then solve for . Find  to answer the question.

Solve  for .

Solve  for .

Solve  for .

Solve  for .

Solve  for .

Solve  for .

Solve  for , .

A spaceship is traveling at the speed  /  (  is time in seconds). It is pointing directly away from earth and at time 
 it is 1000 kilometers from earth. How far from earth is it at one minute from time ?

Solve , . It is OK to leave your answer as a definite integral.

 Exercise 2.E. 1.1.1

v x x(10)

 Exercise 2.E. 1.1.2

= +x
dy

dx
x2 y(1) = 3

 Exercise 2.E. 1.1.3

= sin(5x)
dy

dx
y(0) = 2

 Exercise 2.E. 1.1.4

=
dy

dx

1

−1x2
y(0) = 0

 Exercise 2.E. 1.1.5

=y′ y3 y(0) = 1

 Exercise : (little harder)2.E. 1.1.6

= (y−1) (y+1)y′ y(0) = 3

 Exercise 2.E. 1.1.7

=
dy

dx

1

y+1
y(0) = 0

 Exercise : (harder)2.E. 1.1.8

= sinxy′′ y(0) = 0 (0) = 2y′

 Exercise 2.E. 1.1.9

2 +1t2 km
s t

t = 0 t = 0

 Exercise 2.E. 1.1.10

= sin( ) + t
dx

dt
t2 x(0) = 20
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A dropped ball accelerates downwards at a constant rate  meters per second squared. Set up the differential equation for the
height above ground  in meters. Then supposing , how long does it take for the ball to hit the ground.

Find the general solution of , and then .

Solve  and .

Answer

Solve , .

Answer

Solve , .

Answer

A

Sid is in a car traveling at speed  miles per hour away from Las Vegas, where  is in hours. At  the Sid is 10
miles away from Vegas. How far from Vegas is Sid  hours later?

Answer

Solve , , where  is a positive integer. Hint: You have to consider different cases.

Answer

If , then . If , then .

 Exercise 2.E. 1.1.11

9.8

h h(0) = 100 meters

 Exercise 2.E. 1.1.12

=y′ ex =y′ ey

 Exercise 2.E. 1.1.13

= +x
dy

dx
ex y(0) = 10

y = + +9ex x2

2

 Exercise 2.E. 1.1.14

=x′ 1

x2
x(1) = 1

x = (3t−2)1/3

 Exercise 2.E. 1.1.15

=x′ 1
cos(x)

x(0) = π

2

x = (t+1)sin−1

 Exercise 2.E. 1.1.16

10t+70 t t = 0

2

170

 Exercise 2.E. 1.1.17

=y′ y′′ y(0) = 1 n

n ≠ 1 y = ((1 −n)x+1)1/(1−n) n = 1 y = ex
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The rate of change of the volume of a snowball that is melting is proportional to the surface area of the snowball. Suppose the
snowball is perfectly spherical. The volume (in centimeters cubed) of a ball of radius  centimeters is . The surface area
is . Set up the differential equation for how the radius  is changing. Then, suppose that at time  minutes, the radius
is  centimeters. After  minutes, the radius is  centimeters. At what time  will the snowball be completely melted?

Answer

The equation is  for some constant . The snowball will be completely melted in  minutes from time .

Find the general solution to . How many distinct constants do you need?

Answer

, so  constants.

2.E.2: 1.2: Slope fields

Sketch slope field for . How do the solutions behave as  grows? Can you guess a particular solution by looking at
the slope field?

Sketch slope field for .

Sketch slope field for .

Is it possible to solve the equation  for ? Justify.

Is it possible to solve the equation  for ? Is the solution unique? Justify.

Match equations , ,  to slope fields. Justify.

a. 

 Exercise 2.E. 1.1.18

r )π4
3

r3

4πr2 r t = 0

10 5 8 t

= −Cr′ C 25 t = 0

 Exercise 2.E. 1.1.19

= 0y′′′′

y = A +B +Cx+Dx3 x2 4

 Exercise 2.E. 1.2.1

=y′ ex−y x

 Exercise 2.E. 1.2.2

=y′ x2

 Exercise 2.E. 1.2.3

=y′ y2

 Exercise 2.E. 1.2.4

=y′ xy

cos x y(0) = 1

 Exercise 2.E. 1.2.5

= yy′ |x|
−−

√ y(0) = 0

 Exercise 2.E. 1.2.6

= 1 −xy′ = x−2yy′ = x(1 −y)y′
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b. 

c. 

Take , , where  for all  and . If the solution exists for all , can you say what happens to 
 as  goes to positive infinity? Explain.

Take , .

a. Find two distinct solutions.
b. Explain why this does not violate Picard’s theorem.

Suppose . What will the slope field look like, explain and sketch an example, if you know the following about 
:

a.  does not depend on .
b.  does not depend on .
c.  for any number .
d.  and  for all .

Find a solution to , . Does Picard’s theorem apply?

Take an equation  for some function . Can you solve the problem for the initial condition 
, and if so what is the solution?

Suppose  is such that  for every  is continuous and  exists and is continuous for every  and .

a. Guess a solution given the initial condition .
b. Can graphs of two solutions of the equation for different initial conditions ever intersect?
c. Given , what can you say about the solution. In particular, can  for any ? Can  for any ? Why

or why not?

 Exercise : (challenging)2.E. 1.2.7

= f(x, y)y′ y(0) = 0 f(x, y) > 1 x y x

y(x) x

 Exercise : (challenging)2.E. 1.2.8

(y−x) = 0y′ x(0) = 0

 Exercise 2.E. 1.2.9

= f(x, y)y′

f(x, y)

f y

f x

f , (t, t) = 0 t

f(x, 0) = 0 f(x, 1) = 1 x

 Exercise 2.E. 1.2.10

= |y|y′ y(0) = 0

 Exercise 2.E. 1.2.11

= (y−2x)g(x, y) +2y′ g(x, y)

y(0) = 0

 Exercise : (challenging)2.E. 1.2.12

= f(x, y)y′ f(x, 1) = 0 x, f
∂f

∂y
x y

y(0) = 1

y(0) = 0 y(x) > 1 x y(x) = 1 x
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Sketch the slope field of . Can you visually find the solution that satisfies ?

Answer

 is a solution such that 

Is it possible to solve  for ? Is the solution unique?

Answer

Yes a solution exists. The equation is  where . The function  is continuous and ,

which is also continuous near . So a solution exists and is unique. (In fact,  is the solution.)

Is it possible to solve  for ?

Answer

No, the equation is not defined at .

Match equations , ,  to slope fields. Justify.

a. 

b. 

c. 

Answer
a. 

 Exercise 2.E. 1.2.13

=y′ y3 y(0) = 0

y = 0 y(0) = 0

 Exercise 2.E. 1.2.14

= xyy′ y(0) = 0

= f(x, y)y′ f(x, y) = xy f(x, y) = x
∂f

∂y

(0, 0) y = 0

 Exercise 2.E. 1.2.15

=y′ x

−1x2 y(1) = 0

(x, y) = (1, 0)

 Exercise 2.E. 1.2.16

= sinxy′ = cosyy′ = y cos(x)y′

= cosyy′
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b. 
c. 

Justification left to reader.

Suppose

Does ,  have a continuously differentiable solution? Does Picard apply? Why, or why not?

Answer

Picard does not apply as  is not continuous at . The equation does not have a continuously differentiable solution.
Suppose it did. Notice that . By the first derivative test,  for small positive . But then for those  we
would have , so clearly the derivative cannot be continuous.

Consider an equation of the form  for some continuous function , and an initial condition . Does a
solution exist for all ? Why or why not?

Answer

The solution is , and this does indeed exist for every .

2.E.3: 1.3: Separable Equations

Solve .

Solve .

Solve , for .

Solve , for .

Solve . Hint: Factor the right hand side.

= y cos(x)y′

= sinxy′

 Exercise : (tricky)2.E. 1.2.17

f(y) = {
0

1

if y > 0,

if y ≤ 0.

= f(y)y′ y(0) = 0

f y = 0

(0) = 1y′ y(x) > 0 x x

(x) = 0y′

 Exercise 2.E. 1.2.18

= f(x)y′ f y( ) =x0 y0

x

y(x) = f(s)ds+∫ x

x0
y0 x

 Exercise 2.E. 1.3.1

=y′ x
y

 Exercise 2.E. 1.3.2

= yy′ x2

 Exercise 2.E. 1.3.3

= ( −1)dx

dt
x2 x(0) = 0

 Exercise 2.E. 1.3.4

= x sin(t)dx

dt
x(0) = 1

 Exercise 2.E. 1.3.5

= xy+x+y+1
dy

dx
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Solve , where .

Solve , for .

Find an implicit solution for , for .

Find an explicit solution for , .

Find an explicit solution for , for .

Find an explicit solution for , . It is alright to leave a definite integral in your answer.

Suppose a cup of coffee is at 100 degrees Celsius at time , it is at 70 degrees at  minutes, and it is at 50 degrees at 
 minutes. Compute the ambient temperature.

Solve .

Answer

Solve , .

Answer

Find an implicit solution for  .

Answer

 Exercise 2.E. 1.3.6

x = y+2 yy′ x2 y(1) = 1

 Exercise 2.E. 1.3.7

=
dy

dx

+1y2

+1x2
y(0) = 1

 Exercise 2.E. 1.3.8

=
dy

dx

+1x2

+1y2 y(0) = 1

 Exercise 2.E. 1.3.9

= xy′ e−y y(0) = 1

 Exercise 2.E. 1.3.10

x =y′ e−y y(1) = 1

 Exercise 2.E. 1.3.11

= yy′ e−x2
y(0) = 1

 Exercise 2.E. 1.3.12

t = 0 t = 10

t = 20

 Exercise 2.E. 1.3.13

= 2xyy′

y = Cex
2

 Exercise 2.E. 1.3.14

= 3x −3x′ t2 t2 x(0) = 2

y = +1et
3

 Exercise 2.E. 1.3.15

=x′ 1
3 +1x2

x(0) = 1

+x = t+2x3
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Find an explicit solution to , .

Answer

Find an implicit solution to .

Answer

Take Example 1.3.3 with the same numbers:  degrees at ,  degrees at , and ambient temperature of  degrees.
Suppose these temperatures were measured with precision of  degrees. Given this imprecision, the time it takes the coffee
to cool to (exactly) 60 degrees is also only known in a certain range. Find this range. Hint: Think about what kind of error
makes the cooling time longer and what shorter.

Answer

The range is approximately  to  minutes.

A population  of rabbits on an island is modeled by , where the independent variable is time in months. At
time , there are  rabbits on the island.

a. Find the solution to the equation with the initial condition.
b. How many rabbits are on the island in  month,  months,  months,  months (round to the nearest integer)

Answer

a. .
b.  rabbits after one month,  after  months,  after  months,  after  months.

2.E.4: 1.4: Linear equations and the integrating factor

In the exercises, feel free to leave answer as a definite integral if a closed form solution cannot be found. If you can find a closed
form solution, you should give that.

Solve .

Solve .

 Exercise 2.E. 1.3.16

x =y′ y2 y(1) = 1

y = 1
1−ln x

 Exercise 2.E. 1.3.17

=y′ sin(x)

cos(y)

sin(y) = −cos(x) +C

 Exercise 2.E. 1.3.18

89 t = 0 85 t = 1 22

±0.5

7.45 12.15

 Exercise 2.E. 1.3.19

x = x−( )x′ 1
1000

x2

t = 0 40

1 5 10 15

x = 1000et

+24et

102 861 5 999 10 1000 15

 Exercise 2.E. 1.4.1

+xy = xy′

 Exercise 2.E. 1.4.2

+6y =y′ ex
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Solve  with .

Solve .

Solve  with .

Suppose there are two lakes located on a stream. Clean water flows into the first lake, then the water from the first lake flows
into the second lake, and then water from the second lake flows further downstream. The in and out flow from each lake is 
liters per hour. The first lake contains  thousand liters of water and the second lake contains  thousand liters of water. A
truck with  kg of toxic substance crashes into the first lake. Assume that the water is being continually mixed perfectly by
the stream.

a. Find the concentration of toxic substance as a function of time in both lakes.
b. When will the concentration in the first lake be below  per liter?
c. When will the concentration in the second lake be maximal?

Newton’s law of cooling states that  where  is the temperature,  is time,  is the ambient temperature, and 
 is a constant. Suppose that  for some constants  and . That is, the ambient temperature oscillates

(for example night and day temperatures).

a. Find the general solution.
b. In the long term, will the initial conditions make much of a difference? Why or why not?

Initially  grams of salt are dissolved in  liters of water. Brine with concentration of salt  grams of salt per liter is added at a
rate of  liters a minute. The tank is mixed well and is drained at  liters a minute. How long does the process have to continue
until there are  grams of salt in the tank?

Initially a tank contains  liters of pure water. Brine of unknown (but constant) concentration of salt is flowing in at  liter per
minute. The water is mixed well and drained at  liter per minute. In  minutes there are  grams of salt in the tank. What is
the concentration of salt in the incoming brine?

Solve .

Answer

 Exercise 2.E. 1.4.3

+3 y = sin(x)y′ x2 e−x3
y(0) = 1

 Exercise 2.E. 1.4.4

+cos(x) y = cos(x)y′

 Exercise 2.E. 1.4.5

+xy = 31
+1x2

y′ y(0) = 0

 Exercise 2.E. 1.4.6

500

100 200

500

0.001 kg

 Exercise 2.E. 1.4.7

= −k(x−A)dx

dt
x t A

k > 0 A = cos(ωt)A0 A0 ω

 Exercise 2.E. 1.4.8

5 20 2

3 3

20

 Exercise 2.E. 1.4.9

10 1

1 20 15

 Exercise 2.E. 1.4.10

+3 y+y′ x2 x2

y = C +e−x3 1
3
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Solve  with .

Answer

Suppose a water tank is being pumped out at . The water tank starts at  of clean water. Water with toxic substance is
flowing into the tank at , with concentration  at time . When the tank is half empty, how many grams of toxic
substance are in the tank (assuming perfect mixing)?

Answer

 grams

Suppose we have bacteria on a plate and suppose that we are slowly adding a toxic substance such that the rate of growth is
slowing down. That is, suppose that . If , find the population at .

Answer

A cylindrical water tank has water flowing in at  cubic meters per second. Let  be the area of the cross section of the tank in
meters. Suppose water is flowing from the bottom of the tank at a rate proportional to the height of the water level. Set up the
differential equation for , the height of the water, introducing and naming constants that you need. You should also give the
units for your constants.

Answer

, where  is a constant with units .

2.E.5: 1.5: Substitution
Hint: Answers need not always be in closed form.

Solve , with .

Solve , with .

Solve , with .

 Exercise 2.E. 1.4.11

+2 sin(2x)y = 2 sin(2x)y′ y(π/2) = 3

y = 2 +1ecos(2x)+1

 Exercise 2.E. 1.4.12

3 L
min

10 L

2 L
min

20t
g

L
t

250

 Exercise 2.E. 1.4.13

= (2 −0.1 t)PdP

dt
P (0) = 1000 t = 5

P (5) = 1000 = 1000 ≈ 6.31 ×e2×5−0.05×52

e8.75 106

 Exercise 2.E. 1.4.14

I A

h

A = I −khh′ k m2

s

 Exercise 2.E. 1.5.1

+y( −1) +x = 0y′ x2 y6 y(1) = 1

 Exercise 2.E. 1.5.2

2y +1 = +xy′ y2 y(0) = 1

 Exercise 2.E. 1.5.3

+xy =y′ y4 y(0) = 1
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Solve .

Solve .

Solve , with .

Solve , .

Answer

Solve , .

Answer

Solve , .

Answer

Solve .

Answer

2.E.6: 1.6: Autonomous equations

Consider .

a. Draw the phase diagram, find the critical points and mark them stable or unstable.
b. Sketch typical solutions of the equation.
c. Find  for the solution with the initial condition .

 Exercise 2.E. 1.5.4

y +x =y′ +x2 y2− −−−−−
√

 Exercise 2.E. 1.5.5

=y′ (x+y−1) 2

 Exercise 2.E. 1.5.6

=y′
−x2 y2

xy
y(1) = 2

 Exercise 2.E. 1.5.7

x +y+ = 0y′ y2 y(1) = 2

y = 2
3x−2

 Exercise 2.E. 1.5.8

x +y+x = 0y′ y(1) = 1

y = 3−x2

2x

 Exercise 2.E. 1.5.9

= −3xy2y′ y3 y(0) = 2

y = (7 +3x+1)e3x 1/3

 Exercise 2.E. 1.5.10

2y = +2xy′ e −y2 x2

y = −ln(C −x)x2− −−−−−−−−−−−
√

 Exercise 2.E. 1.6.1

=x′ x2

x(t)lim
t→∞

x(0) = −1
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Let .

a. Draw the phase diagram for . On this interval mark the critical points stable or unstable.
b. Sketch typical solutions of the equation.
c. Find  for the solution with the initial condition .

Suppose  is positive for , it is zero when  and , and it is negative for all other .

a. Draw the phase diagram for , find the critical points and mark them stable or unstable.
b. Sketch typical solutions of the equation.
c. Find  for the solution with the initial condition .

Start with the logistic equation . Suppose that we modify our harvesting. That is we will only harvest an
amount proportional to current population. In other words we harvest  per unit of time for some  (Similar to earlier
example with  replaced with ).

a. Construct the differential equation.
b. Show that if , then the equation is still logistic.
c. What happens when ?

A disease is spreading through the country. Let  be the number of people infected. Let the constant  be the number of people
susceptible to infection. The infection rate  is proportional to the product of already infected people, , and the number of
susceptible but uninfected people, .

a. Write down the differential equation.
b. Supposing , that is, some people are infected at time , what is .

c. Does the solution to part b) agree with your intuition? Why or why not?

Let .

a. Sketch the phase diagram and find critical points.
b. Classify the critical points.
c. If  then find .

Answer
a.  are critical points.
b.  is unstable (semistable),  is stable, and  is unstable.
c. 

Let .

a. Find and classify all critical points.
b. Find  given any initial condition.

 Exercise 2.E. 1.6.2

= sinxx′

−4π ≤ x ≤ 4π

x(t)lim
t→∞

x(0) = 1

 Exercise 2.E. 1.6.3

f(x) 0 < x < 1 x = 0 x = 1 x

= f(x)x′

x(t)lim
t→∞

x(0) = 0.5

 Exercise 2.E. 1.6.4

= kx(M −x)dx

dt

hx h > 0

h hx

kM > h

kM < h

 Exercise 2.E. 1.6.5

x S
dx

dt
x

S−x

x(0) > 0 t = 0 x(t)lim
t→∞

 Exercise 2.E. 1.6.6

= (x−1)(x−2)x′ x2

x(0) = 0.5 x(t)lim
t→∞

0, 1, 2

x = 0 x = 1 x = 2

1

 Exercise 2.E. 1.6.7

=x′ e−x

x(t)lim
t→∞
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Answer
a. There are no critical points.
b. 

Assume that a population of fish in a lake satisfies . Now suppose that fish are continually added at  fish
per unit of time.

a. Find the differential equation for .
b. What is the new limiting population?

Answer

a. 

b. 

Suppose  for two numbers .

a. Find the critical points, and classify them.

For b), c), d), find  based on the phase diagram.

b. ,
c. ,
d. .

Answer
1.  is a stable critical point,  is an unstable one.
2. 
3. 
4.  or DNE.

2.E.7: 1.7: Numerical methods: Euler’s method

Consider , . Use Euler’s method with step size  to approximate .

Consider , .

a. Use Euler’s method with step sizes  to approximate .
b. Solve the equation exactly.
c. Describe what happens to the errors for each  you used. That is, find the factor by which the error changed each time you

halved the interval.

Approximate the value of  by looking at the initial value problem  with  and approximating  using Euler’s
method with a step size of .

∞

 Exercise 2.E. 1.6.8

= kx(M −x)dx
dt

A

x

= kx(M −x) +Adx

dt

kM+ (kM +4Ak)
2√

2k

 Exercise 2.E. 1.6.9

= (x−α)(x−β)dx

dt
α < β

x(t)lim
t→∞

x(0) < α

α < x(0) < β

β < x(0)

α β

α

α

∞

 Exercise 2.E. 1.7.1

= (2t−xdx

dt
)2 x(0) = 2 h = 0.5 x(1)

 Exercise 2.E. 1.7.2

= t−xdx

dt
x(0) = 1

h = 1, , ,1
2

1
4

1
8

x(1)

h

 Exercise 2.E. 1.7.3

e = yy′ y(0) = 1 y(1)

0.2
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Example of numerical instability: Take , . We know that the solution should decay to zero as  grows.
Using Euler’s method, start with  and compute  to try to approximate . What happened? Now halve the
interval. Keep halving the interval and approximating  until the numbers you are getting start to stabilize (that is, until they
start going towards zero). Note: You might want to use a calculator.

The simplest method used in practice is the Runge-Kutta method. Consider ,  and a step size .
Everything is the same as in Euler’s method, except the computation of  and .

Consider , .

a. Use Runge-Kutta (see above) with step sizes  and  to approximate .
b. Use Euler’s method with  and .
c. Solve exactly, find the exact value of , and compare.

Let , and . Approximate  using Euler’s method with step sizes , , . Use a calculator and
compute up to  decimal digits.

Answer

Approximately: 

Let , and .

a. Approximate  using Euler’s method with step sizes , , and .
b. Solve exactly, and compute the errors.
c. Compute the factor by which the errors changed.

Answer
a. 
b.  so errors are: .
c. Factors are .

Let , and .

a. Approximate  using Euler’s method with step sizes , , and .
b. Guess an exact solution based on part a) and compute the errors.

Answer
a. 

 Exercise 2.E. 1.7.4

= −5yy′ y(0) = 1 x

h = 1 , , ,y1 y2 y3 y4 y(4)

y(4)

= f(x, y)
dy

dx
y( ) =x0 y0 h

yi+1 xi+1

k1

k2

k3

k4

= f( , ),xi yi

= f( + , + )xi
h

2
yi k1

h

2

= f( + , + )xi
h

2
yi k2

h

2
= f( +h, + h).xi yi k3

= +h,xi+1 xi

= + h,yi+1 yi
+2 +2 +k1 k2 k3 k4

6

(2.E.1)

 Exercise 2.E. 1.7.5

= y
dy

dx
x2 y(0) = 1

h = 1 h = 1
2

y(1)

h = 1 h = 1
2

y(1)

 Exercise 2.E. 1.7.6

= sin(xt)x′ x(0) = 1 x(1) 1 0.5 0.25

4

1.0000, 1.2397, 1.382

 Exercise 2.E. 1.7.7

= 2tx′ x(0) = 0

x(4) 4 2 1

0, 8, 12

x(4) = 16, 16, 8, 4

0.5, 0.5, 0.5

 Exercise 2.E. 1.7.8

= xx′ ext+1 x(0) = 0

x(4) 4 2 1

0, 0, 0
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b.  is a solution so errors are: .

There is a simple way to improve Euler’s method to make it a second order method by doing just one extra step. Consider 
, , and a step size . What we do is to pretend we compute the next step as in Euler, that is, we start with 

, we compute a slope , and then look at the point . Instead of letting our new point be 
, we compute the slope at that point, call it , and then take the average of  and , hoping that the average is

going to be closer to the actual slope on the interval from  to . And we are correct, if we halve the step, the error should go
down by a factor of . To summarize, the setup is the same as for regular Euler, except the computation of  and .

Consider , .

a. Use the improved Euler’s method (see above) with step sizes  and  to approximate .
b. Use Euler’s method with  and .
c. Solve exactly, find the exact value of .
d. Compute the errors, and the factors by which the errors changed.

Answer
a. Improved Euler:  for ,  for ,
b. Standard Euler:  for ,  for ,
c. , so  is approximately .
d. Approximate errors for improved Euler:  for , and  for . For standard Euler: 

for , and  for . Factor is approximately  for improved Euler, and  for standard Euler.

2.E.8: 1.8 Exact Equations

Solve the following exact equations, implicit general solutions will suffice:

a. 
b. 

c. 
d. 

Find the integrating factor for the following equations making them into exact equations:

a. 

b. 

c. 
d. 

x = 0 0, 0, 0

= f(x, y)
dy

dx
y( ) =x0 y0 h

( , )xi yi = f( , )k1 xi yi ( +h, + h)xi yi k1

( +h, + h)xi yi k1 k2 k1 k2

xi +hxi
= 422 yi+1 xi+1

= f( , ),k1 xi yi

= f( +h, + h),k2 xi yi k1

= +h,xi+1 xi

= + h.yi+1 yi
+k1 k2

2

(2.E.2)

 Exercise 2.E. 1.7.9

= x+y
dy

dx
y(0) = 1

h = 1
4

h = 1
8

y(1)

h = 1
4

h = 1
8

y(1)

y(1) ≈ 3.3897 h = 1/4 y(1) ≈ 3.4237 h = 1/8

y(1) ≈ 2.8828 h = 1/4 y(1) ≈ 3.1316 h = 1/8

y = 2 −x−1ex y(2) 3.4366

0.046852 h = 1/4 0.012881 h = 1/8 0.55375

h = 1/4 0.30499 h = 1/8 0.27 0.55

 Exercise 2.E. 1.8.1

(2xy+ )dx+( + +1)dy = 0x2 x2 y2

+ = 0x5 y5 dy

dx

+ +3x = 0ex y3 y2 dy

dx

(x+y) cos(x) +sin(x) +sin(x) = 0y′

 Exercise 2.E. 1.8.2

dx+ dy = 0exy
y

x
exy

dx+3x dy = 0
+ex y3

y2

4( +x)dx+ dy = 0y2 2x+2y2

y

2 sin(y)dx+x cos(y)dy = 0
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Suppose you have an equation of the form: .

a. Show it is exact.
b. Find the form of the potential function in terms of  and .

Suppose that we have the equation .

a. Is this equation exact?
b. Find the general solution using a definite integral.

Find the potential function  of the exact equation  in two different ways.

a. Integrate  in terms of  and then differentiate in  and set to .
b. Integrate  in terms of  and then differentiate in  and set to .

A function  is said to be a if .

a. Show if  is harmonic,  is an exact equation. So there exists (at least locally) the so-called function 
 such that  and .

Verify that the following  are harmonic and find the corresponding harmonic conjugates :

a. 
b. 
c. 

Solve the following exact equations, implicit general solutions will suffice:

a. 
b. 
c. 
d. 

Answer
a. 
b. 
c. 
d. 

Find the integrating factor for the following equations making them into exact equations:

a. 
b. 
c. 

 Exercise 2.E. 1.8.3

f(x) +g(y) = 0
dy

dx

f g

 Exercise 2.E. 1.8.4

f(x)dx−dy = 0

 Exercise 2.E. 1.8.5

F (x, y) dx+( +x) dy = 0
1+xy

x
1
y

M x y N

N y x M

 Exercise 2.E. 1.8.6

u(x, y) + = 0uxx uyy

u − dx+ dy = 0uy ux
v(x, y) = −vx uy =vy ux

u v

u = 2xy

u = cosyex

u = −3xx3 y2

 Exercise 2.E. 1.8.7

cos(x) +y +x = 0exy exyy′

(2x+y)dx+(x−4y)dy = 0

+ = 0ex ey
dy

dx

(3 +3y)dx+(3 +3x)dy = 0x2 y2

+sin(x) = Cexy

+xy−2 = Cx2 y2

+ = Cex ey

+3xy+ = Cx3 y3

 Exercise 2.E. 1.8.8

dx+3y dy = 01
y

dx− dy = 0e−x−y

( + ) dx+ dy = 0
cos(x)

y2

1
y

x

y2
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d. 

Answer
a. Integrating factor is , equation becomes .
b. Integrating factor is , equation becomes .
c. Integrating factor is , equation becomes .
d. Integrating factor is , equation becomes .

a. Show that every separable equation  can be written as an exact equation, and verify that it is indeed exact.
b. Using this rewrite  as an exact equation, solve it and verify that the solution is the same as it was in Example 1.3.1.

Answer
a. The equation is , and this is exact because , , so .

b. , leads to potential function , solving  leads to the same
solution as the example.

2.E.9: 1.9: First Order Linear PDE

Solve

a. , ,
b. , ,
c. , ,
d. , .

Solve , .

Solve , .

Solve , .

a. Find the characteristic coordinates for the following equations:  
, , ) , .

b. Solve the two equations using the coordinates.
c. Explain why you got the same solution, although the characteristic coordinates you found were different.

Solve , . Hint: Think a little out of the box.

(2y+ ) dx+(2y+x)dy = 0
y2

x

y dx+3 dy = 0y2

ex dx− dy = 0ex e−y

y2 (cos(x) +y)dx+xdy = 0

x (2xy+ )dx+( +2xy)dy = 0y2 x2

 Exercise 2.E. 1.8.9

= f(x)g(y)y′

= xyy′

−f(x)dx+ dy1

g(y)
M = −f(x) N = 1

g(y)
= 0 =My Nx

−xdx+ dy = 01
y F (x, y) = − +ln|y|x2

2
F (x, y) = C

 Exercise 2.E. 1.9.1

+9 = 0ut ux u(x, 0) = sin(x)

−8 = 0ut ux u(x, 0) = sin(x)

+π = 0ut ux u(x, 0) = sin(x)

+π +u = 0ut ux u(x, 0) = sin(x)

 Exercise 2.E. 1.9.2

+3 = 1ut ux u(x, 0) = x2

 Exercise 2.E. 1.9.3

+3 = xut ux u(x, 0) = ex

 Exercise 2.E. 1.9.4

+ +xu = 0ux ut u(x, 0) = cos(x)

 Exercise 2.E. 1.9.5

+ +u = 1ux ut u(x, 0) = cos(x) 2 +2 +2u = 2ux ut u(x, 0) = cos(x)

 Exercise 2.E. 1.9.6

(1 + ) + + u = 0x2 ut x2ux ex u(x, 0) = 0
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Solve

a. , ,
b. , .

Answer
a. 

b. 

Solve , .

Answer

Solve , .

Answer

This page titled 2.E: First order ODEs (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

1.E: First order ODEs (Exercises) has no license indicated.

 Exercise 2.E. 1.9.7

−5 = 0ut ux u(x, 0) = 1
1+x2

+2 = 0ut ux u(x, 0) = cos(x)

u = 1

1+(x+5t)2

u = cos(x−2t)

 Exercise 2.E. 1.9.8

+ + tu = 0ux ut u(x, 0) = cos(x)

u = cos(x− t)e− /2t2

 Exercise 2.E. 1.9.9

+ = 5ux ut u(x, 0) = x

u = x+4t
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1

CHAPTER OVERVIEW

3: Applications of First Order Equations
In this chapter, we consider applications of first order differential equations.

3.1: Growth and Decay

3.1E: Growth and Decay (Exercises)

3.2: Cooling and Mixing

3.2E: Cooling and Mixing (Exercises)

3.3: Elementary Mechanics

3.3E: Elementary Mechanics (Exercises)

Thumbnail: False color time-lapse video of E. coli colony growing on microscope slide. This growth can be model with first order
logistic equation. Added approximate scale bar based on the approximate length of 2.0 μm of E. coli bacteria. (CC BY-SA 4.0
International; Stewart EJ, Madden R, Paul G, Taddei F).

This page titled 3: Applications of First Order Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by William F. Trench.

https://libretexts.org/
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.01%3A_Growth_and_Decay
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.01%3A_Growth_and_Decay/3.1E%3A_Growth_and_Decay_(Exercises)
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.02%3A_Cooling_and_Mixing
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.02%3A_Cooling_and_Mixing/3.2E%3A_Cooling_and_Mixing_(Exercises)
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.03%3A_Elementary_Mechanics
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.03%3A_Elementary_Mechanics/3.3E%3A_Elementary_Mechanics_(Exercises)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030045
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations
https://creativecommons.org/licenses/by-nc-sa/3.0
http://ramanujan.math.trinity.edu/wtrench/index.shtml


3.1.1 https://math.libretexts.org/@go/page/98034
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3.1: Growth and Decay
This section begins with a discussion of exponential growth and decay, which you have probably already seen in
calculus. We consider applications to radioactive decay, carbon dating, and compound interest. We also consider more
complicated problems where the rate of change of a quantity is in part proportional to the magnitude of the quantity,
but is also influenced by other other factors for example, a radioactive substance is manufactured at a certain rate, but
decays at a rate proportional to its mass, or a saver makes regular deposits in a savings account that draws compound

interest.

Since the applications in this section deal with functions of time, we’ll denote the independent variable by . If  is a function of ,
 will denote the derivative of  with respect to ; thus,

Exponential Growth and Decay
One of the most common mathematical models for a physical process is the exponential model, where it is assumed that the rate of
change of a quantity  is proportional to ; thus

where  is the constant of proportionality.

From Example 2.1.3, the general solution of Equation  is

and the solution of the initial value problem

is

Since the solutions of  are exponential functions, we say that a quantity  that satisfies this equation grows exponentially
if , or decays exponentially if  (Figure 3.1.1 ).

Figure 3.1.1 : Exponential growth and decay

Radioactive Decay
Experimental evidence shows that radioactive material decays at a rate proportional to the mass of the material present. According
to this model the mass  of a radioactive material present at time  satisfies Equation , where  is a negative constant

t Q t

Q′ Q t

= .Q′ dQ

dt

Q Q

= aQ,Q
′ (3.1.1)

a

3.1.1

Q = ce
at

= aQ, Q( ) =Q
′

t0 Q0

Q = .Q0e
a(t− )t0 (3.1.2)

= aQQ′ Q

a > 0 a < 0

Q(t) t 3.1.1 a
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whose value for any given material must be determined by experimental observation. For simplicity, we’ll replace the negative
constant  by , where  is a positive number that we’ll call the decay constant of the material. Thus, Equation  becomes

If the mass of the material present at  is , the mass present at time  is the solution of

From Equation  with , the solution of this initial value problem is

The half–life  of a radioactive material is defined to be the time required for half of its mass to decay; that is, if , then

From Equation  with , Equation  is equivalent to

so

Taking logarithms yields

so the half-life is

(Figure 3.1.2 ). The half-life is independent of  and , since it is determined by the properties of material, not by the amount of
the material present at any particular time.

A radioactive substance has a half-life of 1620 years.

a. If its mass is now 4 g (grams), how much will be left 810 years from now?
b. Find the time  when 1.5 g of the substance remain.

Solution a

From Equation  with  and ,

where we determine  from Equation , with = 1620 years:

Substituting this in Equation  yields

a −k k 3.1.1

= −kQ.Q
′

t = t0 Q0 t

= −kQ, Q( ) = .Q
′

t0 Q0

3.1.2 a = −k

Q = .Q0e
−k(t− )t0 (3.1.3)

τ Q( ) =t0 Q0

Q(τ + ) = .t0
Q0

2
(3.1.4)

3.1.3 t = τ + t0 3.1.4

= ,Q0e
−kτ Q0

2

= .e−kτ 1

2

−kτ = ln = −ln2,
1

2

τ = ln2.
1

k
(3.1.5)

t0 Q0

 Example 3.1.1

t1

3.1.3 = 0t0 = 4Q0

Q = 4 ,e
−kt (3.1.6)

k 3.1.5 τ

k = = .
ln2

τ

ln2

1620

3.1.6

Q = 4 .e−(t ln 2)/1620 (3.1.7)
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Figure 3.1.2 : Half-life of a radioactive substance

Therefore the mass left after 810 years will be

Solution b

Setting  in Equation  and requiring that  yields

Dividing by 4 and taking logarithms yields

Since ,

Interest Compounded Continuously

Suppose we deposit an amount of money  in an interest-bearing account and make no further deposits or withdrawals for 
years, during which the account bears interest at a constant annual rate . To calculate the value of the account at the end of  years,
we need one more piece of information: how the interest is added to the account, or—as the bankers say—how it is compounded. If
the interest is compounded annually, the value of the account is multiplied by  at the end of each year. This means that after 
years the value of the account is

If interest is compounded semiannually, the value of the account is multiplied by  every 6 months. Since this occurs twice
annually, the value of the account after  years is

In general, if interest is compounded  times per year, the value of the account is multiplied  times per year by ;
therefore, the value of the account after  years is

Q(810) = 4 = 4e−(810 ln 2)/1620 e−(ln 2)/2

= 2  g.2
–

√

t = t1 3.1.7 Q( ) = 1.5t1

= 4 .
3

2
e(− ln 2)/1620t1

ln = − .
3

8

ln2t1

1620

ln3/8 = −ln8/3

= 1620 ≈ 2292.4  years.t1
ln8/3

ln2

Q0 t

r t

1 +r t

Q(t) = (1 +r .Q0 )t

(1 +r/2)
t

Q(t) = .Q0(1 + )
r

2

2t

n n (1 +r/n)
t

Q(t) = .Q0(1 + )
r

n

nt

(3.1.8)
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Thus, increasing the frequency of compounding increases the value of the account after a fixed period of time. Table 3.1.1 shows
the effect of increasing the number of compoundings over  years on an initial deposit of  (dollars), at an annual
interest rate of 6%.

Table 3.1.1 : The effect of compound interest

 (number of compoundings per year)  (value in dollars after 5 years)

1 $133.82

2 $134.39

4 $134.68

8 $134.83

364 $134.98

You can see from Table 3.1.1 that the value of the account after 5 years is an increasing function of . Now suppose the maximum
allowable rate of interest on savings accounts is restricted by law, but the time intervals between successive compoundings isn’t;
then competing banks can attract savers by compounding often. The ultimate step in this direction is to compound continuously, by
which we mean that  in Equation . Since we know from calculus that

this yields

 

Observe that  is the solution of the initial value problem

that is, with continuous compounding the value of the account grows exponentially.

Below is a video on exponential growth models and differential equations.

Below is a video on solving a differential equation that models exponential growth.

t = 5 = 100Q0

n $100(1 + ).06
n

5n

n

n → ∞ 3.1.8

= ,lim
n→∞
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r

n

n

er

Q(t) = =limn→∞ Q0 (1 + )rn
nt

Q0[ ]limn→∞ (1 + )rn
n t

= .Q0e
rt

Q = Q0e
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= rQ, Q(0) = ;Q
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If $150 is deposited in a bank that pays % annual interest compounded continuously, the value of the account after  years is

dollars. (Note that it is necessary to write the interest rate as a decimal; thus, .) Therefore, after  years the value
of the account is

We wish to accumulate $10,000 in 10 years by making a single deposit in a savings account bearing % annual interest
compounded continuously. How much must we deposit in the account?

Solution

The value of the account at time  is

Since we want  to be $10,000, the initial deposit  must satisfy the equation

obtained by setting  and  in Equation . Solving Equation  for  yields

Below is a video on modeling carbon 14 with a differential equation.

Exponential Growth Models - Part 2 of 2Exponential Growth Models - Part 2 of 2

   Example 3.1.2

5 1
2

t

Q(t) = 150e.055t

r = .055 t = 10

Q(10) = 150 ≈ $259.99.e
.55

 Example 3.1.3

5 1
2

t

Q(t) = .Q0e
.055t (3.1.9)

Q(10) Q0

10000 = ,Q0e
.55 (3.1.10)

t = 10 Q(10) = 10000 3.1.9 3.1.10 Q0

= 10000 ≈ $5769.50.Q0 e
−.55
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Below is a video on defining and differential equations that model continuous compound interest.

Mixed Growth and Decay

A radioactive substance with decay constant  is produced at a constant rate of  units of mass per unit time.

a. Assuming that , find the mass  of the substance present at time .
b. Find .

Solution a:

Here

The rate of increase is the constant . Since  is radioactive with decay constant , the rate of decrease is . Therefore

This is a linear first order differential equation. Rewriting it and imposing the initial condition shows that  is the solution of
the initial value problem

Since  is a solution of the complementary equation, the solutions of Equation  are of the form , where 
, so . Hence,

Exponential Decay Models - Part 1 of 2Exponential Decay Models - Part 1 of 2

Exponential Decay Models - Part 2 of 2Exponential Decay Models - Part 2 of 2

 Example 3.1.4

k a

Q(0) = Q0 Q(t) t

Q(t)limt→∞
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a Q k kQ

= a−kQ.Q′

Q

+kQ = a, Q(0) = .Q
′

Q0 (3.1.11)
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Figure 3.1.3 :  approaches the steady state value  as 

and

Since , setting  here yields

Therefore

b. Since , , so from Equation 

This limit depends only on  and , and not on . We say that  is the steady state value of . From Equation  we
also see that  approaches its steady state value from above if , or from below if . If , then 
remains constant (Figure 3.1.3 ).

Carbon Dating
The fact that  approaches a steady state value in the situation discussed in Example 4 underlies the method of carbon dating,
devised by the American chemist and Nobel Prize Winner W.S. Libby.

Carbon 12 is stable, but carbon-14, which is produced by cosmic bombardment of nitrogen in the upper atmosphere, is radioactive
with a half-life of about 5570 years. Libby assumed that the quantity of carbon-12 in the atmosphere has been constant throughout
time, and that the quantity of radioactive carbon-14 achieved its steady state value long ago as a result of its creation and
decomposition over millions of years. These assumptions led Libby to conclude that the ratio of carbon-14 to carbon-12 has been
nearly constant for a long time. This constant, which we denote by , has been determined experimentally.

Living cells absorb both carbon-12 and carbon-14 in the proportion in which they are present in the environment. Therefore the
ratio of carbon-14 to carbon-12 in a living cell is always . However, when the cell dies it ceases to absorb carbon, and the ratio of
carbon-14 to carbon-12 decreases exponentially as the radioactive carbon-14 decays. This is the basis for the method of carbon
dating, as illustrated in the next example.

An archaeologist investigating the site of an ancient village finds a burial ground where the amount of carbon-14 present in
individual remains is between 42 and 44% of the amount present in live individuals. Estimate the age of the village and the

Q(t) a

k
t → ∞

Q = u = +c .e−kt a

k
e−kt

Q(0) = Q0 t = 0

= +c or c = − .Q0
a

k
Q0

a

k

Q = +( − ) .
a

k
Q0

a

k
e

−kt (3.1.12)

k > 0 = 0limt→∞ e−kt 3.1.12

Q(t) = .lim
t→∞

a

k

a k Q0 a/k Q 3.1.12
Q > a/kQ0 < a/kQ0 = a/kQ0 Q

Q

R
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length of time for which it survived.

Solution

Let  be the quantity of carbon-14 in an individual set of remains  years after death, and let  be the quantity that
would be present in live individuals. Since carbon-14 decays exponentially with half-life 5570 years, its decay constant is

Therefore

if we choose our time scale so that  is the time of death. If we know the present value of  we can solve this equation
for , the number of years since death occurred. This yields

It is given that  in the remains of individuals who died first. Therefore these deaths occurred about

years ago. For the most recent deaths, ; hence, these deaths occurred about

years ago. Therefore it is reasonable to conclude that the village was founded about 7000 years ago, and lasted for about 400
years.

A Savings Program

A person opens a savings account with an initial deposit of $1000 and subsequently deposits $50 per week. Find the value 
 of the account at time , assuming that the bank pays 6% interest compounded continuously.

Solution

Observe that  isn’t continuous, since there are 52 discrete deposits per year of $50 each. To construct a mathematical model
for this problem in the form of a differential equation, we make the simplifying assumption that the deposits are made
continuously at a rate of $2600 per year. This is essential, since solutions of differential equations are continuous functions.
With this assumption,  increases continuously at the rate

and therefore  satisfies the differential equation

(Of course, we must recognize that the solution of this equation is an approximation to the true value of  at any given time.
We’ll discuss this further below.) Since  is a solution of the complementary equation, the solutions of Equation  are
of the form , where . Hence, ,

and

Q = Q(t) t Q0

k = .
ln2

5570

Q = Q0e
−t(ln 2)/5570

= 0t0 Q

t

t = −5570 .
lnQ/Q0

ln2

Q = .42Q0

= −5570 ≈ 6971t1
ln .42

ln2

Q = .44Q0

= −5570 ≈ 6597t2
ln .44

ln2

 Example 3.1.6 :
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= 2600 +0.06QQ′

Q
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′ (3.1.13)

Q

e.06t 3.1.13
Q = ue.06t = 2600u′e.06t = 2600u′ e−.06t
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e
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Setting  and  here yields

and substituting this into Equation  yields

where the first term is the value due to the initial deposit and the second is due to the subsequent weekly deposits.

Mathematical models must be tested for validity by comparing predictions based on them with the actual outcome of experiments.
Example 6 is unusual in that we can compute the exact value of the account at any specified time and compare it with the
approximate value predicted by Equation  (See Exercise 4.1.21). The following table gives a comparison for a ten year
period. Each exact answer corresponds to the time of the year-end deposit, and each year is assumed to have exactly 52 weeks.

Table 3.1.3

Year
Approximate Value of 

(Example 3.1.6 )
Exact Value of 
(Exercise 4.1.21) Error 

Percentage Error 

This page titled 3.1: Growth and Decay is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F.
Trench.

t = 0 Q = 1000

c = 1000 + ,
2600

0.06

3.1.14

Q = 1000 + ( −1)e.06t 2600

.06
e.06t (3.1.15)

3.1.15

Q P
Q − P

(Q − P)/P

1 $3741.42 $3739.87 $1.55 .0413

2 6652.36 6649.17 3.19 .0479

3 9743.30 9738.37 4.93 .0506

4 13,025.38 13,018.60 6.78 .0521

5 16,510.41 16,501.66 8.75 .0530

6 20,210.94 20,200.11 10.83 .0536

7 24,140.30 24,127.25 13.05 .0541

8 28,312.63 28,297.23 15.40 .0544

9 32,742.97 32,725.07 17.90 .0547

10 37,447.27 37,426.72 20.55 .0549
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3.1E: Growth and Decay (Exercises)

Q4.1.1

1. The half-life of a radioactive substance is 3200 years. Find the quantity  of the substance left at time  if  g.

2. The half-life of a radioactive substance is 2 days. Find the time required for a given amount of the material to decay to 1/10 of its
original mass.

3. A radioactive material loses 25% of its mass in 10 minutes. What is its half-life?

4. A tree contains a known percentage  of a radioactive substance with half-life . When the tree dies the substance decays and
isn’t replaced. If the percentage of the substance in the fossilized remains of such a tree is found to be , how long has the tree
been dead?

5. If  and  are the times required for a radioactive material to decay to  and  times its original mass (respectively), how
are  and  related?

6. Find the decay constant  for a radioactive substance, given that the mass of the substance is  at time  and  at time .

7. A process creates a radioactive substance at the rate of 2 g/hr and the substance decays at a rate proportional to its mass, with
constant of proportionality . If  is the mass of the substance at time , find .

8. A bank pays interest continuously at the rate of 6%. How long does it take for a deposit of  to grow in value to ?

9. At what rate of interest, compounded continuously, will a bank deposit double in value in 8 years?

10. A savings account pays 5% per annum interest compounded continuously. The initial deposit is  dollars. Assume that there
are no subsequent withdrawals or deposits.

a. How long will it take for the value of the account to triple?
b. What is  if the value of the account after 10 years is $100,000 dollars?

11. A candymaker makes 500 pounds of candy per week, while his large family eats the candy at a rate equal to  pounds
per week, where  is the amount of candy present at time .

a. Find  for  if the candymaker has 250 pounds of candy at .
b. Find .

12. Suppose a substance decays at a yearly rate equal to half the square of the mass of the substance present. If we start with 50 g of
the substance, how long will it be until only 25 g remain?

13. A super bread dough increases in volume at a rate proportional to the volume  present. If  increases by a factor of 10 in 2
hours and , find  at any time . How long will it take for  to increase to ?

14. A radioactive substance decays at a rate proportional to the amount present, and half the original quantity  is left after 1500
years. In how many years would the original amount be reduced to ? How much will be left after 2000 years?

15. A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant steals it continuously at the rate of 5% of
however much is there per hour. Let  be the number of ounces that the wizard has at time . Find  and  if 

.

16. A process creates a radioactive substance at the rate of 1 g/hr, and the substance decays at an hourly rate equal to 1/10 of the
mass present (expressed in grams). Assuming that there are initially 20 g, find the mass  of the substance present at time , and
find .

17. A tank is empty at . Water is added to the tank at the rate of 10 gal/min, but it leaks out at a rate (in gallons per minute)
equal to the number of gallons in the tank. What is the smallest capacity the tank can have if this process is to continue forever?

18. A person deposits $25,000 in a bank that pays 5% per year interest, compounded continuously. The person continuously
withdraws from the account at the rate of $750 per year. Find , the value of the account at time  after the initial deposit.

19. A person has a fortune that grows at rate proportional to the square root of its worth. Find the worth  of the fortune as a
function of  if it was $1 million 6 months ago and is $4 million today.
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20. Let  be the quantity of a product present at time . The product is manufactured continuously at a rate proportional to 
, with proportionality constant 1/2, and it is consumed continuously at a rate proportional to , with proportionality constant 1/8.

Find  if .

21.

a. In the situation of Example 4.1.6 find the exact value P(t) of the person’s account after t years, where t is an integer. Assume that
each year has exactly 52 weeks, and include the year-end deposit in the computation.

HINT: At time t the initial $1000 has been on deposit for  years. There have been  deposits of $  each. The first $  has been
on deposit for  years, the second for  years ... in general, the j th $  has been on deposit for  years (

). Find the present value of each $  deposit assuming % interest compounded continuously, and use the formula

to find their total value.

b. Let

be the relative error after  years. Find

22. A homebuyer borrows  dollars at an annual interest rate , agreeing to repay the loan with equal monthly payments of 
dollars per month over  years.

a. Derive a differential equation for the loan principal (amount that the homebuyer owes)  at time , making the
simplifying assumption that the homebuyer repays the loan continuously rather than in discrete steps. (See Example 4.1.6.)

b. Solve the equation derived in (a).

c. Use the result of (b) to determine an approximate value for  assuming that each year has exactly 12 months of equal length.

d. It can be shown that the exact value of  is given by

Compare the value of  obtained from the answer in (c) to the exact value if (i) , \(r=7{1\over2}\)%,  (ii) 
, %, .

23. Assume that the homebuyer of Exercise 4.1.22 elects to repay the loan continuously at the rate of  dollars per month, where
 is a constant greater than 1. (This is called accelerated payment.)

a. Determine the time  when the loan will be paid off and the amount  that the homebuyer will save.
b. Suppose , %, and . Compute the savings realized by accelerated payments with ,

and .

24. A benefactor wishes to establish a trust fund to pay a researcher’s salary for  years. The salary is to start at  dollars per year
and increase at a fractional rate of  per year. Find the amount of money  that the benefactor must deposit in a trust fund paying
interest at a rate  per year. Assume that the researcher’s salary is paid continuously, the interest is compounded continuously, and
the salary increases are granted continuously.

25. A radioactive substance with decay constant  is produced at the rate of

units of mass per unit time, where  and  are positive constants and  is the mass of the substance present at time ; thus, the
rate of production is small at the start and tends to slow when  is large.
a. Set up a differential equation for .

p = p(t) t

p p2

p(t) p(0) = 100

t 52t 50 50

t −1/52 t −2/52 50 t −j/52

1 ≤ j ≤ 52t 50 6

1 +x + +. . . + = (x ≠ 1)x2 xn 1 −xn+1

1 −x
(3.1E.1)

p(t) =
Q(t) −P (t)

P (t)
(3.1E.2)

t

p(∞) = p(t).lim
t→∞

(3.1E.3)

P0 r M

N

P (t) t > 0

M

M

M = .
rP0

12
(1 −(1 +r/12 ))−12N −1

(3.1E.4)

M = $50, 000P0 N = 20
= $150, 000P0 r = 9.0 N = 30

αM

α

T (α) S(α)

= $50, 000P0 r = 8 N = 15 α = 1.05, 1.10

1.15

T S0

a P0

r

k

at

1 +btQ(t)
(3.1E.5)
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b. Choose your own positive values for , , , and . Use a numerical method to discover what happens to  as 
. (Be precise, expressing your conclusions in terms of , , . However, no proof is required.)

26. Follow the instructions of Exercise 4.1.25, assuming that the substance is produced at the rate of  units of
mass per unit of time.

27. Follow the instructions of Exercise 4.1.25, assuming that the substance is produced at the rate of  units of mass per
unit of time.

This page titled 3.1E: Growth and Decay (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
William F. Trench.

4.1E: Growth and Decay (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

a b k = Q(0)Q0 Q(t)

t → ∞ a b k

at/(1 +bt(Q(t) ))2

at/(1 +bt)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/98035?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.01%3A_Growth_and_Decay/3.1E%3A_Growth_and_Decay_(Exercises)
https://creativecommons.org/licenses/by-nc-sa/3.0
http://ramanujan.math.trinity.edu/wtrench/index.shtml
https://math.libretexts.org/@go/page/18273
http://ramanujan.math.trinity.edu/wtrench/index.shtml
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://digitalcommons.trinity.edu/mono/9


3.2.1 https://math.libretexts.org/@go/page/98036

3.2: Cooling and Mixing

Newton’s Law of Cooling

Newton’s law of cooling states that if an object with temperature  at time  is in a medium with temperature , the rate of
change of  at time  is proportional to ; thus,  satisfies a differential equation of the form

Here , since the temperature of the object must decrease if , or increase if . We’ll call  the temperature
decay constant of the medium.

For simplicity, in this section we’ll assume that the medium is maintained at a constant temperature . This is another example of
building a simple mathematical model for a physical phenomenon. Like most mathematical models it has its limitations. For
example, it is reasonable to assume that the temperature of a room remains approximately constant if the cooling object is a cup of
coffee, but perhaps not if it is a huge cauldron of molten metal. (For more on this see Exercise 4.2.17.)

To solve Equation , we rewrite it as

Since  is a solution of the complementary equation, the solutions of this equation are of the form , where 
, so . Hence,

so

If , setting  here yields , so

Note that  decays exponentially, with decay constant .

Below is a video on Newton's Law of Cooling.

A ceramic insulator is baked at C and cooled in a room in which the temperature is C. After 4 minutes the temperature
of the insulator is C. What is its temperature after 8 minutes?

Solution

Here  and , so Equation  becomes

T (t) t (t)Tm

T t T (t) − (t)Tm T

= −k(T − ).T ′ Tm (3.2.1)

k > 0 T > Tm T < Tm k

Tm

3.2.1

+kT = k .T ′ Tm

e−kt T = ue−kt

= ku′e−kt Tm = ku′ Tmekt

u = +c,Tmekt

T = u = +c .e
−kt

Tm e
−kt

T (0) = T0 t = 0 c = −T0 Tm

T = +( − ) .Tm T0 Tm e−kt (3.2.2)

T −Tm k

Applications of First Order Differential EApplications of First Order Differential E……
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400∘ 25∘

200∘

= 400T0 = 25Tm 3.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/98036?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/03%3A_Applications_of_First_Order_Equations/3.02%3A_Cooling_and_Mixing
https://www.youtube.com/watch?v=wEUuaB1esN4
https://www.youtube.com/watch?v=wEUuaB1esN4


3.2.2 https://math.libretexts.org/@go/page/98036

We determine  from the stated condition that ; that is,

hence,

Taking logarithms and solving for  yields

Substituting this into Equation  yields

(Figure 3.2.1 ). Therefore the temperature of the insulator after 8 minutes is

An object with temperature F is placed outside, where the temperature is F. At 11:05 the temperature of the object is 
F and at 11:07 its temperature is F. At what time was the object placed outside?

Solution

Let  be the temperature of the object at time . For convenience, we choose the origin  of the time scale to be 11:05 so
that . We must determine the time  when . Substituting  and  into Equation  yields

or

Figure 3.2.1 : 

T = 25 +375 .e
−kt (3.2.3)

k T (4) = 200

200 = 25 +375 ;e−4k

= = .e
−4k 175

375

7

15

k

k = − ln = ln .
1

4

7

15

1

4

15

7

3.2.3

T = 25 +375e− ln
t

4

15

7

T (8) = 25 +375e
−2 ln

15

7

= 25 +375 ≈ C.( )7
15

2
107∘

 Example 3.2.2
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We obtain  from the stated condition that the temperature of the object is 50 F at 11:07. Since 11:07 is  on our time scale,
we can determine  by substituting  and  into Equation  to obtain

This is shown in Figure 3.2.2 .

Hence,

Taking logarithms and solving for  yields

Substituting this into Equation  yields

and the condition  implies that

hence,

Taking logarithms and solving for  yields

Figure 3.2.2 : 

Therefore the object was placed outside about 2 minutes and 5 seconds before 11:05; that is, at 11:02:55.

Mixing Problems

In the next two examples a saltwater solution with a given concentration (weight of salt per unit volume of solution) is added at a
specified rate to a tank that initially contains saltwater with a different concentration. The problem is to determine the quantity of
salt in the tank as a function of time. This is an example of a mixing problem. To construct a tractable mathematical model for
mixing problems we assume in our examples (and most exercises) that the mixture is stirred instantly so that the salt is always
uniformly distributed throughout the mixture. Exercises 4.2.22 and 4.2.23 deal with situations where this isn’t so, but the
distribution of salt becomes approximately uniform as .

k ∘ t = 2

k T = 50 t = 2 3.2.4

50 = −20 +80e
−2k

= = .e
−2k 70

80

7

8

k

k = − ln = ln .
1

2

7

8

1

2

8

7

3.2.4
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2

8

7

T (τ) = 72
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= = .e− ln
τ

2

8

7
92
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2 ln 23
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A tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting at , water that contains 1/2 pound
of salt per gallon is poured into the tank at the rate of 4 gal/min and the mixture is drained from the tank at the same rate
(Figure 3.2.3 ).

a. Find a differential equation for the quantity  of salt in the tank at time , and solve the equation to determine .
b. Find .

 

Solution a

To find a differential equation for , we must use the given information to derive an expression for . But  is the rate of
change of the quantity of salt in the tank changes with respect to time; thus, if rate in denotes the rate at which salt enters the
tank and rate out denotes the rate by which it leaves, then

Figure 3.2.3 : A mixing problem

The rate in is

Determining the rate out requires a little more thought. We’re removing 4 gallons of the mixture per minute, and there are
always 600 gallons in the tank; that is, we are removing  of the mixture per minute. Since the salt is evenly distributed in
the mixture, we are also removing  of the salt per minute. Therefore, if there are  pounds of salt in the tank at time 
, the rate out at any time  is . Alternatively, we can arrive at this conclusion by arguing that

We can now write Equation  as

This first order equation can be rewritten as

Since  is a solution of the complementary equation, the solutions of this equation are of the form , where 
, so . Hence,

 Example 3.2.3

= 0t0

Q(t) t > 0 Q(t)

Q(t)limt→∞

Q Q′ Q′

= rate in−rate out.Q
′ (3.2.5)

(  lb/gal)×(4 gal/min) = 2 lb/min.
1

2

1/150

1/150 Q(t)

t t Q(t)/150

rate out = (concentration) ×(rate of flow out)

= (lb/gal) ×(gal/min)

= ×4
Q(t)

600

= .
Q(t)

150

3.2.5

= 2 − .Q
′ Q

150

+ = 2.Q′ Q
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Figure 3.2.4 : 

so

(Figure 3.2.4 ). Since , ; therefore,

Solution b

From Equation , we see that that  for any value of . This is intuitively reasonable, since the
incoming solution contains 1/2 pound of salt per gallon and there are always 600 gallons of water in the tank.

Below is a video on mixing.

A 500-liter tank initially contains 10 g of salt dissolved in 200 liters of water. Starting at , water that contains 1/4 g of
salt per liter is poured into the tank at the rate of 4 liters/min and the mixture is drained from the tank at the rate of 2 liters/min
(Figure [figure:4.2.5}). Find a differential equation for the quantity  of salt in the tank at time  prior to the time when the
tank overflows and find the concentration  (g/liter) of salt in the tank at any such time.

Solution

We first determine the amount  of solution in the tank at any time  prior to overflow. Since  and we are adding 4
liters/min while removing only 2 liters/min, there’s a net gain of 2 liters/min in the tank; therefore,

u = 300 +c,et/150

Q = 300 − 260e−t/150

Q = u = 300 +ce
−t/150

e
−t/150 (3.2.6)

Q(0) = 40 c = −260

Q = 300 −260 .e
−t/150

3.2.6 Q(t) = 300limt→∞ Q(0)

Applications of First Order Differential EApplications of First Order Differential E……

 Example 3.2.4
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Since  liters (capacity of the tank), this formula is valid for .

Now let  be the number of grams of salt in the tank at time , where . As in Example 3.2.3

Figure 3.2.5 : Another mixing problem

The rate in is

To determine the rate out, we observe that since the mixture is being removed from the tank at the constant rate of 2 liters/min and
there are  liters in the tank at time , the fraction of the mixture being removed per minute at time  is

We’re removing this same fraction of the salt per minute. Therefore, since there are  grams of salt in the tank at time ,

Alternatively, we can arrive at this conclusion by arguing that

Substituting Equation  and Equation  into Equation  yields

By separation of variables,  is a solution of the complementary equation, so the solutions of Equation  are of the
form

Hence,

Since  and , Equation  implies that

so

W (t) = 2t +200.

W (150) = 500 0 ≤ t ≤ 150

Q(t) t 0 ≤ t ≤ 150

= rate in−rate out.Q
′ (3.2.7)

(  g/liter)×(4 liters/min ) = 1 g/min.
1

4
(3.2.8)

2t +200 t t

= .
2

2t +200

1

t +100

Q(t) t

rate out = .
Q(t)

t +100
(3.2.9)

rate out =

=

(concentration) ×(rate of flow out) = (g/liter) ×(liters/min)

×2 = .
Q(t)

2t+200

Q(t)

t+100

3.2.8 3.2.9 3.2.7

= 1 − , so + Q = 1.Q′ Q

t +100
Q′ 1

t +100
(3.2.10)

1/(t +100) 3.2.10

Q = , where , so = t +100.
u

t +100

u′

t +100 = 1
u′

u = +c.
(t +100)2

2
(3.2.11)

Q(0) = 10 u = (t +100)Q 3.2.11

(100)(10) = +c,
(100)2

2
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and therefore

Hence,

Now let  be the concentration of salt at time . Then

This is shown in Figure 3.2.6 .

Figure 3.2.6 : 

Below is a video on salt in a tank and differential equations.

 

This page titled 3.2: Cooling and Mixing is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F.
Trench.

4.2: Cooling and Mixing by William F. Trench is licensed CC BY-NC-SA 3.0. Original source: https://digitalcommons.trinity.edu/mono/9.
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3.2E: Cooling and Mixing (Exercises)

Q4.2.1

1. A thermometer is moved from a room where the temperature is F to a freezer where the temperature is . After 
seconds the thermometer reads F. What does it read after  minutes?

2. A fluid initially at C is placed outside on a day when the temperature is C, and the temperature of the fluid drops C
in one minute. Find the temperature  of the fluid for .

3. At 12:00 pm a thermometer reading F is placed in a room where the temperature is F. It reads  when it is placed
outside, where the temperature is F, at 12:03. What does it read at 12:05 pm?

4. A thermometer initially reading F is placed in a room where the temperature is F. After 2 minutes the thermometer reads
F.

a. What does the thermometer read after  minutes?
b. When will the thermometer read F?
c. When will the thermometer read F?

5. An object with initial temperature C is placed outside, where the temperature is C. Its temperatures at 12:15 and 12:20
are C and C, respectively.

a. At what time was the object placed outside?
b. When will its temperature be C?

6. An object is placed in a room where the temperature is C. The temperature of the object drops by C in  minutes and by 
C in  minutes. What was the temperature of the object when it was initially placed in the room?

7. A cup of boiling water is placed outside at 1:00 pm. One minute later the temperature of the water is F. After another
minute its temperature is F. What is the outside temperature?

8. A tank initially contains  gallons of pure water. A solution with  gram of salt per gallon of water is added to the tank at 
gal/min, and the resulting solution drains out at the same rate. Find the quantity  of salt in the tank at time .

9. A tank initially contains a solution of  pounds of salt in  gallons of water. Water with  pound of salt per gallon is added
to the tank at  gal/min, and the resulting solution leaves at the same rate. Find the quantity  of salt in the tank at time .

10. A tank initially contains  liters of a salt solution with a concentration of  g/liter. A solution with a salt concentration of 
g/liter is added to the tank at  liters/min, and the resulting mixture is drained out at the same rate. Find the concentration  of
salt in the tank as a function of .

11. A  gallon tank initially contains  gallons of water with  pounds of salt. A salt solution with  pound of salt per
gallon is added to the tank at  gal/min, and the resulting mixture is drained out at  gal/min. Find the quantity of salt in the tank as
it is about to overflow.

12. Suppose water is added to a tank at 10 gal/min, but leaks out at the rate of  gal/min for each gallon in the tank. What is the
smallest capacity the tank can have if the process is to continue indefinitely?

13. A chemical reaction in a laboratory with volume  (in ft ) produces  ft /min of a noxious gas as a byproduct. The gas is
dangerous at concentrations greater than , but harmless at concentrations . Intake fans at one end of the laboratory pull in fresh
air at the rate of  ft /min and exhaust fans at the other end exhaust the mixture of gas and air from the laboratory at the same rate.
Assuming that the gas is always uniformly distributed in the room and its initial concentration  is at a safe level, find the smallest
value of  required to maintain safe conditions in the laboratory for all time.

14. A -gallon tank initially contains  pounds of salt dissolved in  gallons of water. Starting at , water that contains
 pound of salt per gallon is added to the tank at the rate of  gal/min and the resulting mixture is drained from the tank at 

gal/min. Find the quantity  of salt in the tank at any time  prior to overflow.

15. Tank  initially contain  gallons of pure water. Starting at , water that contains  pound of salt per gallon is poured
into  at the rate of  gal/min. The mixture is drained from  at the same rate into a second tank , which initially contains 
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gallons of pure water. Also starting at , a mixture from another source that contains  pounds of salt per gallon is poured into
 at the rate of  gal/min. The mixture is drained from  at the rate of  gal/min.

a. Find a differential equation for the quantity  of salt in tank  at time .
b. Solve the equation derived in (a) to determine .
c. Find .

16. Suppose an object with initial temperature  is placed in a sealed container, which is in turn placed in a medium with
temperature . Let the initial temperature of the container be . Assume that the temperature of the object does not affect the
temperature of the container, which in turn does not affect the temperature of the medium. (These assumptions are reasonable, for
example, if the object is a cup of coffee, the container is a house, and the medium is the atmosphere.)

a. Assuming that the container and the medium have distinct temperature decay constants  and  respectively, use Newton’s
law of cooling to find the temperatures  and  of the container and object at time .

b. Assuming that the container and the medium have the same temperature decay constant , use Newton’s law of cooling to find
the temperatures  and  of the container and object at time .

c. Find  and .

17. In our previous examples and exercises concerning Newton’s law of cooling we assumed that the temperature of the medium
remains constant. This model is adequate if the heat lost or gained by the object is insignificant compared to the heat required to
cause an appreciable change in the temperature of the medium. If this isn’t so, we must use a model that accounts for the heat
exchanged between the object and the medium. Let  and  be the temperatures of the object and the medium,
respectively, and let  and  be their initial values. Again, we assume that  and  are related by Newton’s law of cooling,

We also assume that the change in heat of the object as its temperature changes from  to  is  and that the change in
heat of the medium as its temperature changes from  to  is , where  and  are positive constants
depending upon the masses and thermal properties of the object and medium, respectively. If we assume that the total heat of the
system consisting of the object and the medium remains constant (that is, energy is conserved), then

a. Equation (A) involves two unknown functions  and . Use (A) and (B) to derive a differential equation involving only .
b. Find  and  for .
c. Find  and .

18. Control mechanisms allow fluid to flow into a tank at a rate proportional to the volume  of fluid in the tank, and to flow out at
a rate proportional to . Suppose  and the constants of proportionality are  and , respectively. Find  for 
and find .

19. Identical tanks  and  initially contain  gallons each of pure water. Starting at , a salt solution with constant
concentration  is pumped into  at  gal/min and drained from  into  at the same rate. The resulting mixture in  is also
drained at the same rate. Find the concentrations  and  in tanks  and  for .

20. An infinite sequence of identical tanks , , …, , …, initially contain  gallons each of pure water. They are hooked
together so that fluid drains from  into . A salt solution is circulated through the tanks so that it enters and
leaves each tank at the constant rate of  gal/min. The solution has a concentration of  pounds of salt per gallon when it enters .

a. Find the concentration  in tank  for .
b. Find  for each .

21. Tanks  and  have capacities  and  liters, respectively. Initially they are both full of dye solutions with concentrations
 and  grams per liter. Starting at , the solution from  is pumped into  at a rate of  liters per minute, and the solution

from  is pumped into  at the same rate.

a. Find the concentrations  and  of the dye in  and  for .
b. Find  and .

22. Consider the mixing problem of Example 4.2.3, but without the assumption that the mixture is stirred instantly so that the salt is
always uniformly distributed throughout the mixture. Assume instead that the distribution approaches uniformity as . In this
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a(T − ) + ( − ) = 0.T0 am Tm Tm0 (B)

T Tm T

T (t) (t)Tm t > 0

T (t)limt→∞ (t)limt→∞ Tm

V

V 2 V (0) = V0 a b V (t) t > 0

V (t)limt→∞

T1 T2 W = 0t0

c T1 r T1 T2 T2

(t)c1 (t)c2 T1 T2 t > 0

T1 T2 Tn W

Tn (n = 1, 2, ⋯)Tn+1

r c T1

(t)cn Tn t > 0

(t)limt→∞ cn n

T1 T2 W1 W2

c1 c2 = 0t0 T1 T2 r

T2 T1

(t)c1 (t)c2 T1 T2 t > 0

(t)limt→∞ c1 (t)limt→∞ c2

t → ∞
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case the differential equation for  is of the form

where .
a. Assuming that , can you guess the value of ?.
b. Use numerical methods to confirm your guess in the these cases:

23. Consider the mixing problem of Example 4.2.4 in a tank with infinite capacity, but without the assumption that the mixture is
stirred instantly so that the salt is always uniformly distributed throughout the mixture. Assume instead that the distribution
approaches uniformity as . In this case the differential equation for  is of the form

where .
a. Let  be the concentration of salt at time . Assuming that , can you guess the value of ?
b. Use numerical methods to confirm your guess in the these cases:

This page titled 3.2E: Cooling and Mixing (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
William F. Trench.

4.2E: Cooling and Mixing (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

Q

+ Q = 2Q′ a(t)

150
(3.2E.1)

a(t) = 1limt→∞

Q(0) = Q0 Q(t)limt→∞

(i) a(t) = t/(1 + t) (ii) a(t) = 1 − (iii) a(t) = 1 −sin( ).e
−t2

e
−t (3.2E.2)

t → ∞ Q

+ Q = 1Q′
a(t)

t +100
(3.2E.3)

a(t) = 1limt→∞

K(t) t Q(0) = Q0 K(t)limt→∞

(i) a(t) = t/(1 + t) (ii) a(t) = 1 − (iii) a(t) = 1 +sin( ).e
−t2

e
−t (3.2E.4)
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3.3: Elementary Mechanics

Newton's Second Law of Motion

In this section we consider an object with constant mass  moving along a line under a force . Let  be the displacement
of the object from a reference point on the line at time , and let  and  be the velocity and acceleration of the
object at time . Thus,  and , where the prime denotes differentiation with respect to . Newton’s second law of
motion asserts that the force  and the acceleration  are related by the equation

In applications there are three main sets of units in use for length, mass, force, and time: the cgs, mks, and British systems. All
three use the second as the unit of time. Table 3.3.1 shows the other units. Consistent with Equation , the unit of force in
each system is defined to be the force required to impart an acceleration of (one unit of length)  to one unit of mass.

Table 3.3.1
Set Length Force Mass

cgs centimeter (cm) dyne (d) gram (g)

mks meter (m) newton (N) kilogram (kg)

British foot (ft) pound (lb) slug (sl)

If we assume that Earth is a perfect sphere with constant mass density, Newton’s law of gravitation (discussed later in this
section) asserts that the force exerted on an object by Earth’s gravitational field is proportional to the mass of the object and
inversely proportional to the square of its distance from the center of Earth. However, if the object remains sufficiently close to
Earth’s surface, we may assume that the gravitational force is constant and equal to its value at the surface. The magnitude of
this force is , where  is called the acceleration due to gravity. (To be completely accurate,  should be called the
magnitude of the acceleration due to gravity at Earth’s surface.) This quantity has been determined experimentally.
Approximate values of  are

In general, the force  in Equation  may depend upon , , and . Since , Equation  can be written in the form

which is a second order equation. We’ll consider this equation with restrictions on  later; however, since Chapter 2 dealt only
with first order equations, we consider here only problems in which Equation  can be recast as a first order equation. This is
possible if  does not depend on , so Equation  is of the form

Letting  and  yields a first order equation for :

Solving this equation yields  as a function of . If we know  for some time , we can integrate  to obtain  as a function of 
.

Equations of the form Equation  occur in problems involving motion through a resisting medium.

m F y = y(t)

t v= v(t) a = a(t)

t v= y′ a = =v′ y′′ t

F a

F = ma. (3.3.1)

 Note: Units

3.3.1

/s2

mg g g

g

g

g

g

= 980  (cgs)cm/s2

= 9.8  (mks)m/s
2

= 32  (British).ft/s2

F 3.3.1 t y y′ a = y′′ 3.3.1

m = F (t, y, ),y′′ y′ (3.3.2)

F

3.3.2

F y 3.3.2

m = F (t, ).y′′ y′

v= y′ =v′ y′′ v

m = F (t, v).v′ (3.3.3)

v t y( )t0 t0 v y

t

3.3.3
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Motion Through a Resisting Medium Under Constant Gravitational Force
Now we consider an object moving vertically in some medium. We assume that the only forces acting on the object are gravity and
resistance from the medium. We also assume that the motion takes place close to Earth’s surface and take the upward direction to
be positive, so the gravitational force can be assumed to have the constant value . We’ll see that, under reasonable
assumptions on the resisting force, the velocity approaches a limit as . We call this limit the terminal velocity.

An object with mass  moves under constant gravitational force through a medium that exerts a resistance with magnitude
proportional to the speed of the object. (Recall that the speed of an object is , the absolute value of its velocity .) Find the
velocity of the object as a function of , and find the terminal velocity. Assume that the initial velocity is .

Solution

The total force acting on the object is

where  is the force due to gravity and  is the resisting force of the medium, which has magnitude , where  is a
positive constant. If the object is moving downward ( ), the resisting force is upward (Figure 3.3.1a ), so

On the other hand, if the object is moving upward ( ), the resisting force is downward (Figure 3.3.1b , so

Thus, Equation  can be written as

regardless of the sign of the velocity.

Figure 3.3.1 : Resistive forces

From Newton’s second law of motion,

so Equation  yields

or

−mg

t → ∞

 Example 3.3.1

m

|v| v

t v0

F = −mg+ ,F1 (3.3.4)

−mg F1 k|v| k

v≤ 0

= k|v| = k(−v) = −kv.F1

v≥ 0

= −k|v| = −kv.F1

3.3.4

F = −mg−kv, (3.3.5)

F = ma = m ,v′

3.3.5

m = −mg−kv,v′
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Since  is a solution of the complementary equation, the solutions of Equation  are of the form , where 
, so . Hence,

so

Since ,

so

and Equation  becomes

Letting  here shows that the terminal velocity is

which is independent of the initial velocity  (Figure 3.3.2 ).

Figure 3.3.2 : Solutions of 

A 960-lb object is given an initial upward velocity of 60 ft/s near the surface of Earth. The atmosphere resists the motion with a
force of 3 lb for each ft/s of speed. Assuming that the only other force acting on the object is constant gravity, find its velocity 

 as a function of , and find its terminal velocity.

Solution

+ v= −g.v′ k

m
(3.3.6)

e−kt/m 3.3.6 v= ue−kt/m

= −gu′e−kt/m = −gu′ ekt/m

u = − +c,
mg

k
ekt/m

v= u = − +c .e−kt/m mg

k
e−kt/m (3.3.7)

v(0) = v0

= − +c,v0
mg

k

c = +v0
mg

k

3.3.7

v= − +( + ) .
mg

k
v0

mg

k
e−kt/m

t → ∞

v(t) = − ,lim
t→∞

mg

k

v0

m = −mg −kvv′

 Example 3.3.2 : Terminal Velocity

v t
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Since  and , . The atmospheric resistance is  lb if  is expressed in feet per second.
Therefore

which we rewrite as

Since  is a solution of the complementary equation, the solutions of this equation are of the form , where 
, so . Hence,

so

The initial velocity is 60 ft/s in the upward (positive) direction; hence, . Substituting  and  in Equation 
 yields

so , and Equation  becomes

The terminal velocity is

A 10 kg mass is given an initial velocity  near Earth’s surface. The only forces acting on it are gravity and atmospheric
resistance proportional to the square of the speed. Assuming that the resistance is 8 N if the speed is 2 m/s, find the velocity of
the object as a function of , and find the terminal velocity.

Solution

Since the object is falling, the resistance is in the upward (positive) direction. Hence,

where  is a constant. Since the magnitude of the resistance is 8 N when  m/s,

so . Since  and , Equation  becomes

If , then  for all . If , we separate variables to obtain

which is convenient for the required partial fraction expansion

Substituting Equation  into Equation  yields

mg = 960 g = 32 m = 960/32 = 30 −3v v

30 = −960 −3v,v′

+ v= −32.v′ 1

10

e−t/10 v= ue−t/10

= −32u′e−t/10 = −32u′ et/10

u = −320 +c,et/10

v= u = −320 +c .e−t/10 e−t/10 (3.3.8)

= 60v0 t = 0 v= 60

3.3.8

60 = −320 +c,

c = 380 3.3.8

v= −320 +380  ft/se−t/10

v(t) = −320 ft/s.lim
t→∞

 Example 3.3.3

≤ 0v0

t

m = −mg+k ,v′ v2 (3.3.9)

k v= 2

k( ) = 8,22

k = 2  /N-s2 m2 m = 10 g = 9.8 3.3.9

10 = −98 +2 = 2( −49).v′ v2 v2 (3.3.10)

= −7v0 v≡ −7 t ≥ 0 ≠ −7v0

= ,
1

−49v2
v′ 1

5
(3.3.11)

= = [ − ] .
1

−49v2

1

(v−7)(v+7)

1

14

1

v−7

1

v+7
(3.3.12)

3.3.12 3.3.11
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so

Integrating this yields

Therefore

Since Theorem 2.3.1 implies that  cannot change sign (why?), we can rewrite the last equation as

which is an implicit solution of Equation . Solving this for  yields

Since , it Equation  implies that

Substituting this into Equation  and simplifying yields

Since ,  is defined and negative for all . The terminal velocity is

independent of . More generally, it can be shown (Exercise 4.3.11) that if  is any solution of Equation  such that 
 then

This is demonstrated in Figure 3.3.3 .

[ − ] = ,
1

14

1

v−7

1

v+7
v′ 1

5

[ − ] = .
1

v−7

1

v+7
v′ 14

5

ln |v−7| −ln |v+7| = 14t/5 +k.

= .
∣
∣
∣
v−7

v+7

∣
∣
∣ eke14t/5

(v−7)/(v+7)

= c ,
v−7

v+7
e14t/5 (3.3.13)

3.3.10 v

v= −7 .
c+e−14t/5

c−e−14t/5
(3.3.14)

v(0) = v0 3.3.13

c = .
−7v0

+7v0

3.3.14

v= −7 .
(1 + −7(1 −v0 e−14t/5 e−14t/5

(1 − −7(1 +v0 e−14t/5 e−14t/5

≤ 0v0 v t > 0

v(t) = −7 m/s,lim
t→∞

v0 v 3.3.9

≤ 0v0

v(t) = − .lim
t→∞

mg

k

− −−
√
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Figure 3.3.3 : Solutions of 

A 10-kg mass is launched vertically upward from Earth’s surface with an initial velocity of  m/s. The only forces acting on
the mass are gravity and atmospheric resistance proportional to the square of the speed. Assuming that the atmospheric
resistance is 8 N if the speed is 2 m/s, find the time  required for the mass to reach maximum altitude.

Solution

The mass will climb while  and reach its maximum altitude when . Therefore  for  and ;
therefore, we replace Equation  by

Separating variables yields

and integrating this yields

(Recall that  is the number  such that  and .) Since ,

so  is defined implicitly by

Solving this for  yields

Using the identity

m = −mg +k ,  v(0) = ≤ 0v′ v2 v0

 Example 3.3.4

v0

T

v> 0 v= 0 v> 0 0 ≤ t < T v(T ) = 0

3.3.10

10 = −98 −2 .v′ v2 (3.3.15)

= −1,
5

+49v2
v′

= −t+c.
5

7
tan−1 v

7

utan−1 θ −π/2 < θ < π/2 tanθ = u v(0) = v0

c = ,
5

7
tan−1 v0

7

v

= −t+ , 0 ≤ t ≤ T .
5

7
tan−1 v

7

5

7
tan−1 v0

7
(3.3.16)

v

v= 7 tan(− + ).
7t

5
tan−1 v0

7
(3.3.17)

tan(A−B) =
tanA−tanB

1 +tanA tanB
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with  and , and noting that , we can simplify Equation  to

Since  and , Equation  implies that

Therefore

Since  for all , the time required for the mass to reach its maximum altitude is less than

regardless of the initial velocity. Figure 3.3.4 shows graphs of  over  for various values of .

Figure 3.3.4 : Solutions of 3.3.15 for various 

Escape Velocity

Suppose a space vehicle is launched vertically and its fuel is exhausted when the vehicle reaches an altitude  above Earth, where 
 is sufficiently large so that resistance due to Earth’s atmosphere can be neglected. Let  be the time when burnout occurs.

Assuming that the gravitational forces of all other celestial bodies can be neglected, the motion of the vehicle for  is that of an
object with constant mass  under the influence of Earth’s gravitational force, which we now assume to vary inversely with the
square of the distance from Earth’s center; thus, if we take the upward direction to be positive then gravitational force on the
vehicle at an altitude  above Earth is

where  is Earth’s radius (Figure 3.3.5 ).

A = ( /7)tan−1 v0 B = 7t/5 tan( θ) = θtan−1 3.3.17

v= 7 .
−7 tan(7t/5)v0

7 + tan(7t/5)v0

v(T ) = 0 (0) = 0tan−1 3.3.16

−T + = 0.
5

7
tan−1 v0

7

T = .
5

7
tan−1 v0

7

( /7) < π/2tan−1 v0 v0

≈ 1.122 s
5π

14

v [0,T ] v0

> 0v0

h

h t = 0

t > 0

m

y

F = − ,
K

(y+R)2
(3.3.18)

R
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Figure 3.3.5 : Escape velocity

Since  when , setting  in Equation  yields

therefore  and Equation  can be written more specifically as

From Newton’s second law of motion,

so Equation  implies that

We’ll show that there’s a number , called the escape velocity, with these properties:

1. If  then  for all , and the vehicle continues to climb for all ; that is, it “escapes” Earth. (Is it really so
obvious that  in this case? For a proof, see Exercise 4.3.20.)

2. If  then  decreases to zero and becomes negative. Therefore the vehicle attains a maximum altitude  and falls
back to Earth.

Since Equation  is second order, we cannot solve it by methods discussed so far. However, we are concerned with  rather
than , and  is easier to find. Since  the chain rule implies that

Substituting this into Equation  yields the first order separable equation

When , the velocity is  and the altitude is . Therefore we can obtain  as a function of  by solving the initial value
problem

F = −mg y = 0 y = 0 3.3.18

−mg = − ;
K

R2

K = mgR2 3.3.18

F = − .
mgR2

(y+R)2
(3.3.19)

F = m ,
yd2

dt2

3.3.19

= − .
yd2

dt2

gR2

(y+R)2
(3.3.20)

ve

≥v0 ve v(t) > 0 t > 0 t > 0

y(t) = ∞limt→∞

<v0 ve v(t) ym

3.3.20 v

y v v= y′

= = = v .
yd2

dt2

dv

dt

dv

dy

dy

dt

dv

dy

3.3.20

v = − .
dv

dy

gR2

(y+R)2
(3.3.21)

t = 0 v0 h v y

v = − , v(h) = .
dv

dy

gR2

(y+R)2
v0
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Integrating Equation  with respect to  yields

Since ,

so Equation  becomes

If

the parenthetical expression in Equation  is nonnegative, so  for . This proves that there’s an escape velocity 
. We’ll now prove that

by showing that the vehicle falls back to Earth if

If Equation  holds then the parenthetical expression in Equation  is negative and the vehicle will attain a maximum
altitude  that satisfies the equation

The velocity will be zero at the maximum altitude, and the object will then fall to Earth under the influence of gravity.

Below is a video on solving a differential equation that models a falling object.

 

This page titled 3.3: Elementary Mechanics is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F.
Trench.

3.3.21 y

= +c.
v2

2

gR2

y+R
(3.3.22)

v(h) = v0

c = − ,
v2

0

2

gR2

h+R

3.3.22

= +( − ) .
v2

2

gR2

y+R

v2
0

2

gR2

h+R
(3.3.23)

≥ ,v0 ( )
2gR2

h+R

1/2

3.3.23 v(y) > 0 y > h

ve

=ve ( )
2gR2

h+R

1/2

< .v0 ( )
2gR2

h+R

1/2

(3.3.24)

3.3.24 3.3.23
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3.3E: Elementary Mechanics (Exercises)
Except where directed otherwise, assume that the magnitude of the gravitational force on an object with mass  is constant and
equal to . In exercises involving vertical motion take the upward direction to be positive.

Q4.3.1
1. A firefighter who weighs  lb slides down an infinitely long fire pole that exerts a frictional resistive force with magnitude
proportional to his speed, with  lb-s/ft. Assuming that he starts from rest, find his velocity as a function of time and find his
terminal velocity.

2. A firefighter who weighs  lb slides down an infinitely long fire pole that exerts a frictional resistive force with magnitude
proportional to her speed, with constant of proportionality . Find , given that her terminal velocity is  ft/s, and then find her
velocity  as a function of . Assume that she starts from rest.

3. A boat weighs  lb. Its propellor produces a constant thrust of  lb and the water exerts a resistive force with
magnitude proportional to the speed, with  lb-s/ft. Assuming that the boat starts from rest, find its velocity as a function
of time, and find its terminal velocity.

4. A constant horizontal force of  N pushes a  kg-mass through a medium that resists its motion with  N for every m/s of
speed. The initial velocity of the mass is  m/s in the direction opposite to the direction of the applied force. Find the velocity of the
mass for .

5. A stone weighing  lb is thrown upward from an initial height of  ft with an initial speed of  ft/s. Air resistance is
proportional to speed, with  lb-s/ft. Find the maximum height attained by the stone.

6. A -lb car is moving at  ft/s down a -degree grade when it runs out of fuel. Find its velocity after that if friction exerts a
resistive force with magnitude proportional to the square of the speed, with . Also find its terminal velocity.

7. A  lb weight is dropped from rest in a medium that exerts a resistive force with magnitude proportional to the speed. Find its
velocity as a function of time if its terminal velocity is  ft/s.

8. An object with mass  moves vertically through a medium that exerts a resistive force with magnitude proportional to the
speed. Let  be the altitude of the object at time , with . Use the results of Example 4.3.1 to show that

9. An object with mass  is launched vertically upward with initial velocity  from Earth’s surface ( ) in a medium that
exerts a resistive force with magnitude proportional to the speed. Find the time  when the object attains its maximum altitude .
Then use the result of Exercise 4.3.8 to find .

10. An object weighing  lb is dropped from rest in a medium that exerts a resistive force with magnitude proportional to the
square of the speed. The magnitude of the resisting force is  lb when . Find  for , and find its terminal velocity.

11. An object with mass  is given an initial velocity  in a medium that exerts a resistive force with magnitude proportional
to the square of the speed. Find the velocity of the object for , and find its terminal velocity.

12. An object with mass  is launched vertically upward with initial velocity  in a medium that exerts a resistive force with
magnitude proportional to the square of the speed.

a. Find the time  when the object reaches its maximum altitude.
b. Use the result of Exercise 4.3.11 to find the velocity of the object for .

13. An object with mass  is given an initial velocity  in a medium that exerts a resistive force of the form ,
where  is positive constant.

a. Set up a differential equation for the speed of the object.
b. Use your favorite numerical method to solve the equation you found in (a), to convince yourself that there’s a unique number 

such that  if  and  exists (finite) if . (We say that  is the bifurcation value of .)
Try to find  and  in the case where .
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14. An object of mass  falls in a medium that exerts a resistive force , where  is the speed of the object. Assume
that  and  is strictly increasing and differentiable on .

a. Write a differential equation for the speed  of the object. Take it as given that all solutions of this equation with 
 are defined for all  (which makes good sense on physical grounds).

b. Show that if  then .
c. Show that if  then  (terminal speed), where ..

15. A -g mass with initial velocity  falls in a medium that exerts a resistive force proportional to the fourth power of the
speed. The resistance is  N if the speed is  m/s.

a. Set up the initial value problem for the velocity  of the mass for .
b. Use Exercise 4.3.14 (c) to determine the terminal velocity of the object.
c. To confirm your answer to (b), use one of the numerical methods studied in Chapter 3 to compute approximate solutions on 

 (seconds) of the initial value problem of (a) , with initial values , , , …, . Present your results in
graphical form similar to Figure 4.3.3.

16. A -lb object with initial velocity  falls through a dense fluid that exerts a resistive force proportional to the square root
of the speed. The resistance is  lb if the speed is  ft/s.

a. Set up the initial value problem for the velocity  of the mass for .
b. Use Exercise 4.3.14 (c) to determine the terminal velocity of the object.
c. To confirm your answer to (b), use one of the numerical methods studied in Chapter 3 to compute approximate solutions on 

 (seconds) of the initial value problem of (a), with initial values , , , …, . Present your results in
graphical form similar to Figure 4.3.3.

Q4.3.2
In Exercises 4.3.17-4.3.20, assume that the force due to gravity is given by Newton’s law of gravitation. Take the upward direction
to be positive.

17. A space probe is to be launched from a space station  miles above Earth. Determine its escape velocity in miles/s. Take
Earth’s radius to be  miles.

18. A space vehicle is to be launched from the moon, which has a radius of about  miles. The acceleration due to gravity at the
surface of the moon is about  ft/s . Find the escape velocity in miles/s.

19.

a. Show that (Equation 4.3.27) can be rewritten as

b. Show that if  with , then the maximum altitude  attained by the space vehicle is

c. By requiring that , use (Equation 4.3.26) to deduce that if  then

where  and  are as defined in (b) and .
d. Deduce from (c) that if , the vehicle takes equal times to climb from  to  and to fall back from  to 

.

20. In the situation considered in the discussion of escape velocity, show that  if  for all .
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1

CHAPTER OVERVIEW

4: Higher order linear ODEs
We have already studied the basics of differential equations, including separable first-order equations. In this chapter, we go a little
further and look at second-order equations, which are equations containing second derivatives of the dependent variable. The
solution methods we examine are different from those discussed earlier, and the solutions tend to involve trigonometric functions as
well as exponential functions. Here we concentrate primarily on second-order equations with constant coefficients.

4.1: Second order linear ODEs
4.2: The Method of Undetermined Coefficients I

4.2E: The Method of Undetermined Coefficients I (Exercises)

4.3: The Method of Undetermined Coefficients II

4.3E: The Method of Undetermined Coefficients II (Exercises)

4.4: Constant coefficient second order linear ODEs
4.5: Higher order linear ODEs
4.6: Reduction of Order

4.6E: Reduction of Order (Exercises)

4.7: Variation of Parameters

4.7E: Variation of Parameters (Exercises)

4.8: Mechanical Vibrations
4.9: Nonhomogeneous Equations
4.10: Forced Oscillations and Resonance
4.E: Higher order linear ODEs (Exercises)
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4.1: Second order linear ODEs
Let us consider the general second order linear differential equation

We usually divide through by  to get

where , , and . The word linear means that the equation contains no powers nor functions of 

, , and .

In the special case when  we have a so-called homogeneous equation

We have already seen some second order linear homogeneous equations:

If we know two solutions of a linear homogeneous equation, we know a lot more of them.

Suppose  and  are two solutions of the homogeneous equation . Then

also solves  for arbitrary constants  and .

That is, we can add solutions together and multiply them by constants to obtain new and different solutions. We call the
expression  a linear combination of  and . Let us prove this theorem; the proof is very enlightening and
illustrates how linear equations work.

Proof

Let . Then

The proof becomes even simpler to state if we use the operator notation. An operator is an object that eats functions and spits out
functions (kind of like what a function, which eats numbers and spits out numbers). Define the operator  by

The differential equation now becomes . The operator (and the equation)  being linear means that 
. The proof above becomes

Two different solutions to the second equation  are  and . Let us remind ourselves of
the definition,  and . Therefore, these are solutions by superposition as they are linear
combinations of the two exponential solutions.

The functions  and  are sometimes more convenient to use than the exponential. Let us review some of their properties.

A(x) +B(x) +C(x)y = F (x).y′′ y′

A(x)

+p(x) +q(x)y = f(x),y′′ y′

p(x) =
B(x)

A(x)
q(x) =

C(x)

A(x)
f(x) =

F(x)

A(x)

y y′ y′′

f(x) = 0

+p(x) +q(x)y = 0,y′′ y′ (4.1.1)

+ y = 0y′′ k2

− y = 0y′′ k2

Two solutions are:

Two solutions are:

= cos(kx), = sin(kx).y1 y2

= , = .y1 ekx y2 e−kx

 Theorem: Superposition

y1 y2 (4.1.1)

y(x) = (x) + (x),C1y1 C2y2

(4.1.1) C1 C2

+C1y1 C2y2 y1 y2

y = +C1y1 C2y2

+p +qyy′′ y′ = ( + +p( + +q( + )C1y1 C2y2)′′ C1y1 C2y2)′ C1y1 C2y2

= + + p + p + q + qC1y′′
1 C2y′′

2 C1 y′
1 C2 y′

2 C1 y1 C2 y2

= ( +p +q ) + ( +p +q )C1 y′′
1 y′

1 y1 C2 y′′
2 y′

2 y2

= .0 + .0 = 0C1 C2

L

Ly = +p +qy.y′′ y′

Ly = 0 L

L( + ) = L + LC1y1 C2y2 C1 y1 C2 y2

Ly = L( + ) = L + L = .0 + .0 = 0C1y1 C2y2 C1 y1 C2 y2 C1 C2

− y = 0y′′ k2 = cosh(kx)y1 = sinh(kx)y2

coshx = +ex e−x

2
sinhx = −ex e−x

2

sinh cosh
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Below is a video on finding the constants of the exponential solution to a differential equation

Derive these properties using the definitions of  and  in terms of exponentials.

Linear equations have nice and simple answers to the existence and uniqueness question.

Suppose , , and  are continuous functions on some interval  containing  with ,  and  constants. The
equation

has exactly one solution  defined on the same interval  satisfying the initial conditions

For example, the equation  with  and  has the solution

The equation  with  and  has the solution

Using  and  in this solution allows us to solve for the initial conditions in a cleaner way than if we have used the
exponentials.

The initial conditions for a second order ODE consist of two equations. Common sense tells us that if we have two arbitrary
constants and two equations, then we should be able to solve for the constants and find a solution to the differential equation
satisfying the initial conditions.

Suppose we find two different solutions  and  to the homogeneous equation . Can every solution be written (using
superposition) in the form ?

cosh0 = 1

[coshx] = sinhx,d

dx

x− x = 1.cosh2 sinh2

sinh0 = 0,

[sinhx] = coshx,d

dx

Ex: Given a Solution to a Differential EquEx: Given a Solution to a Differential Equ……

 Exercise

sinh cosh

 Theorem: Existence and Uniqueness

p(x) q(x) f(x) I a a b0 b1

+p(x) +q(x)y = f(x).y′′ y′

y(x) I

y(a) = , (a) = .b0 y′ b1

+ y = 0y′′ k2 y(0) = b0 (0) =y′ b1

y(x) = cos(kx) + sin(kx)b0
b1

k

− y = 0y′′ k2 y(0) = b0 (0) =y′ b1

y(x) = cosh(kx) + sinh(kx)b0
b1

k

cosh sinh

 Exercise

y1 y2 (4.1.1)

y = +C1y1 C2y2
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Answer

Answer is affirmative! Provided that  and  are different enough in the following sense. We will say  and  are
linearly independent if one is not a constant multiple of the other.

Let  and  be continuous functions and let  and  be two linearly independent solutions to the homogeneous
equation . Then every other solution is of the form

That is,  is the general solution.

For example, we found the solutions  and  for the equation . It is not hard to see that sine and
cosine are not constant multiples of each other. If  for some constant , we let  and this would imply .
But then  for all , which is preposterous. So  and  are linearly independent. Hence,

is the general solution to .

For two functions, checking linear independence is rather simple. Let us see another example. Consider . Then 
 and  are solutions. To see that they are linearly independent, suppose one is a multiple of the other: , we

just have to find out that  cannot be a constant. In this case we have , this most decidedly not a constant. So 
 is the general solution.

If you have one solution to a second order linear homogeneous equation, then you can find another one. This is the reduction of
order method. The idea is that if we somehow found  as a solution of  we try a second solution of the
form . We just need to find . We plug  into the equation:

In other words, . Using  we have the first order linear equation 
. After solving this equation for  (integrating factor), we find  by antidifferentiating . We then

form  by computing . For example, suppose we somehow know  is a solution to . The
equation for  is then . We find a solution, , and we find an antiderivative . Hence 

. Any  works and so  makes . Thus, the general solution is .

Since we have a formula for the solution to the first order linear equation, we can write a formula for :

However, it is much easier to remember that we just need to try  and find  as we did above. Also, the
technique works for higher order equations too: you get to reduce the order for each solution you find. So it is better to remember
how to do it rather than a specific formula.

We will study the solution of nonhomogeneous equations in Section 2.5. We will first focus on finding general solutions to
homogeneous equations.

This page titled 4.1: Second order linear ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.
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y1 y2 y1 y2

 Theorem

p(x) q(x) y1 y2

(4.1.1)

y = + .C1y1 C2y2

y = +C1y1 C2y2

= sinxy1 = cosxy2 +y = 0y′′

sinx = A cosx A x = 0 A = 0

sinx = 0 x y1 y2

y = cosx+ sinxC1 C2

+y = 0y′′

−2 y = 0y′′ x−2

=y1 x2 =y2
1
x = Ay1 y2

A A = =
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x3
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2 C2

1
x

y1 +p(x) +q(x)y = 0y′′ y′

(x) = (x)v(x)y2 y1 v y2

0 = +p(x) +q(x)y′′
2 y′

2 y2 = v+2 + +p(x)( v+ ) +q(z) vy′′
1 y′

1v
′ y1v

′′ y′
1 y1v

′ y1

= +(2 +p(x) ) + v.y1v
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1 y1 v′ ( +p(x) +q(x) )y′′
1 y′

1 y1

0 (4.1.2)

+(2 +p(x) ) = 0y1v
′′ y′

1 y1 v′ w = v′

+(2 +p(x) )w = 0y1w
′ y′

1 y1 w v w

y2 vy1 = xy1 + − y = 0y′′ x−1y′ x−2

w x +3w = 0w′ w = Cx−3 v= −C

2x2

= v=y2 y1
−C

2x
C C = −2 =y2

1
x y = x+C1 C2

1
x

y2
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e− ∫ p(x) dx
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2

(x) = (x)v(x)y2 y1 v(x)
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4.2: The Method of Undetermined Coefficients I
In this section we consider the constant coefficient equation

where  is a constant and  is a polynomial.

From Theorem 5.3.2, the general solution of Equation  is , where  is a particular solution of Equation
 and  is a fundamental set of solutions of the complementary equation

In Section 5.2 we showed how to find . In this section we’ll show how to find . The procedure that we’ll use is called the
method of undetermined coefficients. Our first example is similar to Exercises 5.3.16-5.3.21.

Find a particular solution of

Then find the general solution.

Solution

Substituting  for  in Equation  will produce a constant multiple of  on the left side of Equation , so
it may be possible to choose  so that  is a solution of Equation . Let’s try it; if  then

if . Therefore  is a particular solution of Equation . To find the general solution, we note that the
characteristic polynomial of the complementary equation

is , so  is a fundamental set of solutions of Equation . Therefore the
general solution of Equation  is

Below is a video on the method of undetermined coefficients

Find a particular solution of

a +b +cy = G(x),y′′ y′ eαx (4.2.1)

α G

4.2.1 y = + +yp c1y1 c2y2 yp

4.2.1 { , }y1 y2

a +b +cy = 0.y′′ y′

{ , }y1 y2 yp

 Example 4.2.1 :

−7 +12y = 4 .y′′ y′ e2x (4.2.2)

= Ayp e2x y 4.2.2 Ae2x 4.2.2

A yp 4.2.2 = Ayp e2x

−7 +12 = 4A −14A +12A = 2A = 4y′′
p y′

p yp e2x e2x e2x e2x e2x

A = 2 = 2yp e2x 4.2.2

−7 +12y = 0y′′ y′ (4.2.3)

p(r) = −7r +12 = (r −3)(r −4)r2 { , }e3x e4x 4.2.3

4.2.2

y = 2 + + .e2x c1e3x c2e4x

Find a General Solution to a NonhomogFind a General Solution to a Nonhomog……

 Example 4.2.2
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Then find the general solution.

Solution

Fresh from our success in finding a particular solution of Equation  — where we chose  because the right side
of Equation  is a constant multiple of  — it may seem reasonable to try  as a particular solution of Equation

. However, this will not work, since we saw in Example 4.2.1 that  is a solution of the complementary equation
Equation , so substituting  into the left side of Equation ) produces zero on the left, no matter how we
choose . To discover a suitable form for , we use the same approach that we used in Section 5.2 to find a second solution of

in the case where the characteristic equation has a repeated real root: we look for solutions of Equation  in the form 
, where  is a function to be determined. Substituting

into Equation  and canceling the common factor  yields

or

By inspection we see that  is a particular solution of this equation, so  is a particular solution of Equation 
. Therefore

is the general solution.

Below is a video on using the method of undetermined coefficients to solve a differential equation.

Find a particular solution of

Solution

Since the characteristic polynomial of the complementary equation

−7 +12y = 5 .y′′ y′ e4x (4.2.4)

4.2.2 = Ayp e2x

4.2.2 e2x = Ayp e4x

4.2.4 e4x

4.2.3 = Ayp e4x 4.2.4

A yp

a +b +cy = 0y′′ y′

4.2.4
y = ue4x u

y = u , = +4u , and = +8 +16ue4x y′ u′e4x e4x y′′ u′′e4x u′e4x e4x (4.2.5)

4.2.4 e4x

( +8 +16u) −7( +4u) +12u = 5,u′′ u′ u′

+ = 5.u′′ u′

= 5xup = 5xyp e4x

4.2.4

y = 5x + +e4x c1e3x c2e4x

Ex 1: Method of Undetermined Coe�cieEx 1: Method of Undetermined Coe�cie……

 Example 4.2.3

−8 +16y = 2 .y′′ y′ e4x (4.2.6)

−8 +16y = 0y′′ y′ (4.2.7)
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is , both  and  are solutions of Equation . Therefore Equation )
does not have a solution of the form  or . As in Example 4.2.2 , we look for solutions of Equation 
in the form , where  is a function to be determined. Substituting from Equation  into Equation  and
canceling the common factor  yields

or

Integrating twice and taking the constants of integration to be zero shows that  is a particular solution of this equation,
so  is a particular solution of Equation . Therefore

is the general solution.

The preceding examples illustrate the following facts concerning the form of a particular solution  of a constant coefficent
equation

where  is a nonzero constant:

a. If  isn’t a solution of the complementary equation

then , where  is a constant. (See Example 4.2.1 ).
b. If  is a solution of Equation  but  is not, then , where  is a constant. (See Example 4.2.2 .)
c. If both  and  are solutions of Equation , then , where  is a constant. (See Example 4.2.3 .)

See Exercise 5.4.30 for the proofs of these facts.

In all three cases you can just substitute the appropriate form for  and its derivatives directly into

and solve for the constant , as we did in Example 4.2.1 . (See Exercises 5.4.31-5.4.33.) However, if the equation is

where  is a polynomial of degree greater than zero, we recommend that you use the substitution  as we did in Examples
4.2.2 and 4.2.3 . The equation for  will turn out to be

where  is the characteristic polynomial of the complementary equation and  (Exercise 5.4.30);
however, you shouldn’t memorize this since it is easy to derive the equation for  in any particular case. Note, however, that if 
is a solution of the complementary equation then , so Equation  reduces to

while if both  and  are solutions of the complementary equation then  and , so 
 and Equation ) reduces to

Find a particular solution of

p(r) = −8r +16 = (r −4r2 )2 =y1 e4x = xy2 e4x 4.2.7 4.2.6

= Ayp e4x = Axyp e4x 4.2.6

y = ue4x u 4.2.5 4.2.6

e4x

( +8 +16u) −8( +4u) +16u = 2,u′′ u′ u′

= 2.u′′

=up x2

=yp x2e4x 4.2.4

y = ( + + x)e4x x2 c1 c2

yp

a +b +cy = k ,y′′ y′ eαx

k

eαx

a +b +cy = 0,y′′ y′ (4.2.8)

= Ayp eαx A

eαx 4.2.8 xeαx = Axyp eαx A

eαx xeαx 4.2.8 = Ayp x2eαx A

yp

a +b +c = k ,y′′
p y′

p yp eαx

A

a +b +cy = k G(x),y′′ y′ eαx

G y = ueαx

u

a + (α) +p(α)u = G(x),u′′ p′ u′ (4.2.9)

p(r) = a +br +cr2 (r) = 2ar +bp′

u eαx

p(α) = 0 4.2.9

a + (α) = G(x),u′′ p′ u′

eαx xeαx p(r) = a(r −α)2 (r) = 2a(r −α)p′

p(α) = (α) = 0p′ 4.2.9

a = G(x).u′′

 Example 4.2.4

−3 +2y = (−1 +2x + ).y′′ y′ e3x x2 (4.2.10)
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Solution

Substituting

into Equation ) and canceling  yields

or

As in Example 5.3.2, in order to guess a form for a particular solution of Equation ), we note that substituting a second
degree polynomial  for  in the left side of Equation ) produces another second degree polynomial
with coefficients that depend upon , , and ; thus,

If  is to satisfy Equation ), we must have

Equating coefficients of like powers of  on the two sides of the last equality yields

Solving these equations for , , and  (in that order) yields . Therefore

is a particular solution of Equation , and

is a particular solution of Equation .

Find a particular solution of

Solution

Substituting

into Equation ) and canceling  yields

or

There’s no  term in this equation, since  is a solution of the complementary equation for Equation ). (See Exercise
5.4.30.) Therefore Equation ) does not have a particular solution of the form  that we used
successfully in Example 4.2.4 , since with this choice of ,

y = u , = +3u , and = +6 +9ue3x y′ u′e3x e3x y′′ u′′e3x u′e3x e3x

4.2.10 e3x

( +6 +9u) −3( +3u) +2u = −1 +2x + ,u′′ u′ u′ x2

+3 +2u = −1 +2x + .u′′ u′ x2 (4.2.11)

4.2.11

= A +Bx +Cup x2 u 4.2.11

A B C

if = A +Bx +C then = B +2Cx and = 2C.up x2 u′
p u′′

p

up 4.2.11

+3 +2u′′
p u′

p up = 2C +3(B +2Cx) +2(A +Bx +C )x2

= (2C +3B +2A) +(6C +2B)x +2C = −1 +2x + .x2 x2

x

2C

2B +6C

2A +3B +2C

= 1

= 2

= −1.

C B A C = 1/2, B = −1/2, A = −1/4

= − (1 +2x −2 )up

1

4
x2

4.2.11

= = − (1 +2x −2 )yp upe3x e3x

4
x2

4.2.10

 Example 4.2.5

−4 +3y = (6 +8x +12 ).y′′ y′ e3x x2 (4.2.12)

y = u , = +3u , and  = +6 +9ue3x y′ u′e3x e3x y′′ u′′e3x u′e3x e3x

4.2.12 e3x

( +6 +9u) −4( +3u) +3u = 6 +8x +12 ,u′′ u′ u′ x2

+2 = 6 +8x +12 .u′′ u′ x2 (4.2.13)

u e3x 4.2.12
4.2.13 = A +Bx +Cup x2

up
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can’t contain the last term ( ) on the right side of Equation ). Instead, let’s try  on the
grounds that

together contain all the powers of  that appear on the right side of Equation ).

Substituting these expressions in place of  and  in Equation ) yields

Comparing coefficients of like powers of  on the two sides of the last equality shows that  satisfies Equation ) if

Solving these equations successively yields , , and . Therefore

is a particular solution of Equation ), and

is a particular solution of Equation ).

Find a particular solution of

Solution

Substituting

into Equation ) and canceling  yields

or

which does not contain  or  because  and  are both solutions of the complementary equation. (See Exercise
5.4.30.) To obtain a particular solution of Equation ) we integrate twice, taking the constants of integration to be zero;
thus,

Therefore

is a particular solution of Equation ).

Below is a video on using the method of undetermined coefficients to solve a nonhomogeneous differential equation.

+2 = 2C +(B +2Cx)u′′
p u′

p

12x2 4.2.13 = Ax +B +Cup x2 x3

= A +2Bx +3C and = 2B +6Cxu′
p x2 u′′

p

x 4.2.13

u′ u′′ 4.2.13

(2B +6Cx) +2(A +2Bx +3C ) = (2B +2A) +(6C +4B)x +6C = 6 +8x +12 .x2 x2 x2

x up 4.2.13

6C

4B +6C

2A +2B

= 12

= 8

= 6.

C = 2 B = −1 A = 4

= x(4 −x +2 )up x2

4.2.13

= = x (4 −x +2 )yp upe3x e3x x2

4.2.12

 Example 4.2.6

4 +4 +y = (−8 +48x +144 ).y′′ y′ e−x/2 x2 (4.2.14)

y = u , = − u , and = − + ue−x/2 y′ u′e−x/2 1

2
e−x/2 y′′ u′′e−x/2 u′e−x/2 1

4
e−x/2

4.2.14 e−x/2

4( − + )+4( − )+u = 4 = −8 +48x +144 ,u′′ u′ u

4
u′ u

2
u′′ x2

= −2 +12x +36 ,u′′ x2 (4.2.15)

u u′ e−x/2 xe−x/2

4.2.15

= −2x +6 +12 and = − +2 +3 = (−1 +2x +3 ).u′
p x2 x3 up x2 x3 x4 x2 x2

= = (−1 +2x +3 )yp upe−x/2 x2e−x/2 x2

4.2.14
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Summary
     The preceding examples illustrate the following facts concerning particular solutions of a constant coefficent equation of the form

where  is a polynomial (see Exercise 5.4.30):

a. If  isn’t a solution of the complementary equation

then , where  is a polynomial of the same degree as . (See Example 4.2.4 ).
b. If  is a solution of Equation  but  is not, then , where  is a polynomial of the same degree as .

(See Example 4.2.5 .)
c. If both  and  are solutions of Equation , then , where  is a polynomial of the same degree as 

. (See Example 4.2.6 .)

In all three cases, you can just substitute the appropriate form for  and its derivatives directly into

and solve for the coefficients of the polynomial . However, if you try this you will see that the computations are more tedious
than those that you encounter by making the substitution  and finding a particular solution of the resulting equation for .
(See Exercises 5.4.34-5.4.36.) In Case (a) the equation for  will be of the form

with a particular solution of the form , a polynomial of the same degree as , whose coefficients can be found by the
method used in Example 4.2.4 . In Case (b) the equation for  will be of the form

(no  term on the left), with a particular solution of the form , where  is a polynomial of the same degree as 
whose coefficents can be found by the method used in Example 4.2.5 . In Case (c), the equation for  will be of the form

with a particular solution of the form  that can be obtained by integrating  twice and taking the constants of
integration to be zero, as in Example 4.2.6 .

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and Theorem 5.3.3, the principle of
superposition.

Find a General Solution to a NonhomogFind a General Solution to a Nonhomog……

a +b +cy = G(x),y′′ y′ eαx

G

eαx

a +b +cy = 0,y′′ y′ (4.2.16)

= Q(x)yp eαx Q G

eαx 4.2.16 xeαx = x Q(x)yp eαx Q G

eαx xeαx 4.2.16 = Q(x)yp x2eαx Q

G

yp

a +b +c = G(x),y′′
p y′

p yp eαx

Q

y = ueαx u

u

a + (α) +p(α)u = G(x),u′′ p′ u′

= Q(x)up G

u

a + (α) = G(x)u′′ p′ u′

u = xQ(x)up Q G

u

a = G(x)u′′

= Q(x)up x2 G(x)/a
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Find a particular solution of

Solution

In Example 4.2.1 we found that  is a particular solution of

and in Example 4.2.2 we found that  is a particular solution of

Therefore the principle of superposition implies that  is a particular solution of Equation ).

This page titled 4.2: The Method of Undetermined Coefficients I is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by William F. Trench.

5.4: The Method of Undetermined Coefficients I by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

 Example 4.2.7

−7 +12y = 4 +5 .y′′ y′ e2x e4x (4.2.17)

= 2yp1
e2x

−7 +12y = 4 ,y′′ y′ e2x

= 5xyp2
e4x

−7 +12y = 5 .y′′ y′ e4x

= 2 +5xyp e2x e4x 4.2.17
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4.2E: The Method of Undetermined Coefficients I (Exercises)

Q5.4.1

In Exercises 5.4.1-5.4.14 find a particular solution.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Q5.4.2
In Exercises 5.4.15-5.4.19 find the general solution.

15. 

16. 

17. 

18. 

19. 

Q5.4.3
In Exercises 5.4.20-5.4.23 solve the initial value problem and plot the solution.

20. 

21. 

22. 

23. 

Q5.4.4
In Exercises 5.4.24-5.4.29 use the principle of superposition to find a particular solution.

24. 

25. 

26. 

27. 

−3 +2y = (1 +x)y′′ y′ e3x

−6 +5y = (35 −8x)y′′ y′ e−3x

−2 −3y = (−8 +3x)y′′ y′ ex

+2 +y = (−7 −15x+9 )y′′ y′ e2x x2

+4y = (7 −4x+5 )y′′ e−x x2

− −2y = (9 +2x−4 )y′′ y′ ex x2

−4 −5y = −6xy′′ y′ e−x

−3 +2y = (3 −4x)y′′ y′ ex

+ −12y = (−6 +7x)y′′ y′ e3x

2 −3 −2y = (−6 +10x)y′′ y′ e2x

+2 +y = (2 +3x)y′′ y′ e−x

−2 +y = (1 −6x)y′′ y′ ex

−4 +4y = (1 −3x+6 )y′′ y′ e2x x2

9 +6 +y = (2 −4x+4 )y′′ y′ e−x/3 x2

−3 +2y = (1 +x)y′′ y′ e3x

−6 +8y = (11 −6x)y′′ y′ ex

+6 +9y = (3 −5x)y′′ y′ e2x

+2 −3y = −16xy′′ y′ ex

−2 +y = (2 −12x)y′′ y′ ex

−4 −5y = 9 (1 +x), y(0) = 0, (0) = −10y′′ y′ e2x y′

+3 −4y = (7 +6x), y(0) = 2, (0) = 8y′′ y′ e2x y′

+4 +3y = − (2 +8x), y(0) = 1, (0) = 2y′′ y′ e−x y′

−3 −10y = 7 , y(0) = 1, (0) = −17y′′ y′ e−2x y′

+ +y = x + (1 +2x)y′′ y′ ex e−x

−7 +12y = − (17 −42x) −y′′ y′ ex e3x

−8 +16y = 6x +2 +16x+16y′′ y′ e4x x2

−3 +2y = − (3 +4x) −y′′ y′ e2x ex
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28. 

29. 

Q5.4.5

30.

a. Prove that  is a solution of the constant coefficient equation

if and only if , where  satisfies

and  is the characteristic polynomial of the complementary equation

For the rest of this exercise, let  be a polynomial. Give the requested proofs for the case where

b. Prove that if  isn’t a solution of the complementary equation then (B) has a particular solution of the form ,
where  is a polynomial of the same degree as , as in Example 5.4.4. Conclude that (A) has a particular solution of the form 

.
c. Show that if  is a solution of the complementary equation and  isn’t , then (B) has a particular solution of the form 

, where  is a polynomial of the same degree as , as in Example 5.4.5. Conclude that (A) has a particular
solution of the form .

d. Show that if  and  are both solutions of the complementary equation then (B) has a particular solution of the form 
, where  is a polynomial of the same degree as , and  can be obtained by integrating  twice, taking

the constants of integration to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form 
.

Q5.4.6

Exercises 5.4.31–5.4.36 treat the equations considered in Examples 5.4.1–5.4.6. Substitute the suggested form of  into the
equation and equate the resulting coefficients of like functions on the two sides of the resulting equation to derive a set of
simultaneous equations for the coefficients in . Then solve for the coefficients to obtain . Compare the work you’ve done with
the work required to obtain the same results in Examples 5.4.1–5.4.6.

31. Compare with Example 5.4.1:

32. Compare with Example 5.4.2:

33. Compare with Example 5.4.3:

34. Compare with Example 5.4.4:

35. Compare with Example 5.4.5:

36. Compare with Example 5.4.6:

−2 +2y = (1 +x) + (2 −8x+5 )y′′ y′ ex e−x x2

+y = (2 −4x+2 ) + (8 −12x−10 )y′′ e−x x2 e3x x2

y

a +b +cy = G(x)y′′ y′ eαx (A)

y = ueαx u

a + (α) +p(α)u = G(x)u′′ p′ u′ (B)

p(r) = a +br+cr2

a +b +cy = 0.y′′ y′

G

G(x) = + x+ + .g0 g1 g2x
2 g3x

3

eαx = A(x)up
A G

= A(x)yp eαx

eαx xeαx

= xA(x)up A G

= x A(x)yp eαx

eαx xeαx

= A(x)up x2 A G A(x)x2 G/a

= A(x)yp x2eαx

yp

yp yp

−7 +12y = 4 ; = Ay′′ y′ e2x yp e2x

−7 +12y = 5 ; = Axy′′ y′ e4x yp e4x

−8 +16y = 2 ; = Ay′′ y′ e4x yp x2e4x

−3 +2y = (−1 +2x+ ), = (A+Bx+C )y′′ y′ e3x x2 yp e3x x2

−4 +3y = (6 +8x+12 ), = (Ax+B +C )y′′ y′ e3x x2 yp e3x x2 x3

4 +4 +y = (−8 +48x+144 ), = (A +B +C )y′′ y′ e−x/2 x2 yp e−x/2 x2 x3 x4
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Q5.4.7
37. Write  to find the general solution.

a. 

b. 
c. 
d. 

38. Suppose  and  is a positive integer. In most calculus books integrals like  are evaluated by integrating by
parts  times. This exercise presents another method. Let

with

(where ).

a. Show that , where

b. Show that (A) has a particular solution of the form

where , , …,  can be computed successively by equating coefficients of  on both sides of the
equation

c. Conclude that

where  is a constant of integration.

39. Use the method of Exercise 5.4.38 to evaluate the integral.

a. 
b. 
c. 
d. 
e. 
f. 

40. Use the method suggested in Exercise 5.4.38 to evaluate , where  is an arbitrary positive integer and .

This page titled 4.2E: The Method of Undetermined Coefficients I (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored,
remixed, and/or curated by William F. Trench.

5.4E: The Method of Undetermined Coefficients I (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

y = ueαx

+2 +y =y′′ y′ e−x

x√

+6 +9y = lnxy′′ y′ e−3x

−4 +4y =y′′ y′ e2x

1+x

4 +4 +y = 4 ( +x)y′′ y′ e−x/2 1
x

α ≠ 0 k ∫ dxxkeαx

k

y = ∫ P (x)dxeαx

P (x) = + x+⋯ +p0 p1 pkx
k

≠ 0pk

y = ueαx

+αu = P (x).u′ (A)

= + x+⋯ + ,up A0 A1 Akx
k

Ak Ak−1 A0 , , … , 1xk xk−1

+α = P (x).u′
p up

∫ P (x)dx = ( + x+⋯ + ) +c,eαx A0 A1 Akx
k eαx

c

∫ (4 +x)dxex

∫ (−1 + )dxe−x x2

∫ dxx3e−2x

∫ (1 +x dxex )2

∫ (−14 +30x+27 )dxe3x x2

∫ (1 +6 −14 +3 )dxe−x x2 x3 x4

∫ dxxkeαx k α ≠ 0
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4.3: The Method of Undetermined Coefficients II
In this section we consider the constant coefficient equation

where  and  are real numbers, , and  and  are polynomials. We want to find a particular solution of Equation . As in Section 5.4,
the procedure that we will use is called the method of undetermined coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where  in Equation  ; thus, we we want to find a particular solution of

where  and  are polynomials.

Differentiating  and  yields

and

This implies that if

where  and  are polynomials, then

where  and  are polynomials with coefficients that can be expressed in terms of the coefficients of  and . This suggests that we try to choose 
 and  so that  and , respectively. Then  will be a particular solution of Equation . The next theorem tells us how to choose

the proper form for . For the proof see Exercise 5.5.37.

Below is a video writing the form of the particular solution to a differential equation.

Suppose  is a positive number and  and  are polynomials. Let  be the larger of the degrees of  and  Then the equation

has a particular solution

where

a +b +cy = (P (x) cosωx+Q(x) sinωx)y′′ y′ eλx (4.3.1)

λ ω ω ≠ 0 P Q 4.3.1

λ = 0 4.3.1

a +b +cy = P (x) cosωx+Q(x) sinωx,y′′ y′ (4.3.2)

P Q

cosωxxr sinωxxr

cosωx = −ω sinωx+r cosωx
d

dx
xr xr xr−1

sinωx = ω cosωx+r sinωx.
d

dx
xr xr xr−1

= A(x) cosωx+B(x) sinωxyp

A B

a +b +c = F (x) cosωx+G(x) sinωx,y′′
p y′

p yp

F G A B

A B F = P G= Q yp 4.3.2

yp

The Form of the Particular Solution Using the The Form of the Particular Solution Using the ……

 Theorem 4.3.1

ω P Q k P Q.

a +b +cy = P (x) cosωx+Q(x) sinωxy′′ y′

= A(x) cosωx+B(x) sinωx,yp (4.3.3)

A(x) = + x+⋯ + and B(x) = + x+⋯ + ,A0 A1 Akx
k B0 B1 Bkx

k
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provided that  and  are not solutions of the complementary equation. The solutions of

for which  and  are solutions of the complementary equation are of the form of Equation , where

For an analog of this theorem that’s applicable to Equation , see Exercise 5.5.38.

Below is a video on writing the form of the particular solution to a differential equation.

Find a particular solution of

Solution

In Equation  the coefficients of  and  are both zero degree polynomials (constants). Therefore Theorem 4.3.1 implies that
Equation  has a particular solution

Since

replacing  by  in Equation  yields

Equating the coefficients of  and  here with the corresponding coefficients on the right side of Equation  shows that  is a
solution of Equation  if

Solving these equations yields , . Therefore

is a particular solution of Equation .

Below is a video on solving an initial value problem using the particular solution and the method of undetermined coefficients.

cosωx sinωx

a( + y) = P (x) cosωx+Q(x) sinωxy′′ ω2

cosωx sinωx 4.3.3

A(x) = x+ +⋯ + and B(x) = x+ +⋯ + .A0 A1x
2 Akx

k+1 B0 B1x
2 Bkx

k+1

4.3.1

The Form of the Particular Solution Using the The Form of the Particular Solution Using the ……

 Example 4.3.1

−2 +y = 5 cos 2x+10 sin2x.y′′ y′ (4.3.4)

4.3.4 cos 2x sin2x

4.3.4

= A cos 2x+B sin2x.yp

= −2A sin2x+2B cos 2x and = −4(A cos 2x+B sin2x),y′
p y′′

p

y yp 4.3.4

−2 +y′′
p y′

p yp = −4(A cos 2x+B sin2x) −4(−A sin2x+B cos 2x)

= (−3A−4B) cos 2x+(4A−3B) sin2x.

+(A cos 2x+B sin2x)

cos 2x sin2x 4.3.4 yp
4.3.4

−3A−4B

4A−3B

= 5

= 10.

A = 1 B = −2

= cos 2x−2 sin2xyp

4.3.4
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Below is a video on finding the finding the general solution to a nonhomogeneous differential equation using undetermined coefficients.

Find a particular solution of

Solution

The procedure used in Example 4.3.1 doesn’t work here; substituting  for  in Equation  yields

for any choice of  and , since  and  are both solutions of the complementary equation for Equation . We’re dealing with
the second case mentioned in Theorem 4.3.1 , and should therefore try a particular solution of the form

Then

so

Therefore  is a solution of Equation  if

which holds if  and . Therefore

Initial Value Problem Using Method of UndeterInitial Value Problem Using Method of Undeter……

Find a General Solution to a NonhomogeneousFind a General Solution to a Nonhomogeneous……

 Example 4.3.2

+4y = 8 cos 2x+12 sin2x.y′′ (4.3.5)

= A cos 2x+B sin2xyp y 4.3.5

+4 = −4(A cos 2x+B sin2x) +4(A cos 2x+B sin2x) = 0y′′
p yp

A B cos 2x sin2x 4.3.5

= x(A cos 2x+B sin2x).yp (4.3.6)

y′
p

andy′′
p

= A cos 2x+B sin2x+2x(−A sin2x+B cos 2x)

= −4A sin2x+4B cos 2x−4x(A cos 2x+B sin2x)

= −4A sin2x+4B cos 2x−4  (see (4.3.6)),yp

+4 = −4A sin2x+4B cos 2x.y′′
p yp

yp 4.3.5

−4A sin2x+4B cos 2x = 8 cos 2x+12 sin2x,

A = −3 B = 2

= −x(3 cos 2x−2 sin2x)yp
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is a particular solution of Equation .

Below is a video on using the method of undetermined coefficients to solve a nonhomogeneous differential equation.

Find a particular solution of

Solution

The coefficients of  and  in Equation  are polynomials of degree one and zero, respectively. Therefore Theorem 4.3.1 tells us to
look for a particular solution of Equation  of the form

Then

and

so

Comparing the coefficients of , , , and  here with the corresponding coefficients in Equation  shows that  is a
solution of Equation  if

Solving the first two equations yields , . Substituting these into the last two equations yields

Solving these equations yields , . Substituting , , ,  into Equation  shows that

is a particular solution of Equation .

A Useful Observation
In Equations , , and  the polynomials multiplying  can be obtained by replacing , and  by , , , and 

, respectively, in the polynomials mutiplying . An analogous result applies in general, as follows (Exercise 5.5.36).

4.3.5

Method of Undetermined Coe�cients to Find Method of Undetermined Coe�cients to Find ……

 Example 4.3.3

+3 +2y = (16 +20x) cosx+10 sinx.y′′ y′ (4.3.7)

cosx sinx 4.3.7

4.3.7

= ( + x) cosx+( + x) sinx.yp A0 A1 B0 B1 (4.3.8)

= ( + + x) cosx+( − − x) sinxy′
p A1 B0 B1 B1 A0 A1 (4.3.9)

= (2 − − x) cosx−(2 + + x) sinx,y′′
p B1 A0 A1 A1 B0 B1 (4.3.10)

+3 +2y′′
p y′

p yp = [ +3 +3 +2 +( +3 )x] cosx+[ +3 −3 −2 +( −3 )x] sinx.A0 A1 B0 B1 A1 B1 B0 B1 A0 A1 B1 A1 (4.3.11)

x cosx x sinx cosx sinx 4.3.7 yp
4.3.7

+3A1 B1

−3 +A1 B1

+3 +3 +2A0 B0 A1 B1

−3 + −2 +3A0 B0 A1 B1

= 20

= 0

= 16

= 10.

= 2A1 = 6B1

+3A0 B0

−3 +A0 B0

= 16 −3 −2 = −2A1 B1

= 10 +2 −3 = −4.A1 B1

= 1A0 = −1B0 = 1A0 = 2A1 = −1B0 = 6B1 4.3.8

= (1 +2x) cosx−(1 −6x) sinxyp

4.3.7

4.3.9 4.3.10 4.3.11 sinx , ,A0 A1 B0 B1 B0 B1 −A0

−A1 cosx

 Theorem 4.3.2
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If

where  and  are polynomials with coefficients  …,  and , …,  then the polynomials multiplying  in

can be obtained by replacing , …   by  …   and  …   by  …   in the corresponding polynomials multiplying 
.

We will not use this theorem in our examples, but we recommend that you use it to check your manipulations when you work the exercises.

Find a particular solution of

Solution

According to Theorem 4.3.1 , we should look for a particular solution of the form

since  and  are solutions of the complementary equation. However, let’s try

first, so you can see why it doesn’t work. From Equation ,

which together with Equation  implies that

Since the right side of this equation does not contain  or , Equation  can’t satisfy Equation  no matter how we choose
, , , and .

Now let  be as in Equation . Then

and

so

Comparing the coefficients of  and  here with the corresponding coefficients in Equation  shows that  is a solution of
Equation  if

The solution of this system is , , , . Therefore

is a particular solution of Equation .

Forcing Functions with Exponential Factors
To find a particular solution of

= A(x) cosωx+B(x) sinωx,yp

A(x) B(x) A0 Ak B0 ,Bk sinωx

, , a +b +c and +y′
p y′′

p y′′
p y′

p yp y′′
p ω2yp

A0 , Ak ,B0 , Bk ,B0 , Bk − ,A0 , −Ak

cosωx

 Example 4.3.4

+y = (8 −4x) cosx−(8 +8x) sinx.y′′ (4.3.12)

= ( x+ ) cosx+( x+ ) sinx,yp A0 A1x
2 B0 B1x

2 (4.3.13)

cosx sinx

= ( + x) cosx+( + x) sinxyp A0 A1 B0 B1 (4.3.14)

4.3.10

= (2 − − x) cosx−(2 + + x) sinx,y′′
p B1 A0 A1 A1 B0 B1

4.3.14

+ = 2 cosx−2 sinx.y′′
p yp B1 A1

x cosx x sinx 4.3.14 4.3.12
A0 A1 B0 B1

yp 4.3.13

y′
p = [ +(2 + )x+ ] cosxA0 A1 B0 B1x

2

+[ +(2 − )x− ] sinxB0 B1 A0 A1x
2

y′′
p = [2 +2 −( −4 )x− ] cosxA1 B0 A0 B1 A1x

2

+[2 −2 −( +4 )x− ] sinx,B1 A0 B0 A1 B1x
2

+ = (2 +2 +4 x) cosx+(2 −2 −4 x) sinx.y′′
p yp A1 B0 B1 B1 A0 A1

cosx sinx 4.3.12 yp
4.3.12

4B1

−4A1

2 +2B0 A1

−2 +2A0 B1

= −4

= −8

= 8

= −8.

= 2A1 = −1B1 = 3A0 = 2B0

= x [(3 +2x) cosx+(2 −x) sinx]yp

4.3.12

a +b +cy = (P (x) cosωx+Q(x) sinωx)y′′ y′ eλx (4.3.15)
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when , we recall from Section 5.4 that substituting  into Equation  will produce a constant coefficient equation for  with the
forcing function . We can find a particular solution  of this equation by the procedure that we used in Examples 4.3.1
-4.3.4 . Then  is a particular solution of Equation .

Find a particular solution of

Let . Then

if

Since  and  aren’t solutions of the complementary equation

Theorem 4.3.1 tells us to look for a particular solution of Equation  of the form

Then

so

Comparing the coefficients of , , , and  here with the corresponding coefficients on the right side of Equation 
 shows that  is a solution of Equation  if

Solving the first two equations yields , . Substituting these values into the last two equations of Equation  yields

Solving this system yields , . Substituting , , , and  into Equation  shows that

is a particular solution of Equation . Therefore

is a particular solution of Equation .

Find a particular solution of

Solution

Let . Then

λ ≠ 0 y = ueλx 4.3.15 u

P (x) cosωx+Q(x) sinωx up
=yp upe

λx 4.3.15

 Example 4.3.5

−3 +2y = [2 cos 3x−(34 −150x) sin3x] .y′′ y′ e−2x (4.3.16)

y = ue−2x

−3 +2yy′′ y′ = [( −4 +4u) −3( −2u) +2u]e−2x u′′ u′ u′

= ( −7 +12u)e−2x u′′ u′

= [2 cos 3x−(34 −150x) sin3x]e−2x

−7 +12u = 2 cos 3x−(34 −150x) sin3x.u′′ u′ (4.3.17)

cos 3x sin3x

−7 +12u = 0,u′′ u′

4.3.17

= ( + x) cos 3x+( + x) sin3x.up A0 A1 B0 B1 (4.3.18)

u′
p

and u′′
p

= ( +3 +3 x) cos 3x+( −3 −3 x) sin3xA1 B0 B1 B1 A0 A1

= (−9 +6 −9 x) cos 3x−(9 +6 +9 x) sin3x,A0 B1 A1 B0 A1 B1

−7 +12u′′
p u′

p up = [3 −21 −7 +6 +(3 −21 )x] cos 3xA0 B0 A1 B1 A1 B1

+[21 +3 −6 −7 +(21 +3 )x] sin3x.A0 B0 A1 B1 A1 B1

x cos 3x x sin3x cos 3x sin3x
4.3.17 up 4.3.17

3 −21A1 B1

21 + 3A1 B1

3 −21 −7 + 6A0 B0 A1 B1

21 + 3 −6 − 7A0 B0 A1 B1

= 0

= 150

= 2

= −34.

(4.3.19)

= 7A1 = 1B1 4.3.19

3 −21A0 B0

21 + 3A0 B0

= 2 +7 −6 = 45A1 B1

= −34 +6 +7 = 15.A1 B1

= 1A0 = −2B0 = 1A0 = 7A1 = −2B0 = 1B1 4.3.18

= (1 +7x) cos 3x−(2 −x) sin3xup

4.3.17

= [(1 +7x) cos 3x−(2 −x) sin3x]yp e−2x

4.3.16

 Example 4.3.6

+2 +5y = [(6 −16x) cos 2x−(8 +8x) sin2x] .y′′ y′ e−x (4.3.20)

y = ue−x
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if

Since  and  are solutions of the complementary equation

Theorem 4.3.1 tells us to look for a particular solution of Equation  of the form

Then

and

so

Equating the coefficients of , , , and  here with the corresponding coefficients on the right side of Equation 
shows that  is a solution of Equation  if

The solution of this system is , , , . Therefore

is a particular solution of Equation , and

is a particular solution of Equation .

You can also find a particular solution of Equation  by substituting

for  in Equation  and equating the coefficients of , , , and  in the resulting expression for

with the corresponding coefficients on the right side of Equation . (See Exercise 5.5.38). This leads to the same system Equation 
of equations for , , , and  that we obtained in Example 4.3.6 . However, if you try this approach you’ll see that deriving Equation 

 this way is much more tedious than the way we did it in Example 4.3.6 .

Below is a video on using the method of undetermined coefficients to find the general solution to a differential equation.

+2 +5yy′′ y′ = [( −2 +u) +2( −u) +5u]e−x u′′ u′ u′

= ( +4u)e−x u′′

= [(6 −16x) cos 2x−(8 +8x) sin2x]e−x

+4u = (6 −16x) cos 2x−(8 +8x) sin2x.u′′ (4.3.21)

cos 2x sin2x

+4u = 0,u′′

4.3.21

= ( x+ ) cos 2x+( x+ ) sin2x.up A0 A1x
2 B0 B1x

2

u′
p = [ +(2 +2 )x+2 ] cos 2xA0 A1 B0 B1x

2

+[ +(2 −2 )x−2 ] sin2xB0 B1 A0 A1x
2

u′′
p = [2 +4 −(4 −8 )x−4 ] cos 2xA1 B0 A0 B1 A1x

2

+[2 −4 −(4 +8 )x−4 ] sin2x,B1 A0 B0 A1 B1x
2

+4 = (2 +4 +8 x) cos 2x+(2 −4 −8 x) sin2x.u′′
p up A1 B0 B1 B1 A0 A1

x cos 2x x sin2x cos 2x sin2x 4.3.21
up 4.3.21

8B1

−8A1

4 +2B0 A1

−4 +2A0 B1

= −16

= − 8

= 6

= −8.

(4.3.22)

= 1A1 = −2B1 = 1B0 = 1A0

= x[(1 +x) cos 2x+(1 −2x) sin2x]up

4.3.21

= x [(1 +x) cos 2x+(1 −2x) sin2x]yp e−x

4.3.20

4.3.20

= x [( + x) cos 2x+( + x) sin2x]yp e−x A0 A1 B0 B1

y 4.3.20 x cos 2xe−x x sin2xe−x cos 2xe−x sin2xe−x

+2 +5y′′
p y′

p yp

4.3.20 4.3.22

A0 A1 B0 B1

4.3.22
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4.3E: The Method of Undetermined Coefficients II (Exercises)

Q5.5.1

In Exercises 5.5.1-5.5.17 find a particular solution.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Q5.5.2

In Exercises 5.5.18-5.5.21 find a particular solution and graph it.

18. 

19. 

20. 

21. 

Q5.5.3
In Exercises 5.5.22-5.5.26 solve the initial value problem.

22. 

23. 

24. 

25. 

26. 

Q5.5.4

In Exercises 5.5.27-5.5.32 use the principle of superposition to find a particular solution. Where indicated, solve the initial value
problem.

27. 

+3 +2y = 7 cosx−sinxy′′ y′

+3 +y = (2 −6x) cosx−9 sinxy′′ y′

+2 +y = (6 cosx+17 sinx)y′′ y′ ex

+3 −2y = − (5 cos 2x+9 sin2x)y′′ y′ e2x

− +y = (2 +x) sinxy′′ y′ ex

+3 −2y = [(4 +20x) cos 3x+(26 −32x) sin3x]y′′ y′ e−2x

+4y = −12 cos 2x−4 sin2xy′′

+y = (−4 +8x) cosx+(8 −4x) sinxy′′

4 +y = −4 cosx/2 −8x sinx/2y′′

+2 +2y = (8 cosx−6 sinx)y′′ y′ e−x

−2 +5y = [(6 +8x) cos 2x+(6 −8x) sin2x]y′′ y′ ex

+2 +y = 8 cosx−4x sinxy′′ y′ x2

+3 +2y = (12 +20x+10 ) cosx+8x sinxy′′ y′ x2

+3 +2y = (1 −x−4 ) cos 2x−(1 +7x+2 ) sin2xy′′ y′ x2 x2

−5 +6y = − [(4 +6x− ) cosx−(2 −4x+3 ) sinx]y′′ y′ ex x2 x2

−2 +y = − [(3 +4x− ) cosx+(3 −4x− ) sinx]y′′ y′ ex x2 x2

−2 +2y = [(2 −2x−6 ) cosx+(2 −10x+6 ) sinx]y′′ y′ ex x2 x2

+2 +y = [(5 −2x) cosx−(3 +3x) sinx]y′′ y′ e−x

+9y = −6 cos 3x−12 sin3xy′′

+3 +2y = (1 −x−4 ) cos 2x−(1 +7x+2 ) sin2xy′′ y′ x2 x2

+4 +3y = [(2 +x+ ) cosx+(5 +4x+2 ) sinx]y′′ y′ e−x x2 x2

−7 +6y = − (17 cosx−7 sinx), y(0) = 4, (0) = 2y′′ y′ ex y′

−2 +2y = − (6 cosx+4 sinx), y(0) = 1, (0) = 4y′′ y′ ex y′

+6 +10y = −40 sinx, y(0) = 2, (0) = −3y′′ y′ ex y′

−6 +10y = − (6 cosx+4 sinx), y(0) = 2, (0) = 7y′′ y′ e3x y′

−3 +2y = [21 cosx−(11 +10x) sinx] , y(0) = 0, (0) = 6y′′ y′ e3x y′

−2 −3y = 4 + (cosx−2 sinx)y′′ y′ e3x ex
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28. 

29. 

30. 

31. 

32. 

Q5.5.5
In Exercises 5.5.33-5.5.35 solve the initial value problem and graph the solution.

33. 

34. 

35. 

Q5.5.6

36.

a. Verify that if

where  and  are twice differentiable, then

b. Use the results of (a) to verify that

c. Use the results of (a) to verify that

d. Prove Theorem 5.5.2.

37. Let , , , and  be constants, with  and , and let

where at least one of the coefficients ,  is nonzero, so  is the larger of the degrees of  and .

a. Show that if  and  are not solutions of the complementary equation

then there are polynomials

such that

where , , …,  can be computed successively by solving the systems

+y = 4 cosx−2 sinx+x +y′′ ex e−x

−3 +2y = x +2 +sinxy′′ y′ ex e2x

−2 +2y = 4x cosx+x +1 +y′′ y′ ex e−x x2

−4 +4y = (1 +x) + (cosx−sinx) +3 +1 +xy′′ y′ e2x e2x e3x

−4 +4y = 6 +25 sinx, y(0) = 5, (0) = 3y′′ y′ e2x y′

+4y = − [(4 −7x) cosx+(2 −4x) sinx] , y(0) = 3, (0) = 1y′′ e−2x y′

+4 +4y = 2 cos 2x+3 sin2x+ , y(0) = −1, (0) = 2y′′ y′ e−x y′

+4y = (11 +15x) +8 cos 2x−12 sin2x, y(0) = 3, (0) = 5y′′ ex y′

= A(x) cosωx+B(x) sinωxyp (4.3E.1)

A B

y′
p

y′′
p

= ( +ωB) cosωx+( −ωA) sinωx  andA′ B′

= ( +2ω − A) cosωx+( −2ω − B) sinωx.A′′ B′ ω2 B′′ A′ ω2

a +b +c =y′′
p y′

p yp [(c−a )A+bωB+2aω +b +a ] cosωx+ω2 B′ A′ A′′

[−bωA+(c−a )B−2aω +b +a ] sinωx.ω2 A′ B′ B′′

+ = ( +2ω ) cosωx+( −2ω ) sinωx.y′′
p ω2yp A′′ B′ B′′ A′ (4.3E.2)

a b c ω a ≠ 0 ω > 0

P (x) = + x+⋯ + and Q(x) = + x+⋯ + ,p0 p1 pkx
k q0 q1 qkx

k (4.3E.3)

pk qk k P Q

cosωx sinωx

a +b +cy = 0,y′′ y′ (4.3E.4)

A(x) = + x+⋯ + and B(x) = + x+⋯ +A0 A1 Akx
k B0 B1 Bkx

k (A)

(c−a )A+bωB+2aω +b +aω2 B′ A′ A′′

−bωA+(c−a )B−2aω +b +aω2 A′ B′ B′′

= P

= Q,
(4.3E.5)

( , )Ak Bk ( , )Ak−1 Bk−1 ( , )A0 B0

(c−a ) +bωω2 Ak Bk

−bω +(c−a )Ak ω2 Bk

= pk

= ,qk
(4.3E.6)
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and, if ,

where the terms indicated by “ ” depend upon the previously computed coefficients with subscripts greater than .
Conclude from this and Exercise 5.5.36b that

is a particular solution of

b. Conclude from Exercise 5.5.36c that the equation

does not have a solution of the form (B) with  and  as in (A). Then show that there are polynomials

such that

where the pairs , , …,  can be computed successively as follows:

and, if ,

for . Conclude that (B) with this choice of the polynomials  and  is a particular solution of (C).

38. Show that Theorem 5.5.1 implies the next theorem:

Suppose  is a positive number and  and  are polynomials. Let  be the larger of the degrees of  and . Then the
equation

has a particular solution

where

provided that  and  are not solutions of the complementary equation. The equation

1 ≤ r ≤ k

(c−a ) +bωω2 Ak−r Bk−r

−bω +(c−a )Ak−r ω2 Bk−r

= +⋯pk−r

= +⋯ ,qk−r

(4.3E.7)

⋯ k−r

= A(x) cosωx+B(x) sinωxyp (B)

a +b +cy = P (x) cosωx+Q(x) sinωx.y′′ y′ (4.3E.8)

a( + y) = P (x) cosωx+Q(x) sinωxy′′ ω2 (C)

A B

A(x) = x+ +⋯ + and B(x) = x+ +⋯ +A0 A1x
2 Akx

k+1 B0 B1x
2 Bkx

k+1 (4.3E.9)

a( +2ω )A′′ B′

a( −2ω )B′′ A′

= P

= Q,
(4.3E.10)

( , )Ak Bk ( , )Ak−1 Bk−1 ( , )A0 B0

Ak

Bk

= −
qk

2aω(k+1)

= ,
pk

2aω(k+1)

k ≥ 1

Ak−j

Bk−j

= − [ −(k−j+2) ]
1

2ω

qk−j

a(k−j+1)
Bk−j+1

= [ −(k−j+2) ]
1

2ω

pk−j

a(k−j+1)
Ak−j+1

1 ≤ j≤ k A B

 Theorem 5.5E.1

ω P Q k P Q

a +b +cy = (P (x) cosωx+Q(x) sinωx)y′′ y′ eλx (4.3E.11)

= (A(x) cosωx+B(x) sinωx) ,yp eλx (A)

A(x) = + x+⋯ + and B(x) = + x+⋯ + ,A0 A1 Akx
k B0 B1 Bkx

k (4.3E.12)

cosωxeλx sinωxeλx

a [ −2λ +( + )y] = (P (x) cosωx+Q(x) sinωx)y′′ y′ λ2 ω2 eλx (4.3E.13)
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for which  and  are solutions of the complementary equation  has a particular solution of the form (A),
where

39. This exercise presents a method for evaluating the integral

where  and

a. Show that , where

b. Show that (A) has a particular solution of the form

where

and the pairs of coefficients , , …,  can be computed successively as the solutions of pairs of
equations obtained by equating the coefficients of  and  for , , …, .

c. Conclude that

where  is a constant of integration.

40. Use the method of Exercise 5.5.39 to evaluate the integral.

a. 
b. 
c. 
d. 
e. 
f. 
g. 

This page titled 4.3E: The Method of Undetermined Coefficients II (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored,
remixed, and/or curated by William F. Trench.

5.5E: The Method of Undetermined Coefficients II (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

( cosωxeλx sinωxeλx )

A(x) = x+ +⋯ + and B(x) = x+ +⋯ + .A0 A1x
2 Akx

k+1 B0 B1x
2 Bkx

k+1 (4.3E.14)

y = ∫ (P (x) cosωx+Q(x) sinωx) dxeλx (4.3E.15)

ω ≠ 0

P (x) = + x+⋯ + , Q(x) = + x+⋯ + .p0 p1 pkx
k q0 q1 qkx

k (4.3E.16)

y = ueλx

+λu = P (x) cosωx+Q(x) sinωx.u′ (A)

= A(x) cosωx+B(x) sinωx,up (4.3E.17)

A(x) = + x+⋯ + , B(x) = + x+⋯ + ,A0 A1 Akx
k B0 B1 Bkx

k (4.3E.18)

( , )Ak Bk ( , )Ak−1 Bk−1 ( , )A0 B0

cosωxxr sinωxxr r = k k−1 0

∫ (P (x) cosωx+Q(x) sinωx) dx = (A(x) cosωx+B(x) sinωx) +c,eλx eλx (4.3E.19)

c

∫ cosxdxx2

∫ cosxdxx2ex

∫ x sin2xdxe−x

∫ sinxdxx2e−x

∫ sinxdxx3ex

∫ [x cosx−(1 +3x) sinx]dxex

∫ [(1 + ) cosx+( ) sinx]dxe−x x2 12
x
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4.4: Constant coefficient second order linear ODEs

4.4.1: Solving Constant Coefficient Equations

Suppose we have the problem

This is a second order linear homogeneous equation with constant coefficients. Constant coefficients means that the functions in
front of , , and  are constants and do not depend on .

To guess a solution, think of a function that you know stays essentially the same when we differentiate it, so that we can take the
function and its derivatives, add some multiples of these together, and end up with zero.

Let us try  a solution of the form . Then  and . Plug in to get

Hence, if  or , then  is a solution. So let  and .

Check that  and  are solutions.

Solution

The functions  and  are linearly independent. If they were not linearly independent we could write  for some
constant , implying that for all , which is clearly not possible. Hence, we can write the general solution as

We need to solve for  and . To apply the initial conditions we first find . We plug in  and
solve.

Either apply some matrix algebra, or just solve these by high school math. For example, divide the second equation by 2 to
obtain , and subtract the two equations to get . Then  as . Hence, the solution we
are looking for is

Let us generalize this example into a method. Suppose that we have an equation

where  are constants. Try the solution  to obtain

Divide by  to obtain the so-called characteristic equation of the ODE:

Solve for the  by using the quadratic formula.

−6 +8y = 0, y(0) = −2, (0) = 6y′′ y′ y′

y′′ y′ y x

1 y = erx = ry′ erx =y′′ r2erx

−6 +8yy′′ y′

−6 +8r2erx
  
y ′′

rerx
 
y ′

erx
 
y

−6r+8r2

(r−2)(r−4)

= 0,

= 0,

= 0 (divide through by  ),erx

= 0.

(4.4.1)

r = 2 r = 4 erx =y1 e2x =y2 e4x

 Exercise 4.4.1

y1 y2

e2x e4x = Ce4x e2x

C = Ce2x x

y = +C1e
2x C2e

4x

C1 C2 = 2 +4y′ C1e
2x C2e

4x x = 0

−2

6

= y(0) = +C1 C2

= (0) = 2 +4y′ C1 C2
(4.4.2)

3 = +2C1 C2 5 = C2 = −7C1 −2 = +5C1

y = −7 +5e2x e4x

a +b +cy = 0,y′′ y′ (4.4.3)

a, b, c y = erx

a +br +c = 0r2erx erx erx

erx

a +br+c = 0r2

r

, =r1 r2
−b± −4acb2

− −−−−−−
√

2a
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Therefore, we have  and  as solutions. There is still a difficulty if , but it is not hard to overcome.

Suppose that  and  are the roots of the characteristic equation.

If  and  are distinct and real (when  ), then  has the general solution

If  (happens when  ), then  has the general solution

For another example of the first case, take the equation . Here the characteristic equation is  or 
. Consequently,  and  are the two linearly independent solutions.

Below is a video on the characteristic equation of a differential equation.

Solve

Solution

The characteristic equation is  or . Consequently,  and  are the two linearly
independent solutions, and the general solution is

Since  and , we can also write the general solution as

Below is a video on finding the finding the general solution to a differential equation.

e xr1 e xr2 =r1 r2

 Theorem 4.4.1

r1 r2

r1 r2 −4ac > 0b2 (4.4.3)

y = +C1e
xr1 C2e

xr2

=r1 r2 −4ac = 0b2 (4.4.3)

y = ( + x)C1 C2 e xr1

− y = 0y′′ k2 − = 0r2 k2

(r−k)(r+k) = 0 e−kx ekx

Linear Second Order Homogeneous DiffLinear Second Order Homogeneous Diff……

 Example 4.4.1

− y = 0.y′′ k2

− = 0r2 k2 (r−k)(r+k) = 0 e−kx ekx

y = + .C1e
kx C2e−kx

coshs =
+es e−s

2
sinhs =

−es e−s

2

y = cosh(kx) + sinh(kx).D1 D2
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Find the general solution of

Solution

The characteristic equation is . The equation has a double root . The general
solution is, therefore,

Below is a video on finding the general solution to a differential equation involving two real irrational roots.

Check that  and  are linearly independent.

Answer

That  solves the equation is clear. If  solves the equation, then we know we are done. Let us compute 
 and . Plug in

We should note that in practice, doubled root rarely happens. If coefficients are picked truly randomly we are very unlikely
to get a doubled root.

Ex: Linear Second Order Homogeneous Ex: Linear Second Order Homogeneous ……

 Example :4.4.2

−8 +16y = 0y′′ y′

−8r+16 = = 0r2 (r−4) 2 = = 4r1 r2

y = ( + x) = + xC1 C2 e4x C1e
4x C2 e4x

Ex: Linear Second Order Homogeneous Ex: Linear Second Order Homogeneous ……

 Exercise : Linear Independence4.4.2

e4x xe4x

e4x xe4x

= +4xy′ e4x e4x = 8 +16xy′′ e4x e4x

−8 +16y = 8 +16x −8( +4x ) +16x = 0y′′ y′ e4x e4x e4x e4x e4x
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Below is a video on finding the the general solution to a differential equation.

Let us give a short proof for why the solution  works when the root is doubled. This case is really a limiting case of when the
two roots are distinct and very close. Note that  is a solution when the roots are distinct. When we take the limit as  goes
to , we are really taking the derivative of  using  as the variable. Therefore, the limit is , and hence this is a solution in
the doubled root case.

Below is a video on finding the solution to a differential equation involving repeated roots.

4.4.2: Complex numbers and Euler’s formula
It may happen that a polynomial has some complex roots. For example, the equation  has no real roots, but it does have
two complex roots. Here we review some properties of complex numbers.

Complex numbers may seem a strange concept, especially because of the terminology. There is nothing imaginary or really
complicated about complex numbers. A complex number is simply a pair of real numbers, . We can think of a complex
number as a point in the plane. We add complex numbers in the straightforward way, . We define
multiplication by

It turns out that with this multiplication rule, all the standard properties of arithmetic hold. Further, and most importantly 
.

Generally we just write  as , and we treat  as if it were an unknown. We do arithmetic with complex numbers just as
we would with polynomials. The property we just mentioned becomes . So whenever we see , we replace it by . The
numbers  and  are the two roots of .

Linear Second Order Homogeneous DiffLinear Second Order Homogeneous Diff……

xerx

−er2x ex1x

−r2 r1
r1

r2 erx r xerx

Ex: Linear Second Order Homogeneous Ex: Linear Second Order Homogeneous ……

+1 = 0r2

(a, b)
(a, b) +(c, d) = (a+c, b+d)

(a, b) ×(c, d) (ac−bd, ad+bc).=
def

(0, 1) ×(0, 1) = (−1, 0)

(a, b) (a+ ib) i

= −1i2 i2 −1
i −i +1 = 0r2
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Note that engineers often use the letter  instead of  for the square root of . We will use the mathematicians’ convention and use
.

Make sure you understand (that you can justify) the following identities:

a. ,
b. ,
c. ,
d. ,
e. .

We can also define the exponential  of a complex number. We do this by writing down the Taylor series and plugging in the
complex number. Because most properties of the exponential can be proved by looking at the Taylor series, these properties still
hold for the complex exponential. For example the very important property: . This means that . Hence if
we can compute , we can compute . For  we use the so-called Euler’s formula.

Euler's Formula

In other words, .

Using Euler’s formula, check the identities:

Double angle identities: Start with . Use Euler on each side and deduce:

Answer

For a complex number  we call  the real part and  the imaginary part of the number. Often the following notation is
used,

4.4.3: Complex roots
Suppose that the equation  has the characteristic equation  that has complex roots. By the

quadratic formula, the roots are . These roots are complex if . In this case the roots are

As you can see, we always get a pair of roots of the form . In this case we can still write the solution as

j i −1
i

 Exercise 4.4.3

= −1, = −1, = 1i2 i3 i4

= −i1
i

(3 −7i)(−2 −9i) = ⋯ = −69 −13i

(3 −2i)(3 +2i) = − = + = 1332 (2i)
2

32 22

= = = + i1
3−2i

1
3−2i

3+2i
3+2i

3+2i
13

3
13

2
13

ea+ib

=ex+y exey =ea+ib eaeib

eib ea+ib eib

 Theorem 4.4.2

= cosθ+ i sinθ  and  = cosθ− i sinθeiθ e−iθ

= (cos(b) + i sin(b)) = cos(b) + i sin(b)ea+ib ea ea ea

 Exercise :4.4.4

cosθ = and sinθ =
+eiθ e−iθ

2

−eiθ e−iθ

2

 Exercise 4.4.5

=ei(2θ) ( )eiθ
2

cos(2θ) = θ− θ and sin(2θ) = 2 sinθcosθcos2 sin2

a+ ib a b

Re(a+ ib) = a and Im(a+ ib) = b

a +b +cy = 0y′′ y′ a +br+c = 0r2

−b± −4acb2
− −−−−−−

√

2a
−4ac < 0b2

, = ± ir1 r2
−b

2a

4ac−b2
− −−−−−−

√

2a

α± iβ

y = +C1e
(α+iβ)x C2e

(α−iβ)x

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98046?pdf


4.4.6 https://math.libretexts.org/@go/page/98046

However, the exponential is now complex valued. We would need to allow  and  to be complex numbers to obtain a real-
valued solution (which is what we are after). While there is nothing particularly wrong with this approach, it can make calculations
harder and it is generally preferred to find two real-valued solutions.

Here we can use Euler’s formula. Let

Then note that

Linear combinations of solutions are also solutions. Hence,

are also solutions. Furthermore, they are real-valued. It is not hard to see that they are linearly independent (not multiples of each
other). Therefore, we have the following theorem.

For the homegneous second order ODE

If the characteristic equation has the roots  (when ), then the general solution is

Below is a video on finding the solution to a differential equation using the principal of superposition.

Find the general solution of , for a constant .

Solution

The characteristic equation is . Therefore, the roots are  and by the theorem we have the general solution

Below is a video on finding the solution to a differential equation involving complex roots.

C1 C2

= and =y1 e(α+iβ)x y2 e(α−iβ)x

y1

y2

= cos(βx) + i sin(βx)eax eax

= cos(βx) − i sin(βx)eax eax
(4.4.4)

y3

y4

= = cos(βx)
+y1 y2

2
eax

= = sin(βx)
−y1 y2

2i
eax

(4.4.5)

 Theorem 4.4.3

a +b +cy = 0y′′ y′

α± iβ −4ac < 0b2

y = cos(βx) + sin(βx)C1e
ax C2e

ax

Linear Second Order Homogeneous DiffLinear Second Order Homogeneous Diff……

 Example 4.4.3

+ y = 0y′′ k2 k > 0

+ = 0r2 k2 r = ±ik

y = cos(kx) + sin(kx)C1 C2
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Find the solution of 

Solution

The characteristic equation is . By completing the square we get  and hence the roots are 
. By the theorem we have the general solution

To find the solution satisfying the initial conditions, we first plug in zero to get

Hence  and . We differentiate

We again plug in the initial condition and obtain , or . Hence the solution we are seeking is

Below is a video on finding the solution to an initial value problem.

Below is a video on finding the solution to a differential equation given initial values.

Ex: Linear Second Order Homogeneous Ex: Linear Second Order Homogeneous ……

 Example 4.4.4

−6 +13y = 0, y(0) = 0, (0) = 10.y′′ y′ y′

−6r+13 = 0r2 + = 0(r−3)
2

22

r = 3 ±2i

y = cos(2x) + sin(2x)C1e
3x C2e

3x

0 = y(0) = cos 0 + sin0 =C1e
0 C2e

0 C1

= 0C1 y = sin(2x)C2e3x

= 3 sin(2x) +2 cos(2x)y′ C2e
3x C2e

3x

10 = (0) = 2y′ C2 = 5C2

y = 5 sin(2x)e3x

Ex: Solve a Linear Second Order HomogEx: Solve a Linear Second Order Homog……
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Below is another video on finding the solution to a differential equation given initial values.

 

4.4.4: Footnotes
[1] Making an educated guess with some parameters to solve for is such a central technique in differential equations, that people
sometimes use a fancy name for such a guess: ansatz, German for “initial placement of a tool at a work piece.” Yes, the Germans
have a word for that.

This page titled 4.4: Constant coefficient second order linear ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jiří Lebl.

2.2: Constant coefficient second order linear ODEs by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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4.5: Higher order linear ODEs
Equations that appear in applications tend to be second order, although higher order equations do appear from time to time. Hence,
it is a generally assumed that the world is “second order” from a modern physics perspective. The basic results about linear ODEs
of higher order are essentially the same as for second order equations, with 2 replaced by . The important concept of linear
independence is somewhat more complicated when more than two functions are involved.

For higher order constant coefficient ODEs, the methods are also somewhat harder to apply, but we will not dwell on these
complications. We can always use the methods for systems of linear equations to solve higher order constant coefficient equations.
So let us start with a general homogeneous linear equation:

Superposition

Suppose  are solutions of the homogeneous equation (Equation ). Then

also solves Equation  for arbitrary constants .

In other words, a linear combination of solutions to Equation  is also a solution to Equation . We also have the existence
and uniqueness theorem for nonhomogeneous linear equations.

Existence and Uniqueness

Suppose  through , and  are continuous functions on some interval  is a number in , and  are
constants. The equation

has exactly one solution  defined on the same interval  satisfying the initial conditions

4.5.1: Linear Independence
When we had two functions  and  we said they were linearly independent if one was not the multiple of the other. Same idea
holds for  functions. In this case it is easier to state as follows. The functions  are linearly independent if

has only the trivial solution , where the equation must hold for all . If we can solve equation with some
constants where for example , then we can solve for  as a linear combination of the others. If the functions are not linearly
independent, they are linearly dependent.

Show that , , and  are linearly independent functions.

Solution

Let us give several ways to show this fact. Many textbooks introduce Wronskians, but that is really not necessary to solve this
example. Let us write down

We use rules of exponentials and write . Then we have

n

+ (x) + . . . + (x) + (x)y = f(x)y(n) pn−1 y(n−1) p1 y′ po (4.5.1)

 Theorem 4.5.1

, , … ,y1 y2 yn 4.5.1

y(x) = (x) + (x)+. . . + (x)C1y1 C2y2 Cnyn

4.5.1 , . . . .C1 Cn

4.5.1 4.5.1

 Theorem 4.5.2

po pn−1 f I, a I , , … ,b0 b1 bn−1

+ (x) + . . . + (x) + (x)y = f(x)y(n) pn−1 y(n−1) p1 y′ po

y(x) I

y(a) = , (a) = , … , (a) =b0 y′ b1 y(n−1) bn−1

y1 y2

n , , … ,y1 y2 yn

+ +⋯ + = 0c1y1 c2y2 cnyn

= = ⋯ = = 0c1 c2 cn x

≠ 0c1 y1

 Example 4.5.1

ex e2x e3x

+ + = 0c1e
x c2e

2x c3e
3x

z = ex
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The left hand side is a third degree polynomial in . It can either be identically zero, or it can have at most 3 zeros. Therefore,
it is identically zero, , and the functions are linearly independent.

Let us try another way. As before we write

This equation has to hold for all . What we could do is divide through by  to get

As the equation is true for all , let . After taking the limit we see that . Hence our equation becomes

Rinse, repeat!

How about yet another way. We again write

We can evaluate the equation and its derivatives at different values of  to obtain equations for , , and . Let us first
divide by  for simplicity.

We set  to get the equation . Now differentiate both sides

We set  to get . We divide by  again and differentiate to get . It is clear that  is zero. Then 
must be zero as , and  must be zero because .

There is no one best way to do it. All of these methods are perfectly valid. The important thing is to understand why the
functions are linearly independent.

On the other hand, the functions  and  are linearly dependent. Simply apply definition of the hyperbolic cosine:

4.5.2: Constant Coefficient Higher Order ODEs
When we have a higher order constant coefficient homogeneous linear equation, the song and dance is exactly the same as it was
for second order. We just need to find more solutions. If the equation is  order we need to find  linearly independent solutions.
It is best seen by example.

Find the general solution to

Solution

Try: . We plug in and get

z+ + = 0c1 c2z
2 c3z

3

z

= = = 0c1 c2 c3

+ + = 0c1e
x c2e

2x c3e
3x

x e3x

+ + = 0c1e
−2x c2e

−x c3

x x → ∞ = 0c3

+ = 0c1e
x c2e

2x

+ + = 0c1e
x c2e

2x c3e
3x

x c1 c2 c3

ex

+ + = 0c1 c2e
x c3e

2x

x = 0 + + = 0c1 c2 c3

+2 = 0c2e
x c3e

2x

x = 0 +2 = 0c2 c3 ex 2 = 0c3e
x c3 c2

= −2c2 c3 c1 + + = 0c1 c2 c3

 Example 4.5.2

,ex e−x coshx

coshx = or 2 coshx− − = 0
+ex e−x

2
ex e−x

nth n

 Example : Third order ODE with Constant Coefficients4.5.3

− − +3y = 0y′′′ 3′′ y′ (4.5.2)

y = erx

−3 − +3 = 0.r3erx
  
y ′′′

r2erx
  
y ′′

rerx
 
y ′

erx
 
y
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We divide through by . Then

The trick now is to find the roots. There is a formula for the roots of degree 3 and 4 polynomials, but it is very complicated.
There is no formula for higher degree polynomials. That does not mean that the roots do not exist. There are always  roots for
an  degree polynomial. They may be repeated and they may be complex. Computers are pretty good at finding roots
approximately for reasonable size polynomials.

A good place to start is to plot the polynomial and check where it is zero. We can also simply try plugging in. We just start
plugging in numbers  and see if we get a hit (we can also try complex numbers). Even if we do not get
a hit, we may get an indication of where the root is. For example, we plug  into our polynomial and get -15; we plug in 

 and get 3. That means there is a root between  and , because the sign changed. If we find one root, say ,
then we know  is a factor of our polynomial. Polynomial long division can then be used.

A good strategy is to begin with , 1, or 0. These are easy to compute. Our polynomial happens to have two such roots, 
 and  and. There should be three roots and the last root is reasonably easy to find. The constant term in a monic

 polynomial such as this is the multiple of the negations of all the roots because 
. So

You should check that  really is a root. Hence we know that , , and  are solutions to . They are linearly
independent as can easily be checked, and there are three of them, which happens to be exactly the number we need. Hence the
general solution is

Suppose we were given some initial conditions , and . Then

It is possible to find the solution by high school algebra, but it would be a pain. The sensible way to solve a system of
equations such as this is to use matrix algebra, see Section 3.2 or Appendix A. For now we note that the solution is , 

, and . The specific solution to the ODE is

Next, suppose that we have real roots, but they are repeated. Let us say we have a root  repeated  times. In the spirit of the
second order solution, and for the same reasons, we have the solutions

We take a linear combination of these solutions to find the general solution.

Solve

Solution

We note that the characteristic equation is

By inspection we note that . Hence the roots given with multiplicity are . Thus
the general solution is

erx

−3 −r+3 = 0r3 r2

n

nth

r = −2, −1, 0, 1, 2, …

r = −2

r = 0 r = −2 r = 0 r1

(r− )r1

r = −1

= −1r1 = 1r2
1

−3 −r+3 = (r− )(r− )(r− )r3 r2 r1 r2 r3

3 = (− )(− )(− ) = (1)(−1)(− ) =r1 r2 r3 r3 r3

= 3r3 e−x ex e3x (4.5.2)

y = + +C1e
−x C2e

x C3e
3x

y(0) = 1, (0) = 2y′ (0) = 3y′′

1

2

3

= y(0) = + +C1 C2 C3

= (0) = − + +3y′ C1 C2 C3

= (0) = + +9y′′ C1 C2 C3

(4.5.3)

= −C1
1
4

= 1C2 =C3
1
4

y = − + +
1

4
e−x ex

1

4
e3x

r k

, x , , … ,erx erx x2erx xk−1erx

 Example 4.5.4

−3 +3 − = 0y(4) y′′′ y′′ y′

−3 +3 −r = 0r4 r3 r2

−3 +3 −r = rr4 r3 r2 (r−1)
3

r = 0, 1, 1, 1
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The case of complex roots is similar to second order equations. Complex roots always come in pairs . Suppose we
have two such complex roots, each repeated  times. The corresponding solution is

where  are arbitrary constants.

Below is a video on finding the solution to a differential equation given initial values.

Solve

Solution

The characteristic equation is

Hence the roots are , both with multiplicity 2. Hence the general solution to the ODE is

The way we solved the characteristic equation above is really by guessing or by inspection. It is not so easy in general. We
could also have asked a computer or an advanced calculator for the roots.

4.5.3: Footnotes

[1] The word monic means that the coefficient of the top degree , in our case , is .

4.5.4: Outside Links
After reading this lecture, it may be good to try Project III from the IODE website: www.math.uiuc.edu/iode/.

This page titled 4.5: Higher order linear ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

2.3: Higher order linear ODEs by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.

y = +( + + )C1 C2 C3x
2 ex

  
terms coming from r = 1

C4
 

from r = 0

r = α± iβ

k

( + x+⋯ + ) cos(βx) +( + x+⋯ + ) sin(βx)C0 C1 Ck−1x
k−1 eax D0 D1 Dk−1x

k−1 eax

, … , , , … ,C0 Ck−1 D0 Dk−1

Ex 2: Solve a Linear Second Order HomEx 2: Solve a Linear Second Order Hom……

 Example 4.5.5

−4 +8 −8 +4y = 0y(4) y′′′ y′′ y′

−4 +8 −8r+4r4 r3 r2

( −2r+2)r2 2

( +1)(r−1)2 2

= 0

= 0

= 0

(4.5.4)

1 ± i

y = ( + x) cosx+( + x) sinxC1 C2 ex C3 C4 ex

rd r3 1
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4.6: Reduction of Order
In this section we give a method for finding the general solution of

if we know a nontrivial solution  of the complementary equation

The method is called reduction of order because it reduces the task of solving Equation  to solving a first order equation.
Unlike the method of undetermined coefficients, it does not require , , and  to be constants, or  to be of any special form.

By now you shoudn’t be surprised that we look for solutions of Equation  in the form

where  is to be determined so that  satisfies Equation . Substituting Equation  and

into Equation  yields

Collecting the coefficients of , , and  yields

However, the coefficient of  is zero, since  satisfies Equation . Therefore Equation  reduces to

with

(It isn’t worthwhile to memorize the formulas for  and !) Since Equation  is a linear first order equation in , we can
solve it for  by variation of parameters as in Section 1.2, integrate the solution to obtain , and then obtain  from Equation 

.

Here is a video on using reduction of order to solve a differential equation.

a. Find the general solution of

(x) + (x) + (x)y = F (x)P0 y′′ P1 y′ P2 (4.6.1)

y1

(x) + (x) + (x)y = 0.P0 y′′ P1 y′ P2 (4.6.2)

4.6.1

P0 P1 P2 F

4.6.1

y = uy1 (4.6.3)

u y 4.6.1 4.6.3

y′

y′′

= +uu′y1 y′
1

= +2 +uu′′y1 u′y′
1 y′′

1

4.6.1

(x)( +2 +u ) + (x)( +u ) + (x)u = F (x).P0 u′′y1 u′y′
1 y′′

1 P1 u′y1 y′
1 P2 y1

u u′ u′′

( ) +(2 + ) +( + + )u = F .P0y1 u′′ P0y′
1

P1y1 u′ P0y′′
1

P1y′
1

P2y1 (4.6.4)

u y1 4.6.2 4.6.4

(x) + (x) = F ,Q0 u′′ Q1 u′ (4.6.5)

= and = 2 + .Q0 P0y1 Q1 P0y′
1 P1y1

Q0 Q1 4.6.5 u′

u′ u y

4.6.3

Reduction of Order - Linear Second OrdeReduction of Order - Linear Second Orde……

 Example 4.6.1
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given that  is a solution of the complementary equation

b. As a byproduct of (a), find a fundamental set of solutions of Equation .

Solution

a. If , then  and , so

Therefore  is a solution of Equation  if and only if

which is a first order equation in . We rewrite it as

To focus on how we apply variation of parameters to this equation, we temporarily write , so that Equation 
becomes

We leave it to you to show (by separation of variables) that  is a solution of the complementary equation

for Equation . By applying variation of parameters as in Section 1.2, we can now see that every solution of Equation 
is of the form

Since ,  is a solution of Equation  if and only if

Integrating this yields

Therefore the general solution of Equation  is

b. By letting  in Equation , we see that  is a solution of Equation . By letting  and 
, we see that  is also a solution of Equation . Since the difference of two solutions of Equation

 is a solution of Equation ,  is a solution of Equation . Since  is nonconstant and
we already know that  is a solution of Equation , Theorem 5.1.6 implies that  is a fundamental set of
solutions of Equation .

Although Equation  is a correct form for the general solution of Equation , it is silly to leave the arbitrary
coefficient of  as  where  is an arbitrary constant. Moreover, it is sensible to make the subscripts of the
coefficients of  and  consistent with the subscripts of the functions themselves. Therefore we rewrite
Equation  as

x −(2x +1) +(x +1)y = ,y′′ y′ x2 (4.6.6)

=y1 ex

x −(2x +1) +(x +1)y = 0.y′′ y′ (4.6.7)

4.6.7

y = uex = +uy′ u′ex ex = +2 +uy′′ u′′ex u′ex ex

x −(2x +1) +(x +1)yy′′ y′ = x( +2 +u ) −(2x +1)( +u ) +(x +1)uu′′ex u′ex ex u′ex ex ex

= (x − ) .u′′ u′ ex

y = uex 4.6.6

(x − ) = ,u′′ u′ ex x2

u′

− = x .u′′ u′

x
e−x (4.6.8)

z = u′ 4.6.8

− = x .z′ z

x
e−x (4.6.9)

= xz1

− = 0z′ z

x

4.6.9 4.6.9

z = vx where x = x , so = and v = − + .v′ e−x v′ e−x e−x C1

= z = vxu′ u 4.6.8

= vx = −x + x.u′ e−x C1

u = (x +1) + + .e−x C1

2
x2 C2

4.6.6

y = u = x +1 + + .ex C1

2
x2ex C2ex (4.6.10)

= = 0C1 C2 4.6.10 = x +1yp1
4.6.6 = 2C1

= 0C2 = x +1 +yp2
x2ex 4.6.6

4.6.6 4.6.7 = − =y2 yp1
yp2

x2ex 4.6.7 /y2 y1

=y1 ex 4.6.6 { , }ex x2ex

4.6.7

4.6.10 4.6.6

x2ex /2C1 C1

=y1 ex =y2 x2ex

4.6.10

y = x +1 + +c1ex c2x2ex
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by simply renaming the arbitrary constants. We’ll also do this in the next two examples, and in the answers to the exercises.

Here is a video on using reduction of order to solve a differential equation given one solution.

a. Find the general solution of

given that  is a solution of the complementary equation

As a byproduct of this result, find a fundamental set of solutions of Equation .
b. Solve the initial value problem

Solution

a. If , then  and , so

Therefore  is a solution of Equation  if and only if

which is a first order equation in . We rewrite it as

To focus on how we apply variation of parameters to this equation, we temporarily write , so that Equation 
becomes

We leave it to you to show by separation of variables that  is a solution of the complementary equation

for Equation . By variation of parameters, every solution of Equation  is of the form

Reduction of Order - Linear Second OrdeReduction of Order - Linear Second Orde……

 Example 4.6.2

+x −y = +1,x2y′′ y′ x2

= xy1

+x −y = 0.x2y′′ y′ (4.6.11)

4.6.11

+x −y = +1, y(1) = 2, (1) = −3.x2y′′ y′ x2 y′ (4.6.12)

y = ux = x +uy′ u′ = x +2y′′ u′′ u′

+x −yx2y′′ y′ = ( x +2 ) +x( x +u) −uxx2 u′′ u′ u′

= +3 .x3u′′ x2u′

y = ux 4.6.12

+3 = +1,x3u′′ x2u′ x2

u′

+ = + .u′′ 3

x
u′ 1

x

1

x3
(4.6.13)

z = u′ 4.6.13

+ z = + .z′ 3

x

1

x

1

x3
(4.6.14)

= 1/z1 x3

+ z = 0z′ 3

x

4.6.14 4.6.14
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Since ,  is a solution of Equation  if and only if

Integrating this yields

Therefore the general solution of Equation  is

Reasoning as in the solution of Example , we conclude that  and  form a fundamental set of solutions
for Equation .

As we explained above, we rename the constants in Equation  and rewrite it as

b. Differentiating Equation  yields

Setting  in Equation  and Equation  and imposing the initial conditions  and  yields

Solving these equations yields , . Therefore the solution of Equation  is

Here is a video on using reduction of order to solve a differential equation given one solution.

Using reduction of order to find the general solution of a homogeneous linear second order equation leads to a homogeneous linear
first order equation in  that can be solved by separation of variables. The next example illustrates this.

z = where = + , so = +1 and v = +x + .
v

x3

v′

x3

1

x

1

x3
v′ x2 x3

3
C1

= z = v/u′ x3 u 4.6.14

= = + + .u′ v

x3

1

3

1

x2

C1

x3

u = − − + .
x

3

1

x

C1

2x2
C2

4.6.12

y = ux = −1 − + x.
x2

3

C1

2x
C2 (4.6.15)

4.6.1a = xy1 = 1/xy2

4.6.11

4.6.15

y = −1 + x + .
x2

3
c1

c2

x
(4.6.16)

4.6.16

= + − .y′ 2x

3
c1

c2

x2
(4.6.17)

x = 1 4.6.16 4.6.17 y(1) = 2 (1) = −3y′

+c1 c2

−c1 c2

=
8

3

= − .
11

3

= −1/2c1 = 19/6c2 4.6.12

y = −1 − + .
x2

3

x

2

19

6x
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Find the general solution and a fundamental set of solutions of

given that  is a solution.

Solution

If  then  and , so

Therefore  is a solution of Equation  if and only if

Separating the variables  and  yields

so

Therefore

so the general solution of Equation  is

which we rewrite as

Therefore  is a fundamental set of solutions of Equation .

Here is a video on using reduction of order to solve a differential equation given one solution.

 

This page titled 4.6: Reduction of Order is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F.
Trench.
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−3x +3y = 0,x2y′′ y′ (4.6.18)

= xy1

y = ux = x +uy′ u′ = x +2y′′ u′′ u′

−3x +3yx2y′′ y′ = ( x +2 ) −3x( x +u) +3uxx2 u′′ u′ u′

= − .x3u′′ x2u′

y = ux 4.6.18

− = 0.x3u′′ x2u′

u′ x

= ,
u′′

u′

1

x

ln | | = ln |x| +k, or equivalently = x.u′ u′ C1

u = + ,
C1

2
x2 C2

4.6.18

y = ux = + x,
C1

2
x3 C2

y = x + .c1 c2x3

{x, }x3 4.6.18
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4.6E: Reduction of Order (Exercises)

Q5.6.1

In Exercises 5.6.1-5.6.17 find the general solution, given that  satisfies the complementary equation. As a byproduct, find a
fundamental set of solutions of the complementary equation.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Q5.6.2
In Exercises 5.6.18-5.6.30 find a fundamental set of solutions, given that  is a solution.

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

y1

(2x+1) −2 −(2x+3)y = (2x+1 ; =y′′ y′ )2 y1 e−x

+x −y = ; = xx2y′′ y′ 4
x2 y1

−x +y = x; = xx2y′′ y′ y1

−3 +2y = ; =y′′ y′ 1
1+e−x

y1 e2x

−2 +y = 7 ; =y′′ y′ x3/2ex y1 ex

4 +(4x−8 ) +(4 −4x−1)y = 4 (1 +4x); =x2y′′ x2 y′ x2 x1/2ex y1 x1/2ex

−2 +2y = secx; = cosxy′′ y′ ex y1 ex

+4x +(4 +2)y = 8 ; =y′′ y′ x2 e−x(x+2) y1 e−x2

+x −4y = −6x−4; =x2y′′ y′ y1 x2

+2x(x−1) +( −2x+2)y = ; = xx2y′′ y′ x2 x3e2x y1 e−x

−x(2x−1) +( −x−1)y = ; = xx2y′′ y′ x2 x2ex y1 ex

(1 −2x) +2 +(2x−3)y = (1 −4x+4 ) ; =y′′ y′ x2 ex y1 ex

−3x +4y = 4 ; =x2y′′ y′ x4 y1 x2

2x +(4x+1) +(2x+1)y = 3 ; =y′′ y′ x1/2e−x y1 e−x

x −(2x+1) +(x+1)y = − ; =y′′ y′ ex y1 ex

4 −4x(x+1) +(2x+3)y = 4 ; =x2y′′ y′ x5/2e2x y1 x1/2

−5x +8y = 4 ; =x2y′′ y′ x2 y1 x2

y1

x +(2 −2x) +(x−2)y = 0; =y′′ y′ y1 ex

−4x +6y = 0; =x2y′′ y′ y1 x2

(ln |x| −(2x ln |x|) +(2 +ln |x|)y = 0; = ln |x|x2 )2y′′ y′ y1

4x +2 +y = 0; = siny′′ y′ y1 x
−−

√

x −(2x+2) +(x+2)y = 0; =y′′ y′ y1 ex

−(2a−1)x + y = 0; =x2y′′ y′ a2 y1 xa

−2x +( +2)y = 0; = x sinxx2y′′ y′ x2 y1

x −(4x+1) +(4x+2)y = 0; =y′′ y′ y1 e2x

4 (sinx) −4x(x cosx+sinx) +(2x cosx+3 sinx)y = 0; =x2 y′′ y′ y1 x1/2

4 −4x +(3 −16 )y = 0; =x2y′′ y′ x2 y1 x1/2e2x

(2x+1)x −2(2 −1) −4(x+1)y = 0; = 1/xy′′ x2 y′ y1

( −2x) +(2 − ) +(2x−2)y = 0; =x2 y′′ x2 y′ y1 ex

x −(4x+1) +(4x+2)y = 0; =y′′ y′ y1 e2x
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Q5.6.3
In Exercises 5.6.31-5.6.33 solve the initial value problem, given that  satisfies the complementary equation.

31. 

32. 

33. 

Q5.6.4
In Exercises 5.6.34 and 5.6.35 solve the initial value problem and graph the solution, given that  satisfies the complementary
equation.

34. 

35. 

Q5.6.5

36. Suppose  and  are continuous on . Let  be a solution of

that has no zeros on , and let  be in . Use reduction of order to show that  and

form a fundamental set of solutions of (A) on .

37. The nonlinear first order equation

is a Riccati equation. (See Exercise 2.4.55.) Assume that  and  are continuous.

a. Show that  is a solution of (A) if and only if , where

b. Show that the general solution of (A) is

where  is a fundamental set of solutions of (B) and  and  are arbitrary constants.
c. Does the formula (C) imply that the first order equation (A) has a two–parameter family of solutions? Explain your answer.

38. Use a method suggested by Exercise 5.6.37 to find all solutions. of the equation.

a. 
b. 
c. 
d. 
e. 
f. 
g. 

39. Use a method suggested by Exercise 5.6.37 and reduction of order to find all solutions of the equation, given that  is a
solution.

a. 
b. 
c. 

y1

−3x +4y = 4 , y(−1) = 7, (−1) = −8; =x2y′′ y′ x4 y′ y1 x2

(3x−1) −(3x+2) −(6x−8)y = 0, y(0) = 2, (0) = 3; =y′′ y′ y′ y1 e2x

(x+1 −2(x+1) −( +2x−1)y = (x+1 , y(0) = 1, (0) =   −1; = (x+1))2y′′ y′ x2 )3ex y′ y1 ex

y1

+2x −2y = , y(1) = , (1) = ; = xx2y′′ y′ x2 5
4

y′ 3
2

y1

( −4) +4x +2y = x+2, y(0) = − , (0) = −1; =x2 y′′ y′ 1
3

y′ y1
1

x−2

p1 p2 (a, b) y1

+ (x) + (x)y = 0y′′ p1 y′ p2 (A)

(a, b) x0 (a, b) y1

(x) = (x) exp(− (s)ds) dty2 y1 ∫
x

x0

1

(t)y2
1

∫
t

x0

p1 (4.6E.1)

(a, b)

+ +p(x)y+q(x) = 0y′ y2 (A)

p q

y y = /zz′

+p(x) +q(x)z = 0.z
′′

z
′ (B)

y = ,
+c1z

′
1 c2z

′
2

+c1z1 c2z2
(C)

{ , }z1 z2 c1 c2

+ + = 0y′ y2 k2

+ −3y+2 = 0y′ y2

+ +5y−6 = 0y′ y2

+ +8y+7 = 0y′ y2

+ +14y+50 = 0y′ y2

6 +6 −y−1 = 0y′ y2

36 +36 −12y+1 = 0y′ y2

y1

( + ) −x(x+2)y+x+2 = 0; = 1/xx2 y′ y2 y1

+ +4xy+4 +2 = 0; = −2xy′ y2 x2 y1

(2x+1)( + ) −2y−(2x+3) = 0; = −1y′ y2 y1
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d. 
e. 
f. 

40. The nonlinear first order equation

is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that  and  are continuous and  is differentiable.

a. Show that  is a solution of (A) if and only if , where

b. Show that the general solution of (A) is

where  is a fundamental set of solutions of (B) and  and  are arbitrary constants.

This page titled 4.6E: Reduction of Order (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
William F. Trench.

5.6E: Reduction of Order (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

(3x−1)( + ) −(3x+2)y−6x+8 = 0; = 2y′ y2 y1

( + ) +xy+ − = 0; = −tanx−x2 y′ y2 x2 1
4

y1
1

2x
( + ) −7xy+7 = 0; = 1/xx2 y′ y2 y1

+r(x) +p(x)y+q(x) = 0y′ y2 (A)

p q r

y y = /rzz′

+[p(x) − ] +r(x)q(x)z = 0.z
′′ (x)r′

r(x)
z

′ (B)

y = ,
+c1z

′
1 c2z

′
2

r( + )c1z1 c2z2
(4.6E.2)

{ , }z1 z2 c1 c2
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4.7: Variation of Parameters
In this section we give a method called variation of parameters for finding a particular solution of

if we know a fundamental set  of solutions of the complementary equation

Having found a particular solution  by this method, we can write the general solution of Equation  as

Since we need only one nontrivial solution of Equation  to find the general solution of Equation  by reduction of order, it
is natural to ask why we are interested in variation of parameters, which requires two linearly independent solutions of Equation 

 to achieve the same goal. Here’s the answer:

If we already know two linearly independent solutions of Equation  then variation of parameters will probably be simpler
than reduction of order.
Variation of parameters generalizes naturally to a method for finding particular solutions of higher order linear equations
(Section 9.4) and linear systems of equations (Section 10.7), while reduction of order doesn’t.
Variation of parameters is a powerful theoretical tool used by researchers in differential equations. Although a detailed
discussion of this is beyond the scope of this book, you can get an idea of what it means from Exercises 5.7.37–5.7.39.

We’ll now derive the method. As usual, we consider solutions of Equation  and Equation  on an interval  where ,
, , and  are continuous and  has no zeros. Suppose that  is a fundamental set of solutions of the complementary

equation Equation . We look for a particular solution of Equation  in the form

where  and  are functions to be determined so that  satisfies Equation . You may not think this is a good idea, since
there are now two unknown functions to be determined, rather than one. However, since  and  have to satisfy only one
condition (that  is a solution of Equation ), we can impose a second condition that produces a convenient simplification, as
follows.

Differentiating Equation  yields

As our second condition on  and  we require that

Then Equation  becomes

that is, Equation  permits us to differentiate  (once!) as if  and  are constants. Differentiating Equation  yields

(There are no terms involving  and  here, as there would be if we hadn’t required Equation .) Substituting Equation 
, Equation , and Equation  into Equation  and collecting the coefficients of  and  yields

As in the derivation of the method of reduction of order, the coefficients of  and  here are both zero because  and  satisfy
the complementary equation. Hence, we can rewrite the last equation as

Therefore  in Equation  satisfies Equation  if

(x) + (x) + (x)y = F (x)P0 y′′ P1 y′ P2 (4.7.1)

{ , }y1 y2

(x) + (x) + (x)y = 0.P0 y
′′

P1 y
′

P2 (4.7.2)

yp 4.7.1

y = + + .yp c1y1 c2y2

4.7.2 4.7.1

4.7.2

4.7.2

4.7.1 4.7.2 (a, b) P0

P1 P2 F P0 { , }y1 y2

4.7.2 4.7.1

= +yp u1y1 u2y2 (4.7.3)

u1 u2 yp 4.7.1

u1 u2

yp 4.7.1

4.7.3

= + + + .y′
p u1y

′
1 u2y

′
2 u′

1y1 u′
2y2 (4.7.4)

u1 u2

+ = 0.u′
1y1 u′

2y2 (4.7.5)

4.7.4

= + ;y′
p u1y

′
1 u2y

′
2 (4.7.6)

4.7.5 yp u1 u2 4.7.4

= + + + .y′′
p u1y

′′
1

u2y
′′
2

u′
1
y′

1
u′

2
y′

2
(4.7.7)

u′′
1 u′′

2 4.7.5

4.7.3 4.7.6 4.7.7 4.7.1 u1 u2

( + + ) + ( + + ) + ( + ) = F .u1 P0y
′′
1 P1y

′
1 P2y1 u2 P0y

′′
2 P1y

′
2 P2y2 P0 u′

1y
′
1 u′

2y
′
2

u1 u2 y1 y2

( + ) = F .P0 u′
1y

′
1 u′

2y
′
2 (4.7.8)

yp 4.7.3 4.7.1
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where the first equation is the same as Equation  and the second is from Equation .

We’ll now show that you can always solve Equation  for  and . (The method that we use here will always work, but
simpler methods usually work when you’re dealing with specific equations.) To obtain , multiply the first equation in Equation 

 by  and the second equation by . This yields

Subtracting the second equation from the first yields

Since  is a fundamental set of solutions of Equation  on , Theorem 5.1.6 implies that the Wronskian 
 has no zeros on . Therefore we can solve Equation  for , to obtain

We leave it to you to start from Equation  and show by a similar argument that

We can now obtain  and  by integrating  and . The constants of integration can be taken to be zero, since any choice of 
and  in Equation  will suffice.

You should not memorize Equation  and Equation . On the other hand, you don’t want to rederive the whole procedure
for every specific problem. We recommend the a compromise:

a. Write

to remind yourself of what you’re doing.
b. Write the system

for the specific problem you’re trying to solve.
c. Solve Equation  for  and  by any convenient method.
d. Obtain  and  by integrating  and , taking the constants of integration to be zero.
e. Substitute  and  into Equation  to obtain .

Below is a video on using variation of parameters to solve a differential equation.

+u′
1y1 u′

2y2

+u′
1y

′
1 u′

2y
′
2

= 0

= ,F

P0

(4.7.9)

4.7.5 4.7.8

4.7.9 u′
1 u′

2

u′
1

4.7.9 y′
2 y2

+u′
1
y1y

′
2

u′
2
y2y

′
2

+u′
1y

′
1y2 u′

2y
′
2y2

= 0

= .
Fy2

P0

( − ) = − .u′
1
y1y

′
2

y′
1
y2

Fy2

P0

(4.7.10)

{ , }y1 y2 4.7.2 (a, b)

−y1y
′
2 y′

1y2 (a, b) 4.7.10 u′
1

= − .u′
1

Fy2

( − )P0 y1y
′
2 y′

1y2

(4.7.11)

4.7.9

= .u′
2

Fy1

( − )P0 y1y
′
2 y′

1y2

(4.7.12)

u1 u2 u′
1 u′

2 u1

u2 4.7.3

4.7.11 4.7.12

= +yp u1y1 u2y2 (4.7.13)

+u′
1y1 u′

2y2

+u′
1y

′
1 u′

2y
′
2

= 0

= F

P0

(4.7.14)

4.7.14 u′
1 u′

2

u1 u2 u′
1 u′

2

u1 u2 4.7.13 yp
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Below is another video on using variation of parameters to solve a differential equation.

Find a particular solution  of

given that  and  are solutions of the complementary equation

Then find the general solution of Equation .

Solution

We set

where

From the first equation, . Substituting this into the second equation yields , so  and therefore 
. Integrating and taking the constants of integration to be zero yields

Ex 1: General Solution to a Second OrdeEx 1: General Solution to a Second Orde……

Ex 2: General Solution to a Second OrdeEx 2: General Solution to a Second Orde……

 Example 4.7.1

yp

−2x +2y = ,x2y′′ y′ x9/2 (4.7.15)

= xy1 =y2 x2

−2x +2y = 0.x
2
y

′′
y

′

4.7.15

= x+ ,yp u1 u2x
2

x+u′
1 u′

2x
2

+2 xu′
1 u′

2

= 0

= = .
x9/2

x2
x5/2

= − xu′
1 u′

2 x =u′
2 x5/2 =u′

2 x3/2

= − x = −u′
1 u′

2 x5/2

= − and = .u1
2

7
x7/2 u2

2

5
x5/2
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Therefore

and the general solution of Equation  is

Below is a video on using variation of parameters to solve a differential equation.

Find a particular solution  of

given that  and  are solutions of the complementary equation

Then find the general solution of Equation .

Solution

We set

where

Subtracting the first equation from the second yields , so . From this and the first equation, 
. Integrating and taking the constants of integration to be zero yields

Therefore

so the general solution of Equation  is

= x+ = − x+ = ,yp u1 u2x
2 2

7
x

7/2 2

5
x

5/2
x

2 4

35
x

9/2

4.7.15

y = + x+ .
4

35
x

9/2
c1 c2x

2

Ex 3: General Solution to a Second OrdeEx 3: General Solution to a Second Orde……

 Example 4.7.2

yp

(x−1) −x +y = (x−1 ,y′′ y′ )2 (4.7.16)

= xy1 =y2 ex

(x−1) −x +y = 0.y
′′

y
′

4.7.16

= x+ ,yp u1 u2e
x

x+u′
1 u′

2e
x

+u′
1 u′

2e
x

= 0

= = x−1.
(x−1)2

x−1

− (x−1) = x−1u′
1 = −1u′

1

= −x = xu′
2 e−xu′

1 e−x

= −x and = −(x+1) .u1 u2 e−x

= x+ = (−x)x+(−(x+1) ) = − −x−1,yp u1 u2e
x

e
−x

e
x

x
2

4.7.16

y = + x+ = − −x−1 + x+ = − −1 +( −1)x+ .yp c1 c2e
x x2 c1 c2e

x x2 c1 c2e
x (4.7.17)
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However, since  is an arbitrary constant, so is ; therefore, we improve the appearance of this result by renaming the
constant and writing the general solution as

There’s nothing wrong with leaving the general solution of Equation  in the form Equation ; however, we think you’ll
agree that Equation  is preferable. We can also view the transition from Equation  to Equation  differently. In
this example the particular solution  contained the term , which satisfies the complementary equation. We
can drop this term and redefine , since  is a solution of Equation  and  is a solution of the
complementary equation; hence,  is also a solution of Equation . In general, it is always
legitimate to drop linear combinations of  from particular solutions obtained by variation of parameters. (See Exercise
5.7.36 for a general discussion of this question.) We’ll do this in the following examples and in the answers to exercises that ask for
a particular solution. Therefore, don’t be concerned if your answer to such an exercise differs from ours only by a solution of the
complementary equation.

Below is a video on verifying a solution to a differential equation and then solving it using variation of parameters.

Find a particular solution of

Then find the general solution.

Solution

The characteristic polynomial of the complementary equation

is , so  and  form a fundamental set of solutions of Equation .
We look for a particular solution of Equation  in the form

where

Adding these two equations yields

c1 −1c1

y = − −1 + x+ .x2 c1 c2e
x (4.7.18)

4.7.16 4.7.17

4.7.18 4.7.17 4.7.18

= − −x−1yp x2 −x

= − −1yp x2 − −x−1x2 4.7.16 x

− −1 = (− −x−1) +xx2 x2 4.7.16

{ , }y1 y2

Determine a Particular Solution of a SecDetermine a Particular Solution of a Sec……

 Example 4.7.3

+3 +2y = .y
′′

y
′ 1

1 +ex
(4.7.19)

+3 +2y = 0y
′′

y
′ (4.7.20)

p(r) = +3r+2 = (r+1)(r+2)r2 =y1 e−x =y2 e−2x 4.7.20

4.7.19

= + ,yp u1e
−x u2e

−2x

+u′
1e

−x
u′

2e
−2x

− −2u′
1e

−x
u′

2e
−2x

= 0

= .
1

1 +ex
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From the first equation,

Integrating by means of the substitution  and taking the constants of integration to be zero yields

and

Therefore

so

Since the last term on the right satisfies the complementary equation, we drop it and redefine

The general solution of Equation  is

Solve the initial value problem

given that

are solutions of the complementary equation

Solution

We first use variation of parameters to find a particular solution of

on  in the form

where

− = , so = − .u′
2e

−2x 1

1 +ex
u′

2

e2x

1 +ex

= − = .u′
1 u′

2e
−x ex

1 +ex

v= ex

= ∫ dx = ∫ = ln(1 +v) = ln(1 + )u1
ex

1 +ex

dv

1 +v
ex

u2 = −∫ dx = −∫ dv= ∫ [ −1] dv
e2x

1 +ex
v

1 +v

1

1 +v

= ln(1 +v) −v= ln(1 + ) − .ex ex

yp = +u1e
−x

u2e
−2x

= [ln(1 + )] +[ln(1 + ) − ] ,ex e−x ex ex e−2x

= ( + ) ln(1 + ) − .yp e
−x

e
−2x

e
x

e
−x

= ( + ) ln(1 + ).yp e
−x

e
−2x

e
x

4.7.19

y = + + = ( + ) ln(1 + ) + + .yp c1e
−x c2e

−2x e−x e−2x ex c1e
−x c2e

−2x

 Example 4.7.4

( −1) +4x +2y = , y(0) = −1, (0) = −5,x
2

y
′′

y
′ 2

x+1
y

′ (4.7.21)
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1
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Multiplying the first equation by  and adding the result to the second equation yields

Since

Equation  implies that . From Equation ,

Integrating and taking the constants of integration to be zero yields

and

Therefore

However, since

is a solution of the complementary equation, we redefine

Therefore the general solution of Equation  is

Differentiating this yields

Setting  in the last two equations and imposing the initial conditions  and  yields the system

+ = 0
u′

1
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2
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(4.7.22)
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The solution of this system is . Substituting these into Equation  yields

as the solution of Equation . Figure 4.7.1 is a graph of the solution.

Figure 4.7.1 : 

Below is a video on using variation of parameters to solve a differential equation.

We’ve now considered three methods for solving nonhomogeneous linear equations: undetermined coefficients, reduction of order,
and variation of parameters. It’s natural to ask which method is best for a given problem. The method of undetermined coefficients
should be used for constant coefficient equations with forcing functions that are linear combinations of polynomials multiplied by
functions of the form , , or . Although the other two methods can be used to solve such problems, they will
be more difficult except in the most trivial cases, because of the integrations involved.

If the equation isn’t a constant coefficient equation or the forcing function isn’t of the form just specified, the method of
undetermined coefficients does not apply and the choice is necessarily between the other two methods. The case could be made that
reduction of order is better because it requires only one solution of the complementary equation while variation of parameters
requires two. However, variation of parameters will probably be easier if you already know a fundamental set of solutions of the
complementary equation.

This page titled 4.7: Variation of Parameters is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William
F. Trench.
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4.7E: Variation of Parameters (Exercises)

Q5.7.1

In Exercises 5.7.1–5.7.6 use variation of parameters to find a particular solution.

1. 

2. 

3. 

4. 

5. 

6. 

Q5.7.2

In Exercises 5.7.7-5.7.29 use variation of parameters to find a particular solution, given the solutions  of the complementary
equation.

7. 

8. 

9. ; 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 
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4 +(4x−8 ) +(4 −4x−1)y = 4 , x > 0x2y′′ x2 y′ x2 x1/2ex = , =y1 x1/2ex y2 x−1/2ex

+4x +(4 +2)y = 4 ; = , = xy′′ y′ x2 e−x(x+2) y1 e−x2
y2 e−x2
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Q5.7.3
In Exercises 5.7.30–5.7.32 use variation of parameters to solve the initial value problem, given ,  are solutions of the
complementary equation.

30. ; 

31. ;

, 

32. ;

Q5.7.4

In Exercises 5.7.33-5.7.35 use variation of parameters to solve the initial value problem and graph the solution, given that , 
are solutions of the complementary equation.

33. 

34. 

35. ; 

Q5.7.5

36. Suppose

is a particular solution of

where  and  are solutions of the complementary equation

Show that  is also a solution of (A).

37. Suppose , , and  are continuous on  and let  be in . Let  and  be the solutions of

such that

Use variation of parameters to show that the solution of the initial value problem

is

HINT: Use Abel's formula for the Wronskian of , and integrate  and  from  to .

Show also that

y1 y2

(3x−1) −(3x+2) −(6x−8)y = (3x−1 , y(0) = 1, (0) = 2y′′ y′ )2e2x y′ = , = xy1 e2x y2 e−x

(x−1 −2(x−1) +2y = (x−1 , y(0) = 3, (0) = −6)2y′′ y′ )2 y′

= x−1y1 = −1y2 x2

(x−1 −( −1) +(x+1)y = (x−1 , y(0) = 4, (0) = −6)2y′′ x2 y′ )3ex y′

= (x−1) , = x−1y1 ex y2

y1 y2

( −1) +4x +2y = 2x, y(0) = 0, (0) = −2; = , =x2 y′′ y′ y′ y1
1

x−1
y2

1
x+1

+2x −2y = −2 , y(1) = 1, (1) = −1; = x, =x2y′′ y′ x2 y′ y1 y2
1
x2

(x+1)(2x+3) +2(x+2) −2y = (2x+3 , y(0) = 0, (0) = 0y′′ y′ )2 y′ = x+2, =y1 y2
1

x+1

= + +yp ȳ̄̄ a1y1 a2y2 (4.7E.1)

(x) + (x) + (x)y = F (x),P0 y′′ P1 y′ P2 (A)

y1 y2

(x) + (x) + (x)y = 0.P0 y′′ P1 y′ P2 (4.7E.2)

ȳ̄̄

p q f (a, b) x0 (a, b) y1 y2

+p(x) +q(x)y = 0y′′ y′ (4.7E.3)

( ) = 1, ( ) = 0, ( ) = 0, ( ) = 1.y1 x0 y′
1 x0 y2 x0 y′

2 x0 (4.7E.4)

+p(x) +q(x)y = f(x), y( ) = , ( ) = ,y′′ y′ x0 k0 y′ x0 k1 (4.7E.5)

y(x) = (x) + (x)k0y1 k1y2

+ ( (t) (x) − (x) (t))f(t) exp( p(s)ds) dt.∫ x

x0
y1 y2 y1 y2 ∫ t

x0

(4.7E.6)

{ , }y1 y2 u′
1

u′
2

x0 x

(x)y′ = (x) + (x)k0y′
1 k1y′

2

+ ( (t) (x) − (x) (t))f(t) exp( p(s)ds) dt.∫ x

x0
y1 y′

2 y′
1 y2 ∫ t

x0

(4.7E.7)
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38. Suppose  is continuous on an open interval that contains . Use variation of parameters to find a formula for the solution
of the initial value problem

39. Suppose  is continuous on , where , so  is in .

a. Use variation of parameters to find a formula for the solution of the initial value problem

HINT: You will need the addition formulas for the sine and cosine.

For the rest of this exercise assume that the improper integral  is absolutely convergent.
b. Show that if  is a solution of

on , then

and

where

HINT: Recall from calculus that if  converges absolutely, then .
c. Show that if  and  are arbitrary constants, then there’s a unique solution of  on  that satisfies (B) and

(C).

This page titled 4.7E: Variation of Parameters (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by William F. Trench.

5.7E: Variation of Parameters (Exercises) by William F. Trench is licensed CC BY-NC-SA 3.0. Original source:
https://digitalcommons.trinity.edu/mono/9.

f = 0x0

−y = f(x), y(0) = , (0) = .y′′ k0 y′ k1 (4.7E.8)

f (a, ∞) a < 0 = 0x0 (a, ∞)

+y = f(x), y(0) = , (0) = .y′′ k0 y′ k1 (4.7E.9)

sin(A+B)
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f(t)dt∫
∞

0

y

+y = f(x)y′′ (A)

(a, ∞)

(y(x) − cosx− sinx) = 0lim
x→∞

A0 A1 (B)

( (x) + sinx− cosx) = 0,lim
x→∞

y′ A0 A1 (C)

= − f(t) sin t dt and = + f(t) cos t dt.A0 k0 ∫
∞

0
A1 k1 ∫

∞

0
(4.7E.10)

f(t)dt∫ ∞
0 |f(t)|dt = 0limx→∞ ∫ ∞

x
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4.8: Mechanical Vibrations
Let us look at some applications of linear second order constant coefficient equations.

4.8.1: Some examples

Figure 

Our first example is a mass on a spring. Suppose we have a mass  (in kilograms) connected by a spring with spring constant 
 (in newtons per meter) to a fixed wall. There may be some external force  (in newtons) acting on the mass. Finally,

there is some friction measured by  (in newton-seconds per meter) as the mass slides along the floor (or perhaps there is a
damper connected).

Let  be the displacement of the mass (  is the rest position), with  growing to the right (away from the wall). The force
exerted by the spring is proportional to the compression of the spring by Hooke’s law. Therefore, it is  in the negative direction.
Similarly the amount of force exerted by friction is proportional to the velocity of the mass. By Newton’s second law we know that
force equals mass times acceleration and hence  or

This is a linear second order constant coefficient ODE. We set up some terminology about this equation. We say the motion is

i. forced, if  (if  is not identically zero),
ii. unforced or free, if  (if  is identically zero),

iii. damped, if , and
iv.  undamped, if .

This system appears in lots of applications even if it does not at first seem like it. Many real-world scenarios can be simplified to a
mass on a spring. For example, a bungee jump setup is essentially a mass and spring system (you are the mass). It would be good if
someone did the math before you jump off the bridge, right? Let us give two other examples.

Here is an example for electrical engineers. Consider the pictured  circuit. There is a resistor with a resistance of  ohms, an
inductor with an inductance of  henries, and a capacitor with a capacitance of  farads. There is also an electric source (such as a
battery) giving a voltage of  volts at time  (measured in seconds). Let  be the charge in coulombs on the capacitor and 

 be the current in the circuit. The relation between the two is . By elementary principles we find .
We differentiate to get

Figure 

This is a nonhomogeneous second order constant coefficient linear equation. As , and  are all positive, this system behaves
just like the mass and spring system. Position of the mass is replaced by current. Mass is replaced by inductance, damping is
replaced by resistance, and the spring constant is replaced by one over the capacitance. The change in voltage becomes the forcing
function—for constant voltage this is an unforced motion.

Our next example behaves like a mass and spring system only approximately. Suppose a mass  hangs on a pendulum of length .
We seek an equation for the angle  (in radians). Let  be the force of gravity. Elementary physics mandates that the equation is

4.8.1

m > 0
k > 0 F (t)

c ≥ 0

x x = 0 x

kx
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F ≢ 0 F

F ≡ 0 F

c > 0
c = 0

RLC R

L C

E(t) t Q(t)

I(t) = IQ′ L +RI + = EI ′ Q

C
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C
E ′
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m L
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Figure 

Let us derive this equation using Newton's second law: force equals mass times acceleration. The acceleration is  and mass is 
. So  has to be equal to the tangential component of the force given by the gravity, which is  in the opposite

direction. So . The  curiously cancels from the equation.

Now we make our approximation. For small  we have that approximately . This can be seen by looking at the graph. In
Figure  we can see that for approximately  (in radians) the graphs of  and  are almost the same.

Figure : The graphs of  and  (in radians).

Therefore, when the swings are small,  is small and we can model the behavior by the simpler linear equation

The errors from this approximation build up. So after a long time, the state of the real-world system might be substantially different
from our solution. Also we will see that in a mass-spring system, the amplitude is independent of the period. This is not true for a
pendulum. Nevertheless, for reasonably short periods of time and small swings (that is, only small angles ), the approximation is
reasonably good.

In real-world problems it is often necessary to make these types of simplifications. We must understand both the mathematics and
the physics of the situation to see if the simplification is valid in the context of the questions we are trying to answer.

4.8.2: Free Undamped Motion

In this section we will only consider free or unforced motion, as we cannot yet solve nonhomogeneous equations. Let us start with
undamped motion where . We have the equation

If we divide by  and let , then we can write the equation as

The general solution to this equation is

By a trigonometric identity, we have that for two different constants  and , we have

4.8.3

Lθ′′

m mLθ′′ mg sinθ

mL = −mg sinθθ′′ m

θ sinθ ≈ θ

4.8.4 −0.5 < θ < 0.5 sinθ θ

4.8.4 sin θ θ

θ

+ θ = 0.θ′′ g

L

θ

c = 0

m +kx = 0x′′

m =w0
k

m

−−−
√

+ x = 0x′′ w2
0

x(t) = A cos( t) +B sin( t)w0 w0

C γ

A cos( t) +B sin( t) = C cos( t −γ)w0 w0 w0
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It is not hard to compute that  and . Therefore, we let  and  be our arbitrary constants and write 

.

Below is a video on solving a differential equation that comes from a free undamped spring system.

Justify the above identity and verify the equations for  and . Hint: Start with 
and multiply by . Then think what should  and  be.

While it is generally easier to use the first form with  and  to solve for the initial conditions, the second form is much more
natural. The constants  and  have very nice interpretation. We look at the form of the solution

We can see that the amplitude is ,  is the (angular) frequency, and  is the so-called phase shift. The phase shift just shifts
the graph left or right. We call  the natural (angular) frequency. This entire setup is usually called simple harmonic motion.

Let us pause to explain the word angular before the word frequency. The units of  are radians per unit time, not cycles per
unit time as is the usual measure of frequency. Because we know one cycle is  radians, the usual frequency is given by .

It is simply a matter of where we put the constant , and that is a matter of taste.

The period of the motion is one over the frequency (in cycles per unit time) and hence . That is the amount of time it takes

to complete one full oscillation.

Below is a video on solving a initial value problem that comes from a free undamped spring system.

C = +A2 B2
− −−−−−−

√ tanγ =
B

A
C γ

x(t) = C cos( t −γ)w0

Introduction to Free Undamped Motion Introduction to Free Undamped Motion ……

 Exercise 4.8.1
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C α β

A B

C γ

x(t) = C cos( t −γ)w0

C w0 γ

w0

w0

2π
w0

2π
2π
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Suppose that  and . The whole mass and spring setup is sitting on a truck that was traveling at . The

truck crashes and hence stops. The mass was held in place  meters forward from the rest position. During the crash the mass

gets loose. That is, the mass is now moving forward at , while the other end of the spring is held in place. The mass

therefore starts oscillating. What is the frequency of the resulting oscillation and what is the amplitude. The units are the mks
units (meters-kilograms-seconds).

The setup means that the mass was at half a meter in the positive direction during the crash and relative to the wall the spring is

mounted to, the mass was moving forward (in the positive direction) at . This gives us the initial conditions.

So the equation with initial conditions is

We can directly compute . Hence the angular frequency is 2. The usual frequency in Hertz (cycles per

second) is .

The general solution is

Letting  means . Then . Letting  we get .
Therefore, the amplitude is . The solution is

A plot of  is shown in Figure .

Figure : Simple undamped oscillation.

In general, for free undamped motion, a solution of the form

corresponds to the initial conditions  and . Therefore, it is easy to figure out  and  from the initial
conditions. The amplitude and the phase shift can then be computed from  and . In the example, we have already found the

amplitude . Let us compute the phase shift. We know that . We take the arctangent of 1 and get

approximately 0.785. We still need to check if this  is in the correct quadrant (and add  to  if it is not). Since both  and 
are positive, then  should be in the first quadrant, and 0.785 radians really is in the first quadrant.

Many calculators and computer software do not only have the atan function for arctangent, but also what is sometimes called 
atan2 . This function takes two arguments,  and , and returns a  in the correct quadrant for you.
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Below is a video on solving a differential equation that comes from an undamped spring system.

4.8.3: Free Damped Motion

Let us now focus on damped motion. Let us rewrite the equation

as

where

The characteristic equation is

Using the quadratic formula we get that the roots are

The form of the solution depends on whether we get complex or real roots. We get real roots if and only if the following number is
nonnegative:

The sign of  is the same as the sign of . Thus we get real roots if and only if  is nonnegative, or in
other words if .

4.8.3.1: Overdamping

When , we say the system is overdamped. In this case, there are two distinct real roots  and . Notice that both

roots are negative. As  is always less than , then  is negative.

The solution is

Since  are negative,  as . Thus the mass will tend towards the rest position as time goes to infinity. For a few
sample plots for different initial conditions (Figure ).

Ex 2: Free Undamped Motion IVP ProbleEx 2: Free Undamped Motion IVP Proble……
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Figure : Overdamped motion for several different initial conditions.

Do note that no oscillation happens. In fact, the graph will cross the  axis at most once. To see why, we try to solve 
. Therefore,  and using laws of exponents we obtain

This equation has at most one solution . For some initial conditions the graph will never cross the  axis, as is evident from
the sample graphs.

Suppose the mass is released from rest. That is  and . Then

It is not hard to see that this satisfies the initial conditions.

Below is a video on solving a differential equation that comes from a damped spring system.

4.8.3.2: Critical damping

When , we say the system is critically damped. In this case, there is one root of multiplicity 2 and this root is .
Therefore, our solution is

The behavior of a critically damped system is very similar to an overdamped system. After all a critically damped system is in
some sense a limit of overdamped systems. Since these equations are really only an approximation to the real world, in reality we
are never critically damped, it is a place we can only reach in theory. We are always a little bit underdamped or a little bit
overdamped. It is better not to dwell on critical damping.

4.8.6
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4.8.3.3: Underdamping

Figure : Underdamped motion with the envelope curves shown.

When , we say the system is underdamped. In this case, the roots are complex.

where . Our solution is

or

An example plot is given in Figure . Note that we still have that  as .

In the figure we also show the envelope curves  and . The solution is the oscillating line between the two envelope
curves. The envelope curves give the maximum amplitude of the oscillation at any given point in time. For example if you are
bungee jumping, you are really interested in computing the envelope curve so that you do not hit the concrete with your head.

The phase shift  just shifts the graph left or right but within the envelope curves (the envelope curves do not change if  changes).

Finally note that the angular pseudo-frequency  (we do not call it a frequency since the solution is not really a periodic function) 
 becomes smaller when the damping  (and hence ) becomes larger. This makes sense. When we change the damping just a

little bit, we do not expect the behavior of the solution to change dramatically. If we keep making  larger, then at some point the
solution should start looking like the solution for critical damping or overdamping, where no oscillation happens. So if 
approaches , we want  to approach 0.

On the other hand when  becomes smaller,  approaches  (  is always smaller than  ), and the solution looks more and
more like the steady periodic motion of the undamped case. The envelope curves become flatter and flatter as  (and hence  )
goes to 0.

4.8.4: Footnotes
[1] We do not call  a frequency since the solution is not really a periodic function.
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4.9: Nonhomogeneous Equations

4.9.1: Solving Nonhomogeneous Equations

We have solved linear constant coefficient homogeneous equations. What about nonhomogeneous linear ODEs? For example, the
equations for forced mechanical vibrations. That is, suppose we have an equation such as

We will write  when the exact form of the operator is not important. We solve (Equation ) in the following
manner. First, we find the general solution  to the associated homogeneous equation

We call  the complementary solution. Next, we find a single particular solution  to  in some way. Then

is the general solution to . We have  and . As  is a linear operator we verify that  is a solution, 
. Let us see why we obtain the general solution.

Let  and  be two different particular solutions to . Write the difference as . Then plug  into the left hand
side of the equation to get

Using the operator notation the calculation becomes simpler. As  is a linear operator we write

So  is a solution to , that is . Any two solutions of  differ by a solution to the homogeneous
equation . The solution  includes all solutions to , since  is the general solution to the associated
homogeneous equation.

Let  be a linear ODE (not necessarily constant coefficient). Let  be the complementary solution (the general
solution to the associated homogeneous equation ) andlet  be any particular solution to . Then the general
solution to  is

The moral of the story is that we can find the particular solution in any old way. If we find a different particular solution (by a
different method, or simply by guessing), then we still get the same general solution. The formula may look different, and the
constants we will have to choose to satisfy the initial conditions may be different, but it is the same solution.

4.9.1.1: Undetermined Coefficients

The trick is to somehow, in a smart way, guess one particular solution to . Note that  is a polynomial, and the left
hand side of the equation will be a polynomial if we let  be a polynomial of the same degree. Let us try

We plug in to obtain

So . Therefore,  and . That means . Solving the

complementary problem (exercise!) we get

+5 +6y = 2x+1y′′ y′ (4.9.1)
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yc
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Hence the general solution to  is

Now suppose we are further given some initial conditions. For example,  and . First find 

. Then

We solve to get  and . The particular solution we want is

Check that  really solves the equation and the given initial conditions.

A common mistake is to solve for constants using the initial conditions with  and only add the particular solution 
after that. That will not work. You need to first compute  and only then solve for the constants using the initial
conditions.

A right hand side consisting of exponentials, sines, and cosines can be handled similarly. For example,

Let us find some . We start by guessing the solution includes some multiple of . We may have to also add a multiple
of  to our guess since derivatives of cosine are sines. We try

We plug  into the equation and we get

The left hand side must equal to right hand side. We group terms and we get that  and 

. So  and  and hence  and . So

Similarly, if the right hand side contains exponentials we try exponentials. For example, for

we will try  as our guess and try to solve for .

When the right hand side is a multiple of sines, cosines, exponentials, and polynomials, we can use the product rule for
differentiation to come up with a guess. We need to guess a form for  such that  is of the same form, and has all the terms
needed to for the right hand side. For example,

= +yc C1e
−2x C2e
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 Exercise 4.9.1
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For this equation, we will guess

We will plug in and then hopefully get equations that we can solve for and . As you can see this can make for
a very long and tedious calculation very quickly.

There is one hiccup in all this. It could be that our guess actually solves the associated homogeneous equation. That is, suppose
we have

We would love to guess , but if we plug this into the left hand side of the equation we get

There is no way we can choose  to make the left hand side be . The trick in this case is to multiply our guess by  to get
rid of duplication with the complementary solution. That is first we compute  (solution to )

and we note that the  term is a duplicate with our desired guess. We modify our guess to  and notice there is no
duplication anymore. Let us try. Note that  and . So

Thus  is supposed to equal . Hence,  and so . We can now write the general solution as

It is possible that multiplying by  does not get rid of all duplication. For example,

The complementary solution is . Guessing  would not get us anywhere. In this case we want
to guess . Basically, we want to multiply our guess by  until all duplication is gone. But no more! Multiplying
too many times will not work.

Finally, what if the right hand side has several terms, such as

In this case we find  that solves  and  that solves  (that is, do each term separately). Then note that if 
, then . This is because  is linear; we have .

4.9.1.2: Variation of Parameters

The method of undetermined coefficients will work for many basic problems that crop up. But it does not work all the time. It only
works when the right hand side of the equation  has only finitely many linearly independent derivatives, so that we can
write a guess that consists of them all. Some equations are a bit tougher. Consider

Note that each new derivative of  looks completely different and cannot be written as a linear combination of the previous
derivatives. If we start differentiating , we get

This equation calls for a different method. We present the method of variation of parameters, which will handle any equation of the
form , provided we can solve certain integrals. For simplicity, we restrict ourselves to second order constant coefficient

Ly = (1 +3 ) cos(πx)x2 e−x

= (A+Bx+C ) cos(πx) +(D+Ex+F ) sin(πx)yp x2 e−x x2 e−x

A,B,C,D,E F

−9y =y′′ e3x

y = Ae3x

−9y = 9A −9A = 0 ≠y′′ e3x e3x e3x

A e3x x

yc Ly = 0

= +yc C1e
−3x C2e

3x

e3x y = Axe3x

= A +3Axy′ e3x e3x = 6A +9Axy′′ e3x e3x

−9y = 6A +9Ax −9Ax = 6Ay′′ e3x e3x e3x e3x

6Ae3x e3x 6A = 1 A =
1

6

y = + = + + xyc yp C1e
−3x C2e

3x 1

6
e3x

x

−6 +9y =y′′ y′ e3x

= + xyc C1e
3x C2 e3x y = Axe3x

= Ayp x2e3x x

Ly = +cosxe2x

u Lu = e2x v Lv= cosx

y = u+v Ly = +cosxe2x L Ly = L(u+v) = Lu+Lv= +cosxe2x

Ly = f(x)

+y = tanxy′′

tanx

tanx

x, 2 x tanx, 4 x x+2 x,sec2 sec2 sec2 tan2 sec4

8 x x+16 x tanx, 16 x x+88 x x+16 x, …sec2 tan3 sec4 sec2 tan4 sec4 tan2 sec6

Ly = f(x)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98053?pdf


4.9.4 https://math.libretexts.org/@go/page/98053

equations, but the method works for higher order equations just as well (the computations become more tedious). The method also
works for equations with nonconstant coefficients, provided we can solve the associated homogeneous equation.

Perhaps it is best to explain this method by example. Let us try to solve the equation

First we find the complementary solution (solution to ). We get , where  and . To
find a particular solution to the nonhomogeneous equation we try

where  and  are functions and not constants. We are trying to satisfy . That gives us one condition on the functions 
 and . Compute (note the product rule!)

We can still impose one more condition at our discretion to simplify computations (we have two unknown functions, so we should
be allowed two conditions). We require that . This makes computing the second derivative easier.

Since  and  are solutions to , we know that  and . (Note: If the equation was instead 
 we would have .) So

We have  and so

and hence

For  to satisfy  we must have .

So what we need to solve are the two equations (conditions) we imposed on  and 

We can now solve for  and  in terms of  and . We will always get these formulas for any , where 
. There is a general formula for the solution we can just plug into, but it is better to just repeat what we

do below. In our case the two equations become

Hence

And thus

Now we need to integrate  and  to get  and .

Ly = +y = tanxy′′

L = 0yc = +yc C1y1 C2y2 = cosxy1 = sinxy2

= y = +yp u1y1 u2y2

u1 u2 Ly = tanx

u1 u2

= ( + ) +( + )y′ u′
1y1 u′

2y2 u1y′
1 u2y′

2
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1y1 u′
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y′′
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′
1 u2y

′
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′
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′
2 u1y′′
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(4.9.4)

y1 y2 +y = 0y′′ = −y′′
1 y1 = −y′′

2 y2
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′
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(4.9.5)

u′
1 u′

2 f(x), y1 y2 Ly = f(x)

Ly = +p(x) +q(x)yy′′ y′

cos(x) + sin(x)u′
1 u′

2

− sin(x) + cos(x)u′
1 u′

2

= 0

= tan(x)
(4.9.6)

cos(x) sin(x) + (x)u′
1 u′

2sin2

− sin(x) cos(x) + (x)u′
1 u′

2cos2

= 0
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(4.9.7)
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2 sin2 cos2

u′
2
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1
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So our particular solution is

The general solution to  is, therefore,

4.9.2: Contributors and Attributions
Jiří Lebl (Oklahoma State University).These pages were supported by NSF grants DMS-0900885 and DMS-1362337.

This page titled 4.9: Nonhomogeneous Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

2.5: Nonhomogeneous Equations by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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4.10: Forced Oscillations and Resonance
Let us consider to the example of a mass on a spring. We now examine the case of forced oscillations, which we did not yet handle.
That is, we consider the equation

for some nonzero . The setup is again:  is mass,  is friction,  is the spring constant, and  is an external force acting on
the mass.

Figure 

What we are interested in is periodic forcing, such as noncentered rotating parts, or perhaps loud sounds, or other sources of
periodic force. Once we learn about Fourier series in Chapter 4, we will see that we cover all periodic functions by simply
considering  (or sine instead of cosine, the calculations are essentially the same).

Below is a video on solving a forced oscillations problem.

4.10.1: Undamped Forced Motion and Resonance
First let us consider undamped  motion for simplicity. We have the equation

This equation has the complementary solution (solution to the associated homogeneous equation)

where  is the natural frequency (angular), which is the frequency at which the system “wants to oscillate” without

external interference.

Let us suppose that . We try the solution  and solve for . Note that we need not have sine in our trial
solution as on the left hand side we will only get cosines anyway. If you include a sine it is fine; you will find that its coefficient
will be zero.

We solve using the method of undetermined coefficients. We find that

m +c +kx = F (t)x′′ x′

F (t) m c k F (t)

4.10.1

F (t) = cos(ωt)F0

Differential Equations - Forced OscillatioDifferential Equations - Forced Oscillatio……

c = 0

m +kx = cos(ωt)x′′ F0

= cos( t) + sin( t)xc C1 ω0 C2 ω0

=ω0
k
m

−−
√

≠ ωω0 = A cos(ωt)xp A

= cos(ωt)xp

F0

m( − )ω2
0 ω2
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We leave it as an exercise to do the algebra required.

The general solution is

or written another way

Hence it is a superposition of two cosine waves at different frequencies.

Take

Let us compute. First we read off the parameters: . The general solution is

Solve for  and  using the initial conditions. It is easy to see that  and . Hence

Figure : Graph of .

Notice the “beating” behavior in Figure . First use the trigonometric identity

to get that

Notice that  is a high frequency wave modulated by a low frequency wave.

x = cos( t) + sin( t) + cos(ωt)C1 ω0 C2 ω0
F0

m( − )ω2
0 ω2

x = C cos( t −y) + cos(ωt)ω0
F0

m( − )ω2
0 ω2

 Example 4.10.1
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8

0.5

−−−
√ F0

x = cos(4t) + sin(4t) + cos(πt)C1 C2
20

16 −π2

C1 C2 =C1
−20

16−π2
= 0C2

x = (cos(πt) −cos(4t))
20

16 −π2

4.10.2 (cos(πt) − cos(4t))20
16−π2
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2
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Now suppose that . Obviously, we cannot try the solution  and then use the method of undetermined
coefficients. We notice that  solves the associated homogeneous equation. Therefore, we need to try 

. This time we do need the sine term since the second derivative of  does contain
sines. We write the equation

Plugging  into the left hand side we get

Hence  and . Our particular solution is  and our general solution is

The important term is the last one (the particular solution we found). We can see that this term grows without bound as .

In fact it oscillates between  and . The first two terms only oscillate between , which becomes smaller

and smaller in proportion to the oscillations of the last term as  gets larger. In Figure  we see the graph with 
.

Figure : Graph of .

By forcing the system in just the right frequency we produce very wild oscillations. This kind of behavior is called resonance
or perhaps pure resonance. Sometimes resonance is desired. For example, remember when as a kid you could start swinging by
just moving back and forth on the swing seat in the “correct frequency”? You were trying to achieve resonance. The force of
each one of your moves was small, but after a while it produced large swings.

On the other hand resonance can be destructive. In an earthquake some buildings collapse while others may be relatively
undamaged. This is due to different buildings having different resonance frequencies. So figuring out the resonance frequency
can be very important.

A common (but wrong) example of destructive force of resonance is the Tacoma Narrows bridge failure. It turns out there was
a different phenomenon at play.

Below is a video on solving a differential equation that comes from a vibrating system with resonance.
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4.10.2: Damped Forced Motion and Practical Resonance
In real life things are not as simple as they were above. There is, of course, some damping. Our equation becomes

for some . We have solved the homogeneous problem before. We let

We replace equation  with

The roots of the characteristic equation of the associated homogeneous problem are . The form of the

general solution of the associated homogeneous equation depends on the sign of , or equivalently on the sign of ,
as we have seen before. That is,

where . In any case, we can see that  as . Furthermore, there can be no conflicts when trying to

solve for the undetermined coefficients by trying . Let us plug in and solve for  and . We get (the
tedious details are left to reader)

We get that

We also compute  to be

Thus our particular solution is

Differential equations + resonanceDifferential equations + resonance
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Or in the alternative notation we have amplitude  and phase shift  where (if )

Hence we have

If  we see that .

The exact formula is not as important as the idea. Do not memorize the above formula, you should instead remember the ideas
involved. For different forcing function , you will get a different formula for . So there is no point in memorizing this specific
formula. You can always recompute it later or look it up if you really need it.

For reasons we will explain in a moment, we call the transient solution and denote it by . We call the  we found above the
steady periodic solution and denote it by . The general solution to our problem is

We note that  goes to zero as , as all the terms involve an exponential with a negative exponent. Hence for large ,
the effect of  is negligible and we will essentially only see . Hence the name transient. Notice that  involves no arbitrary
constants, and the initial conditions will only affect . This means that the effect of the initial conditions will be negligible after
some period of time. Because of this behavior, we might as well focus on the steady periodic solution and ignore the transient
solution. See Figure  for a graph of different initial conditions.

Figure : Solutions with different initial conditions for parameters  and 

Notice that the speed at which  goes to zero depends on  (and hence ). The bigger  is (the bigger  is), the “faster” 
becomes negligible. So the smaller the damping, the longer the “transient region.” This agrees with the observation that when 

, the initial conditions affect the behavior for all time (i.e. an infinite “transient region”).

Let us describe what we mean by resonance when damping is present. Since there were no conflicts when solving with
undetermined coefficient, there is no term that goes to infinity. What we will look at however is the maximum value of the
amplitude of the steady periodic solution. Let  be the amplitude of . If we plot  as a function of  (with all other parameters
fixed) we can find its maximum. We call the  that achieves this maximum the practical resonance frequency. We call the maximal
amplitude  the practical resonance amplitude. Thus when damping is present we talk of practical resonance rather than pure
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resonance. A sample plot for three different values of  is given in Figure . As you can see the practical resonance amplitude
grows as damping gets smaller, and any practical resonance can disappear when damping is large.

Figure : Graph of  showing practical resonance with parameters . The top line is with ,
the middle line with , and the bottom line with .

To find the maximum we need to find the derivative . Computation shows

This is zero either when  or when . In other words,  when

It can be shown that if  is positive, then  is the practical resonance frequency (that is the point where  is

maximal, note that in this case  for small ). If  is the maximum, then essentially there is no practical resonance
since we assume that  in our system. In this case the amplitude gets larger as the forcing frequency gets smaller.

If practical resonance occurs, the frequency is smaller than . As the damping  (and hence ) becomes smaller, the practical
resonance frequency goes to . So when damping is very small,  is a good estimate of the resonance frequency. This behavior
agrees with the observation that when , then  is the resonance frequency.

Another interesting observation to make is that when , then . This means that if the forcing frequency gets too high it
does not manage to get the mass moving in the mass-spring system. This is quite reasonable intuitively. If we wiggle back and forth
really fast while sitting on a swing, we will not get it moving at all, no matter how forceful. Fast vibrations just cancel each other
out before the mass has any chance of responding by moving one way or the other.

The behavior is more complicated if the forcing function is not an exact cosine wave, but for example a square wave. A general
periodic function will be the sum (superposition) of many cosine waves of different frequencies. The reader is encouraged to come
back to this section once we have learned about the Fourier series.

4.10.3: Footnotes
K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks, American Journal

of Physics, 59(2), 1991, 118–124, http://www.ketchum.org/billah/Billah-Scanlan.pdf

This page titled 4.10: Forced Oscillations and Resonance is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

2.6: Forced Oscillations and Resonance by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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4.E: Higher order linear ODEs (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted
for a one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic
calculus sequence.

4.E.1: 2.1: Second order linear ODEs

Show that  and  are linearly independent.

Take . Find (guess!) a solution.

Prove the superposition principle for nonhomogeneous equations. Suppose that  is a solution to  and  is a
solution to  (same linear operator ). Show that  solves .

For the equation , find two solutions, show that they are linearly independent and find the general solution.
Hint: Try .

Equations of the form  are called Euler’s equations or Cauchy-Euler equations. They are solved by trying 
 and solving for  (we can assume that  for simplicity).

Suppose that .

a. Find a formula for the general solution of . Hint: Try  and find a formula for .
b. What happens when  or ?

We will revisit the case when  later.

Same equation as in Exercise . Suppose . Find a formula for the general solution of 
. Hint: Try  for the second solution.

Suppose  is a solution to . Show that

is also a solution.

Note: If you wish to come up with the formula for reduction of order yourself, start by trying . Then plug 
 into the equation, use the fact that  is a solution, substitute , and you have a first order linear equation in . Solve

for  and then for . When solving for , make sure to include a constant of integration. Let us solve some famous equations
using the method.

 Exercise 4.E. 2.1.1

y = ex y = e2x

 Exercise 4.E. 2.1.2

+5y = 10x+5y′′

 Exercise 4.E. 2.1.3

y1 L = f(x)y1 y2

L = g(x)y2 L y = +y1 y2 Ly = f(x) +g(x)

 Exercise 4.E. 2.1.4

−x = 0x2y′′ y′

y = x′

a +bx +cy = 0x2y′′ y′

y = xr r x ⩾ 0

 Exercise 4.E. 2.1.5

−4ac > 0(b−a)
2

a +bx +cy = 0x2y′′ y′ y = xr r

−4ac = 0(b−a)
2

−4ac < 0(b−a)
2

(b−a −4ac < 0)2

 Exercise 4.E. 2.1.6

4.E. 2.1.5 −4ac = 0(b−a) 2

a +bx +cy = 0x2y′′ y′ y = lnxxr

 Exercise : reduction of order4.E. 2.1.7

y1 +p(x) +q(x)y = 0y′′ y′

(x) = (x)∫ dxy2 y1
e− ∫ p(x)dx

( (x))y1
2

(4.E.1)

(x) = (x)v(x)y2 y1

y2 y1 w = v′ w

w v w
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Take .

a. Show that  is a solution.
b. Use reduction of order to find a second linearly independent solution.
c. Write down the general solution.

Take .

a. Show that  is a solution.
b. Use reduction of order to find a second linearly independent solution.
c. Write down the general solution.

Are  and  linearly independent? Justify.

Answer

Yes. To justify try to find a constant  such that  for all .

Are  and  linearly independent? Justify.

Answer

No. .

Guess a solution to .

Answer

Find the general solution to . Hint: Notice that it is a first order ODE in .

Answer

Write down an equation (guess) for which we have the solutions  and . Hint: Try an equation of the form 
 for constants  and , plug in both  and  and solve for  and .

Answer

 Exercise : Chebyshev’s equation of order 14.E. 2.1.8

(1 − ) −x +y = 0x2 y′′ y′

y = x

 Exercise : Hermite’s equation of order 24.E. 2.1.9

−2x +4y = 0y′′ y′

y = 1 −2x2

 Exercise 4.E. 2.1.10

sin(x) ex

A sin(x) = Aex x

 Exercise 4.E. 2.1.11

ex ex+2

=ex+2 e2ex

 Exercise 4.E. 2.1.12

+ +y = 5y′′ y′

y = 5

 Exercise 4.E. 2.1.13

x + = 0y′′ y′ y′

y = ln(x) +C1 C2

 Exercise 4.E. 2.1.14

ex e2x

+A +By = 0y′′ y′ A B ex e2x A B

−3 +2y = 0y′′ y′
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4.E.2: 2.2: Constant coefficient second order linear ODEs

Find the general solution of .

Find the general solution of .

Solve  for .

Solve  for .

Find the general solution of .

Find the general solution of .

Find the general solution of  using the methods of this section.

The method of this section applies to equations of other orders than two. We will see higher orders later. Try to solve the first
order equation  using the methods of this section.

Let us revisit Euler’s equations of Exercise . Suppose now that . Find a formula for the general
solution of . Hint: Note that .

Find the solution to , , , where , , and  are real numbers.

Construct an equation such that  is the general solution.

Find the general solution to .

Answer

 Exercise 4.E. 2.2.1

2 +2 −4y = 0y′′ y′

 Exercise 4.E. 2.2.2

+9 −10y = 0y′′ y′

 Exercise 4.E. 2.2.3

−8 +16y = 0y′′ y′ y(0) = 2, (0) = 0y′

 Exercise 4.E. 2.2.4

+9 = 0y′′ y′ y(0) = 1, (0) = 1y′

 Exercise 4.E. 2.2.5

2 +50y = 0y′′

 Exercise 4.E. 2.2.6

+6 +13y = 0y′′ y′

 Exercise 4.E. 2.2.7

= 0y′′

 Exercise 4.E. 2.2.8

2 +3y = 0y′

 Exercise 4.E. 2.2.9

4.E. 1 −4ac < 0(b−a) 2

a +bx +cy = 0x2y′′ y′ =xr er ln x

 Exercise 4.E. 2.2.10

−(2α) + y = 0y′′ y′ α2 y(0) = a (0) = by′ α a b

 Exercise 4.E. 2.2.11

y = cos(3x) + sin(3x)C1e
−2x C2e

−2x

 Exercise 4.E. 2.2.12

+4 +2y = 0y′′ y′

y = +C1e
(−2+ )x2√ C2e

(−2− )x2√
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Find the general solution to .

Answer

Find the solution to .

Answer

Find the solution to .

Answer

Find the solution to .

Answer

Find the solution to , , , where , (\beta\), , and  are real numbers, and 
.

Answer

Construct an equation such that  is the general solution.

Answer

4.E.3: 2.3: Higher order linear ODEs

 Exercise 4.E. 2.2.13

−6 +9y = 0y′′ y′

y = + xC1e3x C2 e3x

 Exercise 4.E. 2.2.14

2 + +y = 0, y(0) = 1, (0) = −2y′′ y′ y′

y = cos(( )x)− sin(( )x)e−x/4 7√

4
7
–

√ e−x/4 7√

4

 Exercise 4.E. 2.2.15

2 + −3y = 0, y(0) = a, (0) = by′′ y′ y′

y = +
2(a−b)

5
e−3x/2 3a+2b

5
ex

 Exercise 4.E. 2.2.16

(t) = −2 (t) −2z(t), z(0) = 2, (0) = −2z′′ z′ z′

z(t) = 2 cos(t)e−t

 Exercise 4.E. 2.2.17

−(α+β) +αβy = 0y′′ y′ y(0) = a (0) = by′ α a b

α ≠ β

y = +
αβ−b

β−α
eαx b−aα

β−α
eβx

 Exercise 4.E. 2.2.18

y = +C1e
3x C2e

−2x

− −6y = 0y′′ y′
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Find the general solution for .

Find the general solution for .

Find the general solution for .

Suppose the characteristic equation for a differential equation is .

a. Find such a differential equation.
b. Find its general solution.

Suppose that a fourth order equation has a solution .

a. Find such an equation.
b. Find the initial conditions that the given solution satisfies.

Find the general solution for the equation of Exercise .

Let  and . Are  and  and linearly independent? If so, show
it, if not, find a linear combination that works.

Let , and . Are  and  and linearly independent? If so, show it, if not, find
a linear combination that works.

Are  linearly independent? If so, show it, if not, find a linear combination that works.

Are  linearly independent? If so, show it, if not, find a linear combination that works.

Find an equation such that  is a solution.

 Exercise 4.E. 2.3.1

− + −y = 0y′′′ y′′ y′

 Exercise 4.E. 2.3.2

−5 +6 = 0y(4) y′′′ y′′

 Exercise 4.E. 2.3.3

+2 +2 = 0y′′′ y′′ y′

 Exercise 4.E. 2.3.4

= 0(r−1) 2(r−2) 2

 Exercise 4.E. 2.3.5

y = 2 x cosxe4x

 Exercise 4.E. 2.3.6

4.E. 2.3.5

 Exercise 4.E. 2.3.7

f(x) = −cosx, g(x) = +cosxex ex h(x) = cosx f(x), g(x), h(x)

 Exercise 4.E. 2.3.8

f(x) = 0, g(x) = cosx h(x) = sinx f(x), g(x), h(x)

 Exercise 4.E. 2.3.9

x, , andx2 x4

 Exercise 4.E. 2.3.10

, x , andex ex x2ex

 Exercise 4.E. 2.3.11

y = x sin(3x)e−2x
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Find the general solution of .

Answer

Suppose that the characteristic equation of a third order differential equation has roots .

a. What is the characteristic equation?
b. Find the corresponding differential equation.
c. Find the general solution.

Answer
a. 
b. 
c. 

Solve .

Answer

Are  linearly independent? If so, show it, if not find a linear combination that works.

Answer

No. .

Are  linearly independent? If so, show it, if not find a linear combination that works.

Answer

Yes. (Hint: First note that  is bounded. Then note that  and  cannot be multiples of each other.)

Find an equation such that , ,  are solutions.

Answer

4.E.4: 2.4: Mechanical Vibrations

 Exercise 4.E. 2.3.12

− = 0y(5) y(4)

y = + + + x+C1e
x C2x

3 C3x
2 C4 C5

 Exercise 4.E. 2.3.13

3 ±2i

−3 +4r−12 = 0r3 r2

−3 +4 −12y = 0y′′′ y′′ y′

y = + sin(2x) + cos(2x)C1e
3x C2 C3

 Exercise 4.E. 2.3.14

1001 +3.2 +π − y = 0, y(0) = 0, (0) = 0, (0) = 0y′′′ y′′ y′ 4
–

√ y′ y′′

y = 0

 Exercise 4.E. 2.3.15

, , , sin(x)ex ex+1 e2x

− = 0e1ex ex+1

 Exercise 4.E. 2.3.16

sin(x), x, x sin(x)

sin(x) x x sin(x)

 Exercise 4.E. 2.3.17

y = cos(x) y = sin(x) y = ex

− + −y = 0y′′′ y′′ y′
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Consider a mass and spring system with a mass , spring constant , and damping constant .

a. Set up and find the general solution of the system.
b. Is the system underdamped, overdamped or critically damped?
c. If the system is not critically damped, find a  that makes the system critically damped.

Do Exercise  for .

Using the mks units (meters-kilograms-seconds), suppose you have a spring with spring constant . You want to use it to

weigh items. Assume no friction. You place the mass on the spring and put it in motion.

a. You count and find that the frequency is  (cycles per second). What is the mass?
b. Find a formula for the mass  given the frequency  in .

Suppose we add possible friction to Exercise . Further, suppose you do not know the spring constant, but you have
two reference weights  and  to calibrate your setup. You put each in motion on your spring and measure the
frequency. For the  weight you measured , for the  weight you measured .

a. Find  (spring constant) and  (damping constant).
b. Find a formula for the mass in terms of the frequency in . Note that there may be more than one possible mass for a

given frequency.
c. For an unknown object you measured \(0.2\text{ Hz}\), what is the mass of the object? Suppose that you know that the

mass of the unknown object is more than a kilogram.

Suppose you wish to measure the friction a mass of  experiences as it slides along a floor (you wish to find ). You have

a spring with spring constant . You take the spring, you attach it to the mass and fix it to a wall. Then you pull on the

spring and let the mass go. You find that the mass oscillates with frequency . What is the friction?

A mass of  kilograms is on a spring with spring constant  newtons per meter with no damping. Suppose the system is at rest
and at time  the mass is kicked and starts traveling at  meters per second. How large does  have to be to so that the
mass does not go further than  meters from the rest position?

Answer

 (and larger)

Suppose we have an RLC circuit with a resistor of  miliohms (  ohms), inductor of inductance of  millihenries (
henries), and a capacitor of  farads, with constant voltage.

a. Set up the ODE equation for the current .
b. Find the general solution.

 Exercise 4.E. 2.4.1

m = 2 k = 3 c = 1

c

 Exercise 4.E. 2.4.2

4.E. 2.4.1 m = 3, k = 12, andc = 12

 Exercise 4.E. 2.4.3

4
N

m

0.8 Hz
m w Hz

 Exercise 4.E. 2.4.4

4.E. 2.4.3
1 kg 2 kg

1 kg 1.1 Hz 2 kg 0.8 Hz

k c

Hz

 Exercise 4.E. 2.4.5

0.1 kg c

k = 5
N

m
1 Hz

 Exercise 4.E. 2.4.6

2 k

t = 0 2 k

3

k = 8
9

 Exercise 4.E. 2.4.7

100 0.1 50 0.05
5

I
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c. Solve for  and .

Answer

a. 

b. 
c. 

A  railcar hits a bumper (a spring) at , and the spring compresses by . Assume no damping.

a. Find .
b. Find out how far does the spring compress when a  railcar hits the spring at the same speed.

c. If the spring would break if it compresses further than , what is the maximum mass of a railcar that can hit it at ?

d. What is the maximum mass of a railcar that can hit the spring without breaking at ?

Answer
a. 
b. 

c. 
d. 

A mass of  is on a spring with  and . Find the mass  for which there is critical damping. If ,
does the system oscillate or not, that is, is it underdamped or overdamped?

Answer

. If , then the system is overdamped and will not oscillate.

4.E.5: 2.5: Nonhomogeneous Equations

Find a particular solution of .

Find a particular solution of .

Solve the initial value problem  for .

Setup the form of the particular solution but do not solve for the coefficients for .

I(0) = 10 (0) = 0I ′

0.05 +0.1 +( ) I = 0I ′′ I ′ 1
5

I = C cos( t−γ)e−t 3
–

√

I = 10 cos( t) + sin( t)e−t 3
–

√ 10

3√
e−t 3

–
√

 Exercise 4.E. 2.4.8

5000 kg 1
m

s
0.1 m

k

10000 kg

0.3 m 1
m

s

2
m

s

k = 500000

≈ 0.1411

5 2√

45000 kg
11250 kg

 Exercise 4.E. 2.4.9

m kg k = 3 N
m

c = 2 Ns
m

m0 m < m0

=m0
1
2

m < m0

 Exercise 4.E. 2.5.1

− −6y =y′′ y′ e2x

 Exercise 4.E. 2.5.2

−4 +4y =y′′ y′ e2x

 Exercise 4.E. 2.5.3

+9y = cos(3x) +sin(3x)y′′ y(0) = 2, (0) = 1y′

 Exercise 4.E. 2.5.4

−2 + =y(4) y′′′ y′′ ex
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Setup the form of the particular solution but do not solve for the coefficients for .

a. Using variation of parameters find a particular solution of .
b. Find a particular solution using undetermined coefficients.
c. Are the two solutions you found the same? What is going on? See also Exercise 

Find a particular solution of . It is OK to leave the answer as a definite integral.

For an arbitrary constant  find a particular solution to . Hint: Make sure to handle every possible real .

a. Using variation of parameters find a particular solution of 
b. Find a particular solution using undetermined coefficients.
c. Are the two solutions you found the same? What is going on?

Find a polynomial , so that  solves .

Find a particular solution to 

Answer

a. Find a particular solution to .
b. Find the general solution.

Answer

a. 

b. 

Solve .

Answer

 Exercise 4.E. 2.5.5

−2 + = +x+sinxy(4) y′′′ y′′ ex

 Exercise 4.E. 2.5.6

−2 +y =y′′ y′ ex

4.E. 2.5.9

 Exercise 4.E. 2.5.7

−2 +y = sin( )y′′ y′ x2

 Exercise 4.E. 2.5.8

c −y =y′′ ecx c

 Exercise 4.E. 2.5.9

−y =y′′ ex

 Exercise 4.E. 2.5.10

P (x) y = 2 +3x+4x2 +5 +y = P (x)y′′ y′

 Exercise 4.E. 2.5.11

− +y = 2 sin(3x)y′′ y′

y =
−16 sin(3x)+6 cos(3x)

73

 Exercise 4.E. 2.5.12

+2y = +y′′ ex x3

y =
2 +3 −9xex x3

6

y = cos( x) + sin( x) +C1 2
–

√ C2 2
–

√
2 +3 −9xex x3

6

 Exercise 4.E. 2.5.13

+2 +y = , y(0) = 1, (0) = 2y′′ y′ x2 y′

y(x) = −4x+6 + (x−5)x2 e−x
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Use variation of parameters to find a particular solution of .

Answer

For an arbitrary constant  find the general solution to .

Answer

Undetermined coefficients can sometimes be used to guess a particular solution to other equations than constant coefficients.
Find a polynomial  that solves .

Note: Not every right hand side will allow a polynomial solution, for example,  does not, but a technique based on
undetermined coefficients does work, see Chapter 7.

Answer

4.E.6: 2.6: Forced Oscillations and Resonance

Derive a formula for  if the equation is . Assume .

Derive a formula for  if the equation is . Assume .

Take . Fix  and . Now think of the function . For what values of  (solve in
terms of  and  ) will there be no practical resonance (that is, for what values of  is there no maximum of  for 

 )?

Take . Fix  and . Now think of the function . For what values of  (solve in
terms of  and ) will there be no practical resonance (that is, for what values of  is there no maximum of  for 

 )?

Suppose a water tower in an earthquake acts as a mass-spring system. Assume that the container on top is full and the water
does not move around. The container then acts as a mass and the support acts as the spring, where the induced vibrations are

 Exercise 4.E. 2.5.14

−y =y′′ 1

+ex e−x

y =
2x −( + ) log( +1)ex ex e−x e2x

4

 Exercise 4.E. 2.5.15

c −2y = sin(x+c)y′′

y = + +
− sin(x+c)

3
C1e x2√ C2e− x2√

 Exercise 4.E. 2.5.16

y(x) +xy = +2 +5x+2y′ x3 x2

+xy = 1y′

y = +2x+3x2

 Exercise 4.E. 2.6.1

xsp m +c +kx = sin(ωt)x′′ x′ F0 c > 0

 Exercise 4.E. 2.6.2

xsp m +c +kx = cos(ωt) + cos(3ωt)x′′ x′ F0 F1 c > 0

 Exercise 4.E. 2.6.3

m +c +kx = cos(ωt)x′′ x′ F0 m > 0 k > 0 C(ω) c

m, k, F0 c C(ω)
ω > 0

 Exercise 4.E. 2.6.4

m +c +kx = cos(ωt)x′′ x′ F0 c > 0 k > 0 C(ω) m

c, k, F0 m C(ω)
ω > 0

 Exercise 4.E. 2.6.5
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horizontal. Suppose that the container with water has a mass of . It takes a force of  newtons to displace
the container  meter. For simplicity assume no friction. When the earthquake hits the water tower is at rest (it is not moving).

Suppose that an earthquake induces an external force 

a. What is the natural frequency of the water tower?
b. If  is not the natural frequency, find a formula for the maximal amplitude of the resulting oscillations of the water

container (the maximal deviation from the rest position). The motion will be a high frequency wave modulated by a low
frequency wave, so simply find the constant in front of the sines.

c. Suppose  and an earthquake with frequency  cycles per second comes. What is the amplitude of the oscillations?
Suppose that if the water tower moves more than  meter, the tower collapses. Will the tower collapse?

A mass of  on a spring with  and a damping constant . Suppose that . Using forcing of .
Find the  that causes practical resonance and find the amplitude.

Answer

Derive a formula for  for  where  is some constant. Assume .

Answer

, where  and 

Suppose there is no damping in a mass and spring system with  and . Suppose that  is chosen to be
precisely the resonance frequency.

a. Find .
b. Find the amplitude of the oscillations at time .

Answer
a. 
b. 

This page titled 4.E: Higher order linear ODEs (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

2.E: Higher order linear ODEs (Exercises) has no license indicated.

m = 10, 000kg 1000
1

F (t) = mA cos(ωt).ω2

ω

A = 1 0.5
1.5

 Exercise 4.E. 2.6.6

4 kg k = 4 c = 1 = 2F0 cos(ωt)F0

ω

ω = ≈ 0.984 C(ω) = ≈ 2.016
31√

4 2√

16

3 7√

 Exercise 4.E. 2.6.7

xsp m +c +kx = cos(ωt) +Ax′′ x′ F0 A c > 0

= cos(ωt) + sin(ωt) +xsp
( − )ω2

0 ω2 F0

m(2ωp +m( −)
2

ω2
0 ω2)

2

2ωpF0

m(2ωp +m( −)
2

ω2
0 ω2)

2
A

k
p = c

2m
=ω0

k
m

−−
√

 Exercise 4.E. 2.6.8

m = 5, k = 20, = 5F0 ω

ω

t = 100

ω = 2
25
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5.1: Introduction to Systems of ODEs
 

Often we do not have just one dependent variable and just one differential equation, we may end up with systems of several
equations and several dependent variables even if we start with a single equation.

If we have several dependent variables, suppose , , ..., , then we can have a differential equation involving all of them and
their derivatives. For example, . Usually, when we have two dependent variables we have two equations
such as

for some functions  and . We call the above a system of differential equations. More precisely, the above is a second order
system of ODEs as second order derivatives appear. The system

is a first order system, where  are the dependent variables, and  is the independent variable.

The terminology for systems is essentially the same as for single equations. For the system above, a solution is a set of three
functions , , , such that

We usually also have an initial condition. Just like for single equations we specify , , and  for some fixed . For example, 
, , . For some constants , , and . For the second order system we would also specify the

first derivatives at a point. And if we find a solution with constants in it, where by solving for the constants we find a solution for
any initial condition, we call this solution the general solution. Best to look at a simple example.

Sometimes a system is easy to solve by solving for one variable and then for the second variable. Take the first order system

with initial conditions of the form  and .

Solution

We note that  is the general solution of the first equation. We then plug this  into the second equation and get the
equation , which is a linear first order equation that is easily solved for . By the method of integrating factor
we obtain

or

The general solution to the system is, therefore,

y1 y2 yn

= f( , , , , x)y′′
1 y′

1 y′
2 y1 y2

y′′
1

y′′
2

= ( , , , , x)f1 y′
1 y′

2 y1 y2

= ( , , , , x)f2 y′
1 y′

2 y1 y2
(5.1.1)

f1 f2

x′
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x′
2

x′
3

= ( , , , t),g1 x1 x2 x3

= ( , , , t),g2 x1 x2 x3

= ( , , , t),g3 x1 x2 x3

(5.1.2)

, ,x1 x2 x3 t

(t)x1 (t)x2 (t)x3

(t)x′
1

(t)x′
2

(t)x′
3

= ( (t), (t), (t), t),g1 x1 x2 x3

= ( (t), (t), (t), t),g2 x1 x2 x3

= ( (t), (t), (t), t).g3 x1 x2 x3

(5.1.3)
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We now solve for  and  given the initial conditions. We substitute  and find that  and . Thus the

solution is:  and .

Generally, we will not be so lucky to be able to solve for each variable separately as in the example above, and we will have to
solve for all variables at once. While we won’t generally be able to solve for one variable and then the next, we will try to salvage
as much as possible from this technique. It will turn out that in a certain sense we will still (try to) solve a bunch of single equations
and put their solutions together. Let’s not worry right now about how to solve systems yet.

We will mostly consider the linear systems. The example above is a so-called linear first order system. It is linear as none of the
dependent variables or their derivatives appear in nonlinear functions or with powers higher than one ( , ,  and , constants,
and functions of  can appear, but not  or  or ). Another, more complicated, example of a linear system is

5.1.1: Applications

Let us consider some simple applications of systems and how to set up the equations.

First, we consider salt and brine tanks, but this time water flows from one to the other and back. We again consider that the
tanks are evenly mixed.

Figure : A closed system of two brine tanks.

Suppose we have two tanks, each containing volume  liters of salt brine. The amount of salt in the first tank is  grams, and
the amount of salt in the second tank is  grams. The liquid is perfectly mixed and flows at the rate  liters per second out of
each tank into the other. See Figure .

The rate of change of , that is , is the rate of salt coming in minus the rate going out. The rate coming in is the density of
the salt in tank 2, that is , times the rate . The rate coming out is the density of the salt in tank 1, that is , times the rate .
In other words it is

Similarly we find the rate , where the roles of  and  are reversed. All in all, the system of ODEs for this problem is

In this system we cannot solve for  or  separately. We must solve for both  and  at once, which is intuitively clear
since the amount of salt in one tank affects the amount in the other. We can’t know  before we know , and vice versa.

We don’t yet know how to find all the solutions, but intuitively we can at least find some solutions. Suppose we know that
initially the tanks have the same amount of salt. That is, we have an initial condition such as . Then clearly
the amount of salt coming and out of each tank is the same, so the amounts are not changing. In other words,  and 

 (the constant functions) is a solution: , and , so the equations are satisfied.

C1 C2 x = 0 = 1C1 =C2
3
2

= ,y1 ex = +y2
1
2

ex 3
2

e−x

x y x′ y′

t xy ( )y′ 2 x3

y′′
1

y′′
2

= + +5 +sin(t),ety′
1 t2y1 y2

= t − +2 +cos(t).y′
1 y′

2 y1
(5.1.5)
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Let us think about the setup a little bit more without solving it. Suppose the initial conditions are  and ,
for two different constants  and . Since no salt is coming in or out of this closed system, the total amount of salt is constant.
That is,  is constant, and so it equals . Intuitively if  is bigger than , then more salt will flow out of tank one
than into it. Eventually, after a long time we would then expect the amount of salt in each tank to equalize. In other words, the
solutions of both  and  should tend towards . Once you know how to solve systems you will find out that this really
is so.

As an example application, let us think of mass and spring systems again.

Figure 

As an example application, let us think of mass and spring systems again. Suppose we have one spring with constant , but
two masses  and . We can think of the masses as carts, and we will suppose that they ride along a straight track with no
friction. Let  be the displacement of the first cart and  be the displacement of the second cart. That is, we put the two carts
somewhere with no tension on the spring, and we mark the position of the first and second cart and call those the zero
positions. Then  measures how far the first cart is from its zero position, and  measures how far the second cart is from its
zero position. The force exerted by the spring on the first cart is , since  is how far the string is stretched
(or compressed) from the rest position. The force exerted on the second cart is the opposite, thus the same thing with a negative
sign.

Newton’s second law states that force equals mass times acceleration. So the system of equations governing the setup is

In this system we cannot solve for the  or  variable separately. That we must solve for both  and  at once is intuitively
clear, since where the first cart goes depends exactly on where the second cart goes and vice-versa.

5.1.2: Changing to First Order
Before we talk about how to handle systems, let us note that in some sense we need only consider first order systems. Let us take
an  order differential equation

We define new variables  and write the system

We solve this system for . Once we have solved for the ’s, we can discard  through  and let . We note
that this  solves the original equation.

Take . Letting , , , we find the system:

(0) = Ax1 (0) = Bx2

A B

+x1 x2 A +B A B

x1 x2
A+B

2
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A similar process can be followed for a system of higher order differential equations. For example, a system of  differential
equations in  unknowns, all of order , can be transformed into a first order system of  equations and  unknowns.

Consider the system from the carts example,

Let , , , . The second order system becomes the first order system

Sometimes we can use this idea in reverse as well. Let us take the system

where the independent variable is . We wish to solve for the initial conditions  and .

If we differentiate the second equation we get . We know what  is in terms of  and , and we know that .

We now have the equation . We know how to solve this equation and we find that . Once
we have  we use the equation  to get .

We solve for the initial conditions  and . Hence,  and . So 
 and . Our solution is

Plug in and confirm that this really is the solution.

It is useful to go back and forth between systems and higher order equations for other reasons. For example, software for solving
ODE numerically (approximation) is generally for first order systems. To use it, you take whatever ODE you want to solve and
convert it to a first order system. It is not very hard to adapt computer code for the Euler or Runge–Kutta method for first order
equations to handle first order systems. We simply treat the dependent variable not as a number but as a vector. In many
mathematical computer languages there is almost no distinction in syntax.

5.1.3: Autonomous Systems and Vector Fields

A system where the equations do not depend on the independent variable is called an autonomous system. For example the system 
,  is autonomous as  is the independent variable but does not appear in the equations.

For autonomous systems we can draw the so-called direction field or vector field, a plot similar to a slope field, but instead of
giving a slope at each point, we give a direction (and a magnitude). The previous example, , , says that at the
point  the direction in which we should travel to satisfy the equations should be the direction of the vector  with
the speed equal to the magnitude of this vector. So we draw the vector  at the point  and we do this for many
points on the -plane. For example, at the point  we draw the vector , a vector pointing to the right
and a little bit up, while at the point  we draw the vector  a vector that points straight up. When
drawing the vectors, we will scale down their size to fit many of them on the same direction field. If we drew the arrows at the
actual size, the diagram would be a jumbled mess once you would draw more than a couple of arrows. So we scale them all so that
not even the longest one interferes with the others. We are mostly interested in their direction and relative size. See Figure .

k
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 Example 5.1.5

= k( − ), = −k( − ).m1x′′
1 x2 x1 m2x′′

2 x2 x1

=u1 x1 =u2 x′
1 =u3 x2 =u4 x′

2

= , = k( − ), = , = −k( − ).u′
1 u2 m1u′

2 u3 u1 u′
3 u4 m2u′

4 u3 u1

 Example 5.1.6

= 2y −x, = x,x′ y′

t x(0) = 1 y(0) = 0

=y′′ x′ x′ x y x = y′

= = 2y −x = 2y − .y′′ x′ y′

+ −2y = 0y′′ y′ y = +C1e−2t C2et

y = xy′ x

x = = −2 +y′ C1e−2t C2et

1 = x(0) = −2 +C1 C2 0 = y(0) = +C1 C2 = −C1 C2 1 = 3C2

= −C1
1
3 =C2

1
3

x = , y =
2 +e−2t et

3
− +e−2t et

3

 Exercise 5.1.1

= 2y −xy′ = xy′ t

= 2y −xx′ = xy′

(x, y) (2y −x, x)
(2y −x, x) (x, y)

xy (1, 2) (2(2) −1, 1) = (3, 1)
(2, 1) (2(1) −2, 2) = (0, 2)

5.1.3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98057?pdf


5.1.5 https://math.libretexts.org/@go/page/98057

We can draw a path of the solution in the plane. Suppose the solution is given by , . We pick an interval of  (say 
 for our example) and plot all the points  for  in the selected range. The resulting picture is called the phase

portrait (or phase plane portrait). The particular curve obtained is called the trajectory or solution curve. See an example plot in
Figure . In the figure the solution starts at  and travels along the vector field for a distance of 2 units of . We solved this
system precisely, so we compute  and  to find  and . This point corresponds to the top right end
of the plotted solution curve in the figure.

Notice the similarity to the diagrams we drew for autonomous systems in one dimension. But note how much more complicated
things become when we allow just one extra dimension.

We can draw phase portraits and trajectories in the -plane even if the system is not autonomous. In this case, however, we cannot
draw the direction field, since the field changes as  changes. For each  we would get a different direction field.

Figure : The direction field for .

Figure : The direction field for  with the trajectory of the solution starting at  for .

5.1.4: Picard’s theorem

Perhaps before going further, let us mention that Picard’s theorem on existence and uniqueness still holds for systems of ODE. Let
us restate this theorem in the setting of systems. A general first order system is of the form

Picard's Theorem on Existence and Uniqueness for Systems

If for every  and every  each  is continuous and the derivative  exists and is continuous
near some , then a solution to (3.1.21) subject to the initial condition , , …, 

 exists (at least for  in some small interval) and is unique.

That is, a unique solution exists for any initial condition given that the system is reasonable (  and its partial derivatives in the 
variables are continuous). As for single equations we may not have a solution for all time , but at least for some short period of
time.

x = f(t) y = g(t) t

0 ≤ t ≤ 2 (f(t), g(t)) t

5.1.4 (1, 0) t

x(2) y(2) x(2) ≈ 2.475 y(2) ≈ 2.457

xy

t t

5.1.3 = 2y − x, = xx′ y′

5.1.4 = 2y − x, = xx′ y′ (1, 0) 0 ≤ t ≤ 2

x′
1

x′
2

x′
n

= ( , , … , , t),F1 x1 x2 xn
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As we can change any th order ODE into a first order system, then we notice that this theorem provides also the existence and
uniqueness of solutions for higher order equations that we have until now not stated explicitly.

This page titled 5.1: Introduction to Systems of ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

3.1: Introduction to Systems of ODEs by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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5.2: Matrices and linear systems
 

5.2.0.1: Matrices and vectors

Before we can start talking about linear systems of ODEs, we will need to talk about matrices, so let us review these briefly. A
matrix is an  array of numbers (  rows and  columns). For example, we denote a  matrix as follows

The numbers  are called elements or entries.

By a vector we will usually mean a column vector, that is an  matrix. If we mean a row vector we will explicitly say so (a
row vector is a  matrix). We will usually denote matrices by upper case letters and vectors by lower case letters with an arrow
such as  or . By  we will mean the vector of all zeros.

It is easy to define some operations on matrices. Note that we will want  matrices to really act like numbers, so our operations
will have to be compatible with this viewpoint.

First, we can multiply by a scalar (a number). This means just multiplying each entry by the same number. For example,

Matrix addition is also easy. We add matrices element by element. For example,

If the sizes do not match, then addition is not defined.

If we denote by 0 the matrix of with all zero entries, by  scalars, and by  matrices, we have the following familiar rules.

Another useful operation for matrices is the so-called transpose. This operation just swaps rows and columns of a matrix. The
transpose of  is denoted by . Example:

5.2.0.1: Matrix Multiplication

Let us now define matrix multiplication. First we define the so-called dot product (or inner product) of two vectors. Usually this
will be a row vector multiplied with a column vector of the same size. For the dot product we multiply each pair of entries from the
first and the second vector and we sum these products. The result is a single number. For example,

And similarly for larger (or smaller) vectors.
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Armed with the dot product we can define the product of matrices. First let us denote by  the  row of  and by 
 the  column of . For an  matrix  and an  matrix  we can define the product . We let  be

an  matrix whose  entry is

Do note how the sizes match up. Example:

For multiplication we want an analog of a 1. This analog is the so-called identity matrix. The identity matrix is a square matrix with
1s on the main diagonal and zeros everywhere else. It is usually denoted by . For each size we have a different identity matrix and
so sometimes we may denote the size as a subscript. For example, the  would be the  identity matrix

We have the following rules for matrix multiplication. Suppose that  are matrices of the correct sizes so that the following
make sense. Let  denote a scalar (number).

A few warnings are in order.

i.  in general (it may be true by fluke sometimes). That is, matrices do not commute. For example take 

and .

ii.  does not necessarily imply , even if  is not 0.

iii.  does not necessarily mean that  or . For example take .

For the last two items to hold we would need to “divide” by a matrix. This is where the matrix inverse comes in. Suppose that 
and  are  matrices such that

Then we call  the inverse of  and we denote  by . If the inverse of  exists, then we call  invertible. If  is not
invertible we sometimes say  is singular.

If  is invertible, then  does imply that  (in particular the inverse of  is unique). We just multiply both sides by 
 to get  or  or . It is also not hard to see that .

Below is a video on determining if the product of two matrices is possible.

(A)rowi ith A

(A)columnj jth A m×n A n×p B AB AB

m×p ijth

(A) ⋅ (B)rowi columnj

[ ] =
1

4

2

5

3

6

⎡

⎣
⎢

1

1

1

0

1

0

−1

1

0

⎤

⎦
⎥

= [ ] = [ ]
1 ⋅ 1 +2 ⋅ 1 +3 ⋅ 1

4 ⋅ 1 +5 ⋅ 1 +6 ⋅ 1

1 ⋅ 0 +2 ⋅ 1 +3 ⋅ 0

4 ⋅ 0 +5 ⋅ 1 +6 ⋅ 0

1 ⋅ (−1) +2 ⋅ 1 +3 ⋅ 0

4 ⋅ (−1) +5 ⋅ 1 +6 ⋅ 0

6

15

2

5

1

1

I

I3 3 ×3

I = =I3

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

A,B,C
α

A(BC)

A(B+C)

(B+C)A

α(AB)

IA

= (AB)C

= AB+AC

= BA+CA

= (αA)B = A(αB)

= A = AI

(5.2.2)

AB ≠ BA A = [ ]
1

1

1

1

B = [ ]
1

0

0

2
AB = AC B = C A

AB = 0 A = 0 B = 0 A = B = [ ]
0

0

1

0

A

B n×n

AB = I = BA

B A B A−1 A A A

A

A AB = AC B = C A
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5.2.0.1: 3.2.3Determinant

We can now talk about determinants of square matrices. We define the determinant of a  matrix as the value of its only entry.
For a  matrix we define

Before trying to compute the determinant for larger matrices, let us first note the meaning of the determinant. Consider an 
matrix as a mapping of the  dimensional euclidean space  to . In particular, a  matrix  is a mapping of the plane to
itself, where  gets sent to . Then the determinant of  is the factor by which the area of objects gets changed. If we take the
unit square (square of side 1) in the plane, then  takes the square to a parallelogram of area . The sign of  denotes
changing of orientation (negative if the axes got flipped). For example, let

Then . Let us see where the square with vertices  and  gets sent. Clearly  gets
sent to .

So the image of the square is another square. The image square has a side of length  and is therefore of area 2.

If you think back to high school geometry, you may have seen a formula for computing the area of a parallelogram with vertices 
 and . And it is precisely

The vertical lines above mean absolute value. The matrix  carries the unit square to the given parallelogram.

Now we can define the determinant for larger matrices. We define  as the matrix  with the  row and the  column deleted.
To compute the determinant of a matrix, pick one row, say the  row and compute.

For the first row we get

Matrix MultiplicationMatrix Multiplication

1 ×1
2 ×2

det([ ]) ad−bc
a

c

b

d
=
def

n×n

n R
n

R
n 2 ×2 A

x⃗  Ax⃗  A

A ∣det(A)∣ det(A)

A = [ ]
1

−1

1

1

det(A) = 1 +1 = 2 (0, 0), (1, 0), (0, 1) (1, 1) (0, 0)
(0, 0)

[ ][ ] = [ ] , [ ][ ] = [ ] , [ ][ ] = [ ]
1

−1

1

1

1

0

1

−1

1

−1

1

1

0

1

1

1

1

−1

1

1

1

1

2

0

2
–

√

(0, 0), (a, c), (b, d) (a+b, c+d)

det([ ])
∣

∣
∣

a

c

b

d

∣

∣
∣

[ ]
a

c

b

d

Aij A ith jth

ith

det(A) = (−1 det( )∑
j=1

n

)i+jaij Aij

det(A) = det( ) − det( ) + det( ) −…{a11 A11 a12 A12 a13 A13
+ det(a1n A1n

− det(a1n A1n

if n is odd
if n even
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We alternately add and subtract the determinants of the submatrices  for a fixed  and all . For a  matrix, picking the first
row, we would get . For example,

The numbers  are called cofactors of the matrix and this way of computing the determinant is called the cofactor
expansion. It is also possible to compute the determinant by expanding along columns (picking a column instead of a row above).

Note that a common notation for the determinant is a pair of vertical lines:

I personally find this notation confusing as vertical lines usually mean a positive quantity, while determinants can be negative. I
will not use this notation in this book.

Below is a video on evaluating the determinants of a 2x2 and a 3x3 matrix.

One of the most important properties of determinants (in the context of this course) is the following theorem.

Think of the determinants telling you the scaling of a mapping. If  doubles the sizes of geometric objects and  triples them, then
 (which applies  to an object and then ) should make size go up by a factor of . This is true in general:

This property is one of the most useful, and it is employed often to actually compute determinants. A particularly interesting
consequence is to note what it means for existence of inverses. Take  and  to be inverses of each other, that is . Then

Neither  nor  can be zero. Let us state this as a theorem as it will be very important in the context of this course.

An  matrix  is invertible if and only if .

In fact, there is a formula for the inverse of a  matrix

Notice the determinant of the matrix in the denominator of the fraction. The formula only works if the determinant is nonzero,
otherwise we are dividing by zero.

Aij i j 3 ×3
det(A) = det( ) − det( ) + det( )a11 A11 a12 A12 a13 A13

det
⎛

⎝
⎜
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥
⎞

⎠
⎟ = 1 ⋅ det([ ])−2 ⋅ det([ ])+3 ⋅ det([ ])

5

8

6

9

4

7

6

9

4

7

5

8

= 1(5 ⋅ 9 −6 ⋅ 8) −2(4 ⋅ 9 −6 ⋅ 7) +3(4 ⋅ 8 −5 ⋅ 7) = 0

(5.2.3)

(−1 det( ))i+j Aij

[ ] = det([ ])
a

c

b

d

a

c

b

d

Evaluating Determinants of a 2x2 and 3Evaluating Determinants of a 2x2 and 3……

B A

AB B A 6

det(AB) = det(A) det(B).

A B AB = I

det(A) det(B) = det(AB) = det(I) = 1.

det(A) det(B)

 Theorem 5.2.1

n×n A det(A) ≠ 0

2 ×2

= [ ][ ]
a

c

b

d

−1
1

ad−bc

d

−c

−b

a
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5.2.0.1: Solving Linear Systems

One application of matrices we will need is to solve systems of linear equations. This is best shown by example. Suppose that we
have the following system of linear equations

Without changing the solution, we could swap equations in this system, we could multiply any of the equations by a nonzero
number, and we could add a multiple of one equation to another equation. It turns out these operations always suffice to find a
solution.

It is easier to write the system as a matrix equation. Note that the system can be written as

To solve the system we put the coefficient matrix (the matrix on the left hand side of the equation) together with the vector on the
right and side and get the so-called augmented matrix

We apply the following three elementary operations.

i. Swap two rows.
ii. Add a multiple of one row to another row.

iii. Multiply a row by a nonzero number.

We will keep doing these operations until we get into a state where it is easy to read off the answer, or until we get into a
contradiction indicating no solution, for example if we come up with an equation such as .

Let us work through the example. First multiply the first row by  to obtain

Now subtract the first row from the second and third row.

Multiply the last row by  and the second row by .

Swap rows 2 and 3.

Subtract the last row from the first, then subtract the second row from the first.

2 +2 +2x1 x2 x3

+ +3x1 x2 x3

+4 +x1 x2 x3

= 2
= 5
= 10

(5.2.4)
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⎢
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If we think about what equations this augmented matrix represents, we see that  and . We try this solution
in the original system and, voilà, it works!

Below is a video on using matrices to solve a system of equations.

Check that the solution above really solves the given equations.

We write this equation in matrix notation as

where  is the matrix  and  is the vector . The solution can also be computed via the inverse,

It is possible that the solution is not unique, or that no solution exists. It is easy to tell if a solution does not exist. If during the row
reduction you come up with a row where all the entries except the last one are zero (the last entry in a row corresponds to the right-
hand side of the equation), then the system is inconsistent and has no solution. For example, for a system of 3 equations and 3
unknowns, if you find a row such as  in the augmented matrix, you know the system is inconsistent. That row
corresponds to .

You generally try to use row operations until the following conditions are satisfied. The first (from the left) nonzero entry in each
row is called the leading entry.

i. The leading entry in any row is strictly to the right of the leading entry of the row above.
ii. Any zero rows are below all the nonzero rows.

iii. All leading entries are .
iv. All the entries above and below a leading entry are zero.

Such a matrix is said to be in reduced row echelon form. The variables corresponding to columns with no leading entries are said to
be free variables. Free variables mean that we can pick those variables to be anything we want and then solve for the rest of the
unknowns.

⎡

⎣
⎢⎢

1

0

0

0

1

0

0

0

1

−4

3

2

⎤

⎦
⎥⎥

= −4, = 3x1 x2 = 2x3

Using a Matrix Equation to Solve a SystUsing a Matrix Equation to Solve a Syst……

 Exercise 5.2.1

A = ,x⃗  b ⃗ 

A [ ]
2
1
1

2
1
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2
3
1

b ⃗  [ ]
2
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= A = .x⃗  A−1 x⃗  A−1b ⃗ 

[ 0 0 0  |  1 ]
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1
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The following augmented matrix is in reduced row echelon form.

Suppose the variables are  and . Then  is the free variable, , and .

On the other hand if during the row reduction process you come up with the matrix

there is no need to go further. The last row corresponds to the equation , which is preposterous. Hence,
no solution exists.

5.2.1: Computing the Inverse

If the coefficient matrix is square and there exists a unique solution  to  for any , then  is invertible. In fact by
multiplying both sides by  you can see that . So it is useful to compute the inverse if you want to solve the equation
for many different right hand sides .

The  inverse can be given by a formula, but it is also not hard to compute inverses of larger matrices. While we will not have
too much occasion to compute inverses for larger matrices than  by hand, let us touch on how to do it. Finding the inverse of 

 is actually just solving a bunch of linear equations. If we can solve  where  is the vector with all zeros except a 1 at
the  position, then the inverse is the matrix with the columns  for  (exercise: why?). Therefore, to find the
inverse we can write a larger  augmented matrix , where  is the identity. We then perform row reduction. The
reduced row echelon form of  will be of the form  if and only if  is invertible. We can then just read off the
inverse .

This page titled 5.2: Matrices and linear systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.
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5.3: Linear systems of ODEs
First let us talk about matrix or vector valued functions. Such a function is just a matrix whose entries depend on some variable. If 
is the independent variable, we write a vector valued function  as

Similarly a matrix valued function  is

We can talk about the derivative  or . This is just the matrix valued function whose  entry is .

Rules of differentiation of matrix valued functions are similar to rules for normal functions. Let  and  be matrix valued
functions. Let  be a scalar and let  be a constant matrix. Then

Note the order of the multiplication in the last two expressions.

A first order linear system of ODEs is a system that can be written as the vector equation

where  is a matrix valued function, and  and  are vector valued functions. We will often suppress the dependence on 
and only write . A solution of the system is a vector valued function  satisfying the vector equation.

For example, the equations

can be written as

We will mostly concentrate on equations that are not just linear, but are in fact constant coefficient equations. That is, the matrix 
will be constant; it will not depend on .

When  (the zero vector), then we say the system is homogeneous. For homogeneous linear systems we have the principle of
superposition, just like for single homogeneous equations.

Superposition

Let  be a linear homogeneous system of ODEs. Suppose that  are  solutions of the equation, then

t

(t)x⃗ 

(t) =x⃗ 

⎡

⎣

⎢⎢⎢⎢⎢

(t)x1

(t)x2

⋮
(t)xn

⎤

⎦

⎥⎥⎥⎥⎥

A(t)

A(t) =

⎡

⎣

⎢⎢⎢⎢⎢

(t)a11

(t)a21

⋮
(t)an1

(t)a12

(t)a22

⋮
(t)an2

⋯
⋯

⋱
⋯

(t)a1n

(t)a2n

⋮
(t)ann

⎤

⎦

⎥⎥⎥⎥⎥

(t)A′ dA

dt
ijth (t)a′

ij

A(t) B(t)
c C

(A(t) +B(t)) ′

(A(t)B(t))′

(cA(t))′

(CA(t))′

(A(t)C)′

= (t) + (t)A′ B′

= (t)B(t) +A(t) (t)A′ B′

= c (t)A′

= C (t)A′

= (t)CA′

(5.3.1)

(t) = P (t) (t) + (t)x⃗  x⃗  f ⃗ 

P (t) (t)x⃗  (t)f ⃗  t

= P +x⃗  x⃗  f ⃗  x⃗ 

x′
1

x′
2

= 2t + +x1 etx2 t2

= − +
x1

t
x2 et

(5.3.2)

= [ ] +[ ]x′
→ 2t

1
t

et

−1
x′
→ t2
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P

t

=f ⃗  0⃗ 

 Theorem 5.3.1

= Px′
→

x′
→
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is also a solution. Furthermore, if this is a system of  equations , and  are linearly independent, then
every solution can be written as .

Linear independence for vector valued functions is the same idea as for normal functions. The vector valued functions 
 are linearly independent when

has only the solution , where the equation must hold for all .

 are linearly depdendent because , and this holds for all . So 

 and  above will work.

On the other hand if we change the example just slightly , then the functions are

linearly independent. First write  and note that it has to hold for all . We get that

In other words  and . If we set , then the second equation becomes . However,
the first equation becomes  for all  and so . Thus the second equation is just , which means . So 

 is the only solution and  and  are linearly independent.

The linear combination  could always be written as

where  is the matrix with columns , and  is the column vector with entries . The matrix valued function 
 is called the fundamental matrix, or the fundamental matrix solution.

To solve nonhomogeneous first order linear systems, we use the same technique as we applied to solve single linear
nonhomogeneous equations.

Let  be a linear system of ODEs. Suppose  is one particular solution. Then every solution can be written as

where  is a solution to the associated homogeneous equation .

So the procedure will be the same as for single equations. We find a particular solution to the nonhomogeneous equation, then we
find the general solution to the associated homogeneous equation, and finally we add the two together.

Alright, suppose you have found the general solution . Now you are given an initial condition of the form

for some constant vector . Suppose that  is the fundamental matrix solution of the associated homogeneous equation (i.e.
columns of  are solutions). The general solution can be written as

We are seeking a vector  such that

= + +⋯ +x⃗  c1x⃗ 1 c2x⃗ 2 cnx⃗ n

n (P  is n×n) , … ,x⃗ 1 x⃗ n
(5.3.3)

, , … ,x⃗ 1 x⃗ 2 x⃗ n

+ +⋯ + =c1x⃗ 1 c2x⃗ 2 cnx⃗ n 0⃗  (5.3.3)

= = ⋯ = = 0c1 c2 cn t

 Example 3.3.1
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0
t
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−t2

1
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2 c3t
3
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0
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2 t = 0c1 t = 0c2 = 0c2

= = = 0c1 c2 c3 ,x⃗ 1 x⃗ 2 x⃗ 3

+ +⋯ +c1x⃗ 1 c2x⃗ 2 cnx⃗ n

X(t)c ⃗ 

X(t) , … ,x⃗ 1 x⃗ n c ⃗  , … ,c1 cn
X(t)

 Theorem 5.3.2

= P +x⃗ ′ x⃗  f ⃗  x⃗ p

= +x⃗  x⃗ c x⃗ p

x⃗ c ( = P )x⃗  x⃗ 

= P +x⃗ ′ x⃗  f ⃗ 

=x⃗ t0 b ⃗ 
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X(t)
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In other words, we are solving for  the nonhomogeneous system of linear equations

In Section 3.1 we solved the system

with initial conditions .

Solution

This is a homogeneous system, so . We write the system and the initial conditions as

We found the general solution was  and . Letting  and , we obtain the solution 

. Letting  and , we obtain . These two solutions are linearly independent, as can be seen by

setting , and noting that the resulting constant vectors are linearly independent. In matrix notation, the fundamental
matrix solution is, therefore,

Hence to solve the initial problem we solve the equation

or in other words,

This agrees with our previous solution from Section 3.1.

This page titled 5.3: Linear systems of ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

3.3: Linear systems of ODEs by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.

= ( ) = X( ) + ( )b ⃗  x⃗  t0 t0 c ⃗  x⃗ p t0

c ⃗ 

X( ) = − ( )t0 c ⃗  b ⃗  x⃗ p t0

 Example 3.3.2

x′
1

x′
2

= x1

= −x1 x2
(5.3.4)

(0) = 1, (0) = 2x1 x2

(t) =f ⃗  0⃗ 

= [ ] , (0) = [ ]x⃗ ′
1
1

0
−1

x⃗  x⃗ 
1
2

=x1 C1e
t = +x2

c1

2 e
t c2e

−t = 1C1 = 0C2

[ ]
et

1
2 e

t
= 0C1 = 1C2 [ ]

0
e−t

t = 0

X(t) = [ ]
et

1
2 e

t

0

e−t

X(0) c) =(⃗  b ⃗ 

[ ] = [ ]
1
1
2

0

1
c ⃗ 

1
2

(t) = X(t) = [ ][ ] = [ ]x⃗  c ⃗ 
et

1
2 e

t

0

e−t

1
3
2

et

+1
2 e

t 3
2 e

−t

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98059?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/3%3A_Systems_of_ODEs/3.1%3A_Introduction_to_Systems_of_ODEs
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/3%3A_Systems_of_ODEs/3.1%3A_Introduction_to_Systems_of_ODEs
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/05%3A_Systems_of_ODEs/5.03%3A_Linear_systems_of_ODEs
https://creativecommons.org/licenses/by-sa/4.0
https://math.okstate.edu/people/lebl/
https://math.libretexts.org/@go/page/364
https://math.okstate.edu/people/lebl/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.jirka.org/diffyqs


5.4.1 https://math.libretexts.org/@go/page/98060

5.4: Eigenvalue Method
 

In this section we will learn how to solve linear homogeneous constant coefficient systems of ODEs by the eigenvalue method.
Suppose we have such a system

where  is a constant square matrix. We wish to adapt the method for the single constant coefficient equation by trying the
function . However,  is a vector. So we try , where  is an arbitrary constant vector. We plug this  into the equation
to get

We divide by  and notice that we are looking for a scalar  and a vector  that satisfy the equation

To solve this equation we need a little bit more linear algebra, which we now review.

5.4.1: Eigenvalues and Eigenvectors of a Matrix
Let  be a constant square matrix. Suppose there is a scalar  and a nonzero vector  such that

We then call  an eigenvalue of  and  is said to be a corresponding eigenvector.

The matrix  has an eigenvalue of  with a corresponding eigenvector 

because

Let us see how to compute the eigenvalues for any matrix. We rewrite the equation for an eigenvalue as

We notice that this equation has a nonzero solution  only if  is not invertible. Were it invertible, we could write 
 which implies  Therefore,  has the eigenvalue  if and only if  solves the

equation

Consequently, we will be able to find an eigenvalue of  without finding a corresponding eigenvector. An eigenvector will
have to be found later, once  is known.

Find all eigenvalues of .

Solution

We write

= P ,x⃗ ′ x⃗ 

P

eλt x⃗  =x⃗  v ⃗ eλt v ⃗  x⃗ 

= .λv ⃗ eλt  
x ⃗ ′

Pv ⃗ eλt  
Px ⃗ 

eλt λ x⃗ 

λ = P .v ⃗  v ⃗ 

A λ v ⃗ 

A = λ .v ⃗  v ⃗ 

λ A x⃗ 
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So the eigenvalues are  and .

Note that for an  matrix, the polynomial we get by computing  will be of degree , and hence we will in
general have  eigenvalues. Some may be repeated, some may be complex.

To find an eigenvector corresponding to an eigenvalue , we write

and solve for a nontrivial (nonzero) vector . If  is an eigenvalue, there will be at least one free variable, and so for each
distinct eigenvalue , we can always find an eigenvector

Find an eigenvector of  corresponding to the eigenvalue .

Solution

We write

It is easy to solve this system of linear equations. We write down the augmented matrix

and perform row operations (exercise: which ones?) until we get:

The entries of  have to satisfy the equations  and  is a free variable. We can pick  to be arbitrary (but

nonzero), let  and of course  For example, if we pick  then  Let us verify that  really is an

eigenvector corresponding to :

Yay! It worked.
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⎜

⎡

⎣
⎢
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⎢
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⎜
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= (2 −λ)((2 −λ −1) = −(λ−1)(λ−2)(λ−3).)2

(5.4.1)

λ = 1,λ = 2, λ = 3

n×n det(A−λI) n

n

λ
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v ⃗  λ

λ
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Are eigenvectors unique? Can you find a different eigenvector for  in the example above? How are the two eigenvectors
related?

Note that when the matrix is  you do not need to write down the augmented matrix and do row operations when
computing eigenvectors (if you have computed the eigenvalues correctly). Can you see why? Try it for the matrix .

5.4.2: 3.4.2Eigenvalue Method with Distinct Real Eigenvalues
We have the system of equations

We find the eigenvalues  of the matrix , and corresponding eigenvectors  Now we notice that the
functions  are solutions of the system of equations and hence 
is a solution.

Take . If  is an  constant matrix that has  distinct real eigenvalues  then there exist  linearly
independent corresponding eigenvectors  and the general solution to  can be written as

The corresponding fundamental matrix solution is

That is,  is the matrix whose  column is .

Below is a video on solving a system of differential equations and matrices..

Consider the system

Find the general solution.

 Exercise : (easy)5.4.1
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Solution

Earlier, we found the eigenvalues are  We found the eigenvector  for the eigenvalue 3. Similarly we find the

eigenvector  for the eigenvalue 1, and  for the eigenvalue 2 (exercise: check). Hence our general solution is

In terms of a fundamental matrix solution

Check that this  really solves the system.

Note: If we write a homogeneous linear constant coefficient  order equation as a first order system (as we did in Section
3.1), then the eigenvalue equation

is essentially the same as the characteristic equation we got in Section 2.2 and Section 2.3.

Below is a video on solving a system differential equations where the associated matrix has distince real eigenvalues.

5.4.3: Complex Eigenvalues
A matrix might very well have complex eigenvalues even if all the entries are real. For example, suppose that we have the system

Let us compute the eigenvalues of the matrix 

1, 2, 3.
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Thus  The corresponding eigenvectors are also complex. First take 

The equations  and  are multiples of each other. So we only need to consider one of them. After

picking , for example, we have an eigenvector . In similar fashion we find that  is an eigenvector

corresponding to the eigenvalue .

We could write the solution as

We would then need to look for complex values  and  to solve any initial conditions. It is perhaps not completely clear that we
get a real solution. We could use Euler’s formula and do the whole song and dance we did before, but we will not. We will do
something a bit smarter first.

We claim that we did not have to look for a second eigenvector (nor for the second eigenvalue). All complex eigenvalues come in
pairs (because the matrix  is real).

First a small side note. The real part of a complex number  can be computed as , where the bar above  means 
. This operation is called the complex conjugate. If  is a real number, then . Similarly we can bar whole

vectors or matrices by taking the complex conjugate of every entry. If a matrix  is real, then . We note that 

. Also the complex conjugate of  is still , therefore,

So if  is an eigenvector corresponding to the eigenvalue , then  is an eigenvector corresponding to the eigenvalue 
.

Suppose that  is a complex eigenvalue of , and  is a corresponding eigenvector. Then

is a solution (complex valued) of . Euler’s formula shows that , and so

is also a solution. As  and  are solutions, the function

is also a solution. And  is real-valued! Similarly as  is the imaginary part, we find that

is also a real-valued solution. It turns out that  and  are linearly independent. We will use Euler’s formula to separate out the
real and imaginary part.

Returning to our problem,

Then
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(P −(1 − i)I)v ⃗ 

[ ]
i

−1

1

i
v ⃗ 

= ,0⃗ 

= .0⃗ 
(5.4.2)

i + = 0v1 v2 − + i = 0v1 v2

= 1v2 = [ ]v ⃗ 
i

1
[ ]

−i

1
1 + i

= [ ] + [ ] = [ ] .x⃗  c1
i

1
e(1−i)t c2

−i

1
e(1+i)t i − ic1 e(1−i)t c2 e(1+i)t

+c1e
(1−i)t c2e

(1+i)t

c1 c2

P

z
z+z̄

2
z

= a− iba+ ib
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

a = aā
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are the two real-valued linearly independent solutions we seek.

Below is a video on solving a of system differential equation where the associated matrix has complet eigenvalues.

Check that these really are solutions.

The general solution is

This solution is real-valued for real  and . At this point, we would solve for any initial conditions we may have to find  and 
.

Let us summarize the discussion as a theorem.

Let  be a real-valued constant matrix. If  has a complex eigenvalue  and a corresponding eigenvector , then  also
has a complex eigenvalue  with a corresponding eigenvector . Furthermore,  has two linearly independent
real-valued solutions

For each pair of complex eigenvalues  and , we get two real-valued linearly independent solutions. We then go on to
the next eigenvalue, which is either a real eigenvalue or another complex eigenvalue pair. If we have  distinct eigenvalues (real or
complex), then we end up with  linearly independent solutions. If we had only two equations  as in the example above,
then once we found two solutions we are finished, and our general solution is

We can now find a real-valued general solution to any homogeneous system where the matrix has distinct eigenvalues. When we
have repeated eigenvalues, matters get a bit more complicated and we will look at that situation in Section 3.7.
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5.5: Two dimensional systems and their vector fields
 

Let us take a moment to talk about constant coefficient linear homogeneous systems in the plane. Much intuition can be obtained by studying this simple case. Suppose we use

coordinates  for the plane as usual, and suppose  is a  matrix . Consider the system

The system is autonomous (compare this section to Section 1.6) and so we can draw a vector field (see end of Section 3.1). We will be able to visually tell what the vector field looks
like and how the solutions behave, once we find the eigenvalues and eigenvectors of the matrix . For this section, we assume that  has two eigenvalues and two corresponding
eigenvectors.

5.5.0.1: 1

Suppose that the eigenvalues of  are real and positive. We find two corresponding eigenvectors and plot them in the plane. For example, take the matrix . The eigenvalues are

1 and 2 and corresponding eigenvectors are  and . See Figure .

Figure : Eigenvectors of .

Now suppose that  and  are on the line determined by an eigenvector  for an eigenvalue . That is,  for some scalar . Then

The derivative is a multiple of  and hence points along the line determined by . As , the derivative points in the direction of  when  is positive and in the opposite
direction when  is negative. Let us draw the lines determined by the eigenvectors, and let us draw arrows on the lines to indicate the directions. See Figure .

We fill in the rest of the arrows for the vector field and we also draw a few solutions. See Figure . Notice that the picture looks like a source with arrows coming out from the
origin. Hence we call this type of picture a source or sometimes an unstable node.

Figure : Eigenvectors of  with directions.

Figure : Example source vector field with eigenvectors and solutions.

5.5.0.1: 2

Suppose both eigenvalues were negative. For example, take the negation of the matrix in case 1, . The eigenvalues are -1 and -2 and corresponding eigenvectors are the

same,  and . The calculation and the picture are almost the same. The only difference is that the eigenvalues are negative and hence all arrows are reversed. We get the picture

in Figure . We call this kind of picture a sink or sometimes a stable node.
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Figure : Example sink vector field with eigenvectors and solutions.

Below is a video on phase portraits.

5.5.0.1: 3

Suppose one eigenvalue is positive and one is negative. For example the matrix . The eigenvalues are  and  and corresponding eigenvectors are  and .

We reverse the arrows on one line (corresponding to the negative eigenvalue) and we obtain the picture in Figure . We call this picture a saddle point.

Figure : Example saddle vector field with eigenvectors and solutions.

Below is a video on a phase portrait of a saddle point.

For the next three cases we will assume the eigenvalues are complex. In this case the eigenvectors are also complex and we cannot just plot them in the plane.

5.5.0.1: 4
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Suppose the eigenvalues are purely imaginary. That is, suppose the eigenvalues are . For example, let . The eigenvalues turn out to be  and eigenvectors are 

 and . Consider the eigenvalue  and its eigenvector . The real and imaginary parts of  are

We can take any linear combination of them to get other solutions, which one we take depends on the initial conditions. Now note that the real part is a parametric equation for an
ellipse. Same with the imaginary part and in fact any linear combination of the two. This is what happens in general when the eigenvalues are purely imaginary. So when the eigenvalues
are purely imaginary, we get ellipses for the solutions. This type of picture is sometimes called a center. See Figure .

Figure : Example center vector field.

5.5.0.1: 5

Now suppose the complex eigenvalues have a positive real part. That is, suppose the eigenvalues are  for some . For example, let . The eigenvalues turn out

to be  and eigenvectors are  and . We take  and its eigenvector  and find the real and imaginary of  are

Note the  in front of the solutions. This means that the solutions grow in magnitude while spinning around the origin. Hence we get a spiral source. See Figure .

Figure : Example spiral source vector field.

Below is a video on a phase portrait of a spriral point.

5.5.0.1: 6

Finally suppose the complex eigenvalues have a negative real part. That is, suppose the eigenvalues are  for some . For example, let . The eigenvalues

turn out to be  and eigenvectors are  and . We take  and its eigenvector  and find the real and imaginary of  are

Note the  in front of the solutions. This means that the solutions shrink in magnitude while spinning around the origin. Hence we get a spiral sink. See Figure .
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Figure : Example spiral sink vector field.

We summarize the behavior of linear homogeneous two dimensional systems given by a nonsingular matrix in Table . Systems where one of the eigenvalues is zero (the matrix is
singular) come up in practice from time to time, see Example 3.1.2, and the pictures are somewhat different (simpler in a way). See the exercises.

Table : Summary of behavior of linear homogeneous two dimensional systems.
Eigenvalues Behavior

real and both positive source / unstable node

real and both negative sink / stable node

real and opposite signs saddle

purely imaginary center point / ellipses

complex with positive real part spiral source

complex with negative real part spiral sink

Below is a video on phase portraits of linear systems.
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5.6: Second order systems and applications
 

5.6.1: Undamped Mass-Spring Systems
While we did say that we will usually only look at first order systems, it is sometimes more convenient to study the system in the way it arises naturally. For example, suppose we have 3
masses connected by springs between two walls. We could pick any higher number, and the math would be essentially the same, but for simplicity we pick 3 right now. Let us also assume
no friction, that is, the system is undamped. The masses are , and  and the spring constants are , and . Let  be the displacement from rest position of the first mass,
and  and  the displacement of the second and third mass. We will make, as usual, positive values go right (as  grows, the first mass is moving right). See Figure .

Figure : System of masses and springs.

This simple system turns up in unexpected places. For example, our world really consists of many small particles of matter interacting together. When we try the above system with many
more masses, we obtain a good approximation to how an elastic material behaves. By somehow taking a limit of the number of masses going to infinity, we obtain the continuous one
dimensional wave equation (that we study in Section 4.7). But we digress.

Let us set up the equations for the three mass system. By Hooke’s law we have that the force acting on the mass equals the spring compression times the spring constant. By Newton’s
second law we have that force is mass times acceleration. So if we sum the forces acting on each mass and put the right sign in front of each term, depending on the direction in which it is
acting, we end up with the desired system of equations.

We define the matrices

We write the equation simply as

At this point we could introduce 3 new variables and write out a system of 6 first order equations. We claim this simple setup is easier to handle as a second order system. We call  the
displacement vector,  the mass matrix, and  the stiffness matrix.

Repeat this setup for 4 masses (find the matrices  and ). Do it for 5 masses. Can you find a prescription to do it for  masses?

As with a single equation we want to “divide by .” This means computing the inverse of . The masses are all nonzero and is a diagonal matrix, so comping the inverse is easy:

This fact follows readily by how we multiply diagonal matrices. As an exercise, you should verify that 

Let . We look at the system , or

Many real world systems can be modeled by this equation. For simplicity, we will only talk about the given masses-and-springs problem. We try a solution of the form

We compute that for this guess,  We plug our guess into the equation and get

We divide by  to arrive at . Hence if  is an eigenvalue of  and  is a corresponding eigenvector, we have found a solution.

In our example, and in other common applications,  has only real negative eigenvalues (and possibly a zero eigenvalue). So we study only this case. When an eigenvalue  is negative, it
means that  is negative. Hence there is some real number  such that . Then . The solution we guessed was

By taking the real and imaginary parts (note that  is real), we find that  and  are linearly independent solutions.

If an eigenvalue is zero, it turns out that both  and  are solutions, where  is an eigenvector corresponding to the eigenvalue 0.

Show that if  has a zero eigenvalue and  is a corresponding eigenvector, then  is a solution of  for arbitrary constants  and .

Let  be an  matrix with  distinct real negative eigenvalues we denote by , and corresponding eigenvectors by  If  is invertible
(that is, if ), then
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is the general solution of

for some arbitrary constants  and . If  has a zero eigenvalue, that is , and all other eigenvalues are distinct and negative, then the general solution can be written as

We use this solution and the setup from the introduction of this section even when some of the masses and springs are missing. For example, when there are only 2 masses and only 2
springs, simply take only the equations for the two masses and set all the spring constants for the springs that are missing to zero.

Suppose we have the system in Figure , with  and 

Figure : System of masses and springs.

The equations we write down are

or

We find the eigenvalues of  to be  (exercise). We find corresponding eigenvectors to be  and  respectively (exercise).

We check the theorem and note that  and . Hence the general solution is

The two terms in the solution represent the two so-called natural or normal modes of oscillation. And the two (angular) frequencies are the natural frequencies. The first natural
frequency is , and second natural frequency is . The two modes are plotted in Figure .

Figure : The two modes of the mass-spring system. In the left plot the masses are moving in unison and in the right plot are masses moving in the opposite direction.

Let us write the solution as

The first term,

corresponds to the mode where the masses move synchronously in the same direction.

The second term,

corresponds to the mode where the masses move synchronously but in opposite directions.

The general solution is a combination of the two modes. That is, the initial conditions determine the amplitude and phase shift of each mode. As an example, suppose we have initial
conditions

We use the  constants to solve for initial conditions. First

We solve (exercise) to find , . To find the  and , we differentiate first:
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Now we solve:

Again solve (exercise) to find , . So our solution is

The graphs of the two displacements,  and  of the two carts is in Figure .

Figure : Superposition of the two modes given the initial conditions.

Below is a video on coupled oscillators.

We have two toy rail cars. Car 1 of mass  is traveling at  towards the second rail car of mass . There is a bumper on the second rail car that engages at the moment the
cars hit (it connects to two cars) and does not let go. The bumper acts like a spring of spring constant . The second car is  meters from a wall. See Figure .

Figure : The crash of two rail cars.

We want to ask several questions. At what time after the cars link does impact with the wall happen? What is the speed of car 2 when it hits the wall?

OK, let us first set the system up. Let  be the time when the two cars link up. Let  be the displacement of the first car from the position at , and let  be the displacement
of the second car from its original location. Then the time when  is exactly the time when impact with wall occurs. For this  is the speed at impact. This system acts
just like the system of the previous example but without . Hence the equation is

or

We compute the eigenvalues of . It is not hard to see that the eigenvalues are  and  (exercise). Furthermore, eigenvectors are  and  respectively (exercise). Then 

 and by the second part of the theorem we find our general solution to be

We now apply the initial conditions. First the cars start at position  so  and . The first car is traveling at , so  and the second car starts at rest, so 
. The first conditions says
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It is not hard to see that . We set  and  in  and differentiate to get

So

Solving these two equations we find  and . Hence the position of our cars is (until the impact with the wall)

Note how the presence of the zero eigenvalue resulted in a term containing . This means that the carts will be traveling in the positive direction as time grows, which is what we
expect.

What we are really interested in is the second expression, the one for . We have . See Figure  for the plot of  versus time.

Figure : Position of the second car in time (ignoring the wall).

Just from the graph we can see that time of impact will be a little more than 5 seconds from time zero. For this we have to solve the
equation . Using a computer (or even a graphing calculator) we find that  seconds.

As for the speed we note that . At time of impact (  seconds from ) we get that .

The maximum speed is the maximum of , which is . We are traveling at almost the maximum speed when we hit the wall.

Suppose that Tiana is a tiny person sitting on car 2. Tiana has a Martini in her hand and would like not to spill it. Let us suppose Tiana would not spill her Martini when the first car
links up with car 2, but if car 2 hits the wall at any speed greater than zero, Tiana will spill her drink. Suppose Tiana can move car 2 a few meters towards or away from the wall (he
cannot go all the way to the wall, nor can she get out of the way of the first car). Is there a “safe” distance for her to be at? A distance such that the impact with the wall is at zero
speed?

The answer is yes. Looking at Figure , we note the “plateau” between  and . There is a point where the speed is zero. To find it we need to solve . This is

when  or in other words when  and so on. We plug in the first value to obtain . So a “safe” distance is about 7 and a quarter

meters from the wall.

Alternatively Tiana could move away from the wall towards the incoming car 2 where another safe distance is  and so on, using all the different  such that . Of

course  is always a solution here, corresponding to , but that means standing right at the wall.

Below is a video on normal modes.

Below is another video on normal modes.
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5.6.2: Forced Oscillations

Finally we move to forced oscillations. Suppose that now our system is

That is, we are adding periodic forcing to the system in the direction of the vector .

As before, this system just requires us to find one particular solution , add it to the general solution of the associated homogeneous system , and we will have the general solution to 
. Let us suppose that  is not one of the natural frequencies of , then we can guess

where  is an unknown constant vector. Note that we do not need to use sine since there are only second derivatives. We solve for  to find . This is really just the method of
undetermined coefficients for systems. Let us differentiate  twice to get

Plug  and  into the equation :

We cancel out the cosine and rearrange the equation to obtain

So

Of course this is possible only if  is invertible. That matrix is invertible if and only if  is not an eigenvalue of . That is true if and only if  is not a
natural frequency of the system.

We simplified things a little bit. If we wish to have the forcing term to be in the units of force, say Newtons, then we must write

If we then write things in terms of , we have

where .

Let us take the example in Figure  with the same parameters as before:  and . Now suppose that there is a force  acting on the second
cart.

The equation is

We solved the associated homogeneous equation before and found the complementary solution to be

The natural frequencies are  and . Hence as  is not a natural frequency, we can try . We invert :

Hence,
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Combining with what we know the general solution of the associated homogeneous problem to be, we get that the general solution to  is

The constants  and  must then be solved for given any initial conditions.

Note that given force , we write the equation as  to get the units right. Then we write . The term  in  is in units
of force per unit mass.

If  is a natural frequency of the system resonance occurs because we will have to try a particular solution of the form

That is assuming that the eigenvalues of the coefficient matrix are distinct. Next, note that the amplitude of this solution grows without bound as  grows.
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5.7: Multiple Eigenvalues
 

It may very well happen that a matrix has some “repeated” eigenvalues. That is, the characteristic equation  may
have repeated roots. As we have said before, this is actually unlikely to happen for a random matrix. If we take a small perturbation
of  (we change the entries of  slightly), then we will get a matrix with distinct eigenvalues. As any system we will want to solve
in practice is an approximation to reality anyway, it is not indispensable to know how to solve these corner cases. On the other
hand, these cases do come up in applications from time to time. Furthermore, if we have distinct but very close eigenvalues, the
behavior is similar to that of repeated eigenvalues, and so understanding that case will give us insight into what is going on.

5.7.1: Geometric Multiplicity
Take the diagonal matrix

 has an eigenvalue  of multiplicity . We call the multiplicity of the eigenvalue in the characteristic equation the algebraic

multiplicity. In this case, there also exist  linearly independent eigenvectors,  and  corresponding to the eigenvalue .

This means that the so-called geometric multiplicity of this eigenvalue is also .

In all the theorems where we required a matrix to have  distinct eigenvalues, we only really needed to have  linearly
independent eigenvectors. For example,  has the general solution

Let us restate the theorem about real eigenvalues. In the following theorem we will repeat eigenvalues according to (algebraic)
multiplicity. So for the above matrix , we would say that it has eigenvalues  and .

Take . Suppose the matrix P is , has n real eigenvalues (not necessarily distinct), and there are 

linearly independent corresponding eigenvectors . Then the general solution to  can be written as:

The geometric multiplicity of an eigenvalue of algebraic multiplicity n is equal to the number of corresponding linearly independent
eigenvectors. The geometric multiplicity is always less than or equal to the algebraic multiplicity. We have handled the case when
these two multiplicities are equal. If the geometric multiplicity is equal to the algebraic multiplicity, then we say the eigenvalue is
complete.

In other words, the hypothesis of the theorem could be stated as saying that if all the eigenvalues of  are complete, then there are 
 linearly independent eigenvectors and thus we have the given general solution.

If the geometric multiplicity of an eigenvalue is  or greater, then the set of linearly independent eigenvectors is not unique up to

multiples as it was before. For example, for the diagonal matrix  we could also pick eigenvectors  and ,

or in fact any pair of two linearly independent vectors. The number of linearly independent eigenvectors corresponding to  is the
number of free variables we obtain when solving . We pick specific values for those free variables to obtain eigenvectors.
If you pick different values, you may get different eigenvectors.

5.7.2: Defective Eigenvalues

If an  matrix has less than n linearly independent eigenvectors, it is said to be deficient. Then there is at least one eigenvalue
with an algebraic multiplicity that is higher than its geometric multiplicity. We call this eigenvalue defective and the difference
between the two multiplicities we call the defect.
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The matrix

has an eigenvalue 3 of algebraic multiplicity 2. Let us try to compute eigenvectors.

Solution

We must have that . Hence any eigenvector is of the form . Any two such vectors are linearly dependent, and

hence the geometric multiplicity of the eigenvalue is 1. Therefore, the defect is 1, and we can no longer apply the eigenvalue
method directly to a system of ODEs with such a coefficient matrix.

Roughly, the key observation is that if  is an eigenvalue of  of algebraic multiplicity , then we can find certain  linearly
independent vectors solving  for various powers . We will call these generalized eigenvectors.

Let us continue with the example  and the equation . We have an eigenvalue  of (algebraic)

multiplicity 2 and defect 1. We have found one eigenvector . We have the solution

We are now stuck, we get no other solutions from standard eigenvectors. But we need two linearly independent solutions to
find the general solution of the equation.

In this case, let us try (in the spirit of repeated roots of the characteristic equation for a single equation) another solution of the
form

We differentiate to get

As we are assuming that  is a solution,  must equal . So let’s compute :

By looking at the coefficients of  and  we see  and . This means that

Therefore,  is a solution if these two equations are satisfied. The second equation is satisfied if  is an eigenvector, and we
found the eigenvector above, so let . So, if we can find a  that solves , then we are done. This is
just a bunch of linear equations to solve and we are by now very good at that. Let us solve . Write

By inspection we see that letting  (  could be anything in fact) and  does the job. Hence we can take .
Our general solution to  is
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Let us check that we really do have the solution. First . Good. Now 
. Good.

Below is a video on solving a defective system of differential equations.

Note that the system  has a simpler solution since  is a so-called upper triangular matrix, that is every entry below the
diagonal is zero. In particular, the equation for  does not depend on . Mind you, not every defective matrix is triangular.

Solve  by first solving for  and then for  independently. Check that you got the same solution as we did

above.

Let us describe the general algorithm. Suppose that  is an eigenvalue of multiplicity , defect . First find an eigenvector  of .
Then, find a vector  such that

This gives us two linearly independent solutions

Consider the system

Compute the eigenvalues,

Solution

The eigenvalues are 1 and 2, where 2 has multiplicity 2. We leave it to the reader to find that  is an eigenvector for the

eigenvalue .
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Let’s focus on . We compute eigenvectors:

The first equation says that , so the last equation is . Let  be the free variable to find that .

Perhaps let  to find an eigenvector . Problem is that setting  to anything else just gets multiples of this vector

and so we have a defect of 1. Let  be the eigenvector and let’s look for a generalized eigenvector :

or

where we used , ,  as components of  for simplicity. The first equation says  so . The second equation
says nothing. The last equation is , or , or . We let  be the free variable and we

choose . We find .

The general solution is therefore,

This machinery can also be generalized to higher multiplicities and higher defects. We will not go over this method in detail, but let
us just sketch the ideas. Suppose that  has an eigenvalue  of multiplicity . We find vectors such that

Such vectors are called generalized eigenvectors (then  is an eigenvector). For every eigenvector  we find a
chain of generalized eigenvectors  through  such that:

Really once you find the  such that  but , you find the entire chain since you can compute
the rest, , , etc. We form the linearly independent solutions

Recall that  is the factorial. If you have an eigenvalue of geometric multiplicity , you will have to find 
 such chains (some of them might be short: just the single eigenvector equation). We go until we form  linearly independent
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solutions where  is the algebraic multiplicity. We don’t quite know which specific eigenvectors go with which chain, so start by
finding  first for the longest possible chain and go from there.

For example, if  is an eigenvalue of  of algebraic multiplicity  and defect , then solve

That is, find  such that , but . Then you are done as  and 
. The 3 linearly independent solutions are

If on the other hand  has an eigenvalue  of algebraic multiplicity  and defect , then solve

Here  and  are actual honest eigenvectors, and  is a generalized eigenvector. So there are two chains. To solve, first find a 
such that , but . Then  is going to be an eigenvector. Then solve for an
eigenvector  that is linearly independent from . You get 3 linearly independent solutions
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5.8: Matrix exponentials

5.8.1: Definition

In this section we present a different way of finding the fundamental matrix solution of a system. Suppose that we have the
constant coefficient equation

as usual. Now suppose that this was one equation (  is a number or a  matrix). Then the solution to this would be

That doesn’t make sense if  is a larger matrix, but essentially the same computation that led to the above works for matrices when
we define  properly. First let us write down the Taylor series for for some number .

Recall  is the factorial, and . We differentiate this series term by term

Maybe we can try the same trick with matrices. Suppose that for an  matrix  we define the matrix exponential as

Let us not worry about convergence. The series really does always converge. We usually write as  by convention when  is a
matrix. With this small change and by the exact same calculation as above we have that

Now  and hence  is an  matrix. What we are looking for is a vector. We note that in the  case we would at this
point multiply by an arbitrary constant to get the general solution. In the matrix case we multiply by a column vector .

Let  be an  matrix. Then the general solution to  is

where  is an arbitrary constant vector. In fact .

Let us check.

Hence is the fundamental matrix solution of the homogeneous system. If we find a way to compute the matrix exponential, we
will have another method of solving constant coefficient homogeneous systems. It also makes it easy to solve for initial conditions.
To solve ,  we take the solution

This equation follows because , so .

We mention a drawback of matrix exponentials. In general . The trouble is that matrices do not commute, that is, in
general . If you try to prove  using the Taylor series, you will see why the lack of commutativity becomes

= Px⃗ ′ x⃗ 

P 1 ×1

= .x⃗  ePt

P

ePt eat a

= 1 +at + + + +⋯ =eat (at)2

2
(at)3

6
(at)4

24
∑
k=0

∞ (at)k

k!

k! = 1 ⋅ 2 ⋅ 3 ⋯ k 0! = 1

( ) = a + t + + +⋯ = a(1 +at + +⋯) = a .
d
dt

eat a2 a3t2

2
a4t3

6
(at)2

2
(at)3

6
eat

n ×n A

I+A + + +⋯ + +⋯eA =
def 1

2
A2 1

6
A3 1

k!
Ak

P t tP P

( ) = P .
d
dt

etP etP

P etP n ×n 1 ×1
c ⃗ 

 Theorem 5.8.1

P n ×n = Px⃗ ′ x⃗ 

= ,x⃗  etP c ⃗ 

c ⃗  (0) =x⃗  c ⃗ 

= ( ) = P = P .
d
dt

x⃗ 
d
dt

etP c ⃗  etP c ⃗  x⃗ 

etP

= Ax⃗ ′ x⃗  (0) =x⃗  b ⃗ 

=x⃗  etAb ⃗ 

= Ie0A (0) = =x⃗  e0Ab ⃗  b ⃗ 

≠eA+B eAeB

AB ≠ BA ≠eA+B eAeB
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a problem. However, it is still true that if , that is, if  and  commute, then . We will find this fact
useful. Let us restate this as a theorem to make a point.

If , then . Otherwise  in general.

5.8.2: Simple cases

In some instances it may work to just plug into the series definition. Suppose the matrix is diagonal. For example, .

Then

and

So by this rationale we have that

This makes exponentials of certain other matrices easy to compute. Notice for example that the matrix  can be

written as  where . Notice that . So  for all . Therefore, . Suppose

we actually want to compute . The matrices  and  commute (exercise: check this) and , since 
. We write

So we have found the fundamental matrix solution for the system . Note that this matrix has a repeated eigenvalue with a
defect; there is only one eigenvector for the eigenvalue 3. So we have found a perhaps easier way to handle this case. In fact, if a
matrix  is  and has an eigenvalue  of multiplicity 2, then either  is diagonal, or  where . This is a
good exercise.

Suppose that  is  and  is the only eigenvalue. Then show that . Then we can write , where 
. Hint: First write down what does it mean for the eigenvalue to be of multiplicity . You will get an equation for the

entries. Now compute the square of .

Matrices  such that  for some  are called nilpotent. Computation of the matrix exponential for nilpotent matrices is easy
by just writing down the first  terms of the Taylor series.

5.8.3: General Matrices

In general, the exponential is not as easy to compute as above. We usually cannot write a matrix as a sum of commuting matrices
where the exponential is simple for each one. But fear not, it is still not too difficult provided we can find enough eigenvectors.

AB = BA A B =eA+B eAeB

 Theorem 5.8.2

AB = BA =eA+B eAeB ≠eA+B eAeB

D = [ ]
a

0
0
b

= [ ]Dk ak

0

0

bk

eD = I+D + + +⋯
1
2

D2 1
6
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1
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0
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1
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0
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0
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(5.8.1)
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First we need the following interesting result about matrix exponentials. For two square matrices  and , with  invertible, we
have

This can be seen by writing down the Taylor series. First note that

And hence by the same reasoning . Now write down the Taylor series for .

Given a square matrix , we can sometimes write , where  is diagonal and  invertible. This procedure is called
diagonalization. If we can do that, the computation of the exponential becomes easy. Adding  into the mix we see that we can then
easily compute the exponential

To diagonalize  we will need  linearly independent eigenvectors of . Otherwise this method of computing the exponential
does not work and we need to be trickier, but we will not get into such details. We let  be the matrix with the eigenvectors as
columns. Let  be the eigenvalues and let  be the eigenvectors, then . Let  be
the diagonal matrix with the eigenvalues on the main diagonal. That is

We compute

The columns of  are linearly independent as these are linearly independent eigenvectors of . Hence  is invertible. Since 
, we right multiply by  and we get

This means that .  Multiplying the matrix by  we obtain

The formula , therefore, gives the formula for computing the fundamental matrix solution  for the system , in
the case where we have  linearly independent eigenvectors.

A B B

= B .eBAB−1
eAB−1

= BA BA = BAIA = B(BA )B−1 2
B−1 B−1 B−1 A2B−1

= B(BA )B−1 k
AkB−1 eBAB−1

eBAB−1

= I+BA + + +⋯B−1 1
2
(BA )B−1 2 1

6
(BA )B−1 3

= B +BA + B + B +⋯B−1 B−1 1
2

A2B−1 1
6

A3B−1

= B(I+A + + +⋯)
1
2

A2 1
6

A3 B−1

= B .eAB−1

(5.8.3)
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Notice that this computation still works when the eigenvalues and eigenvectors are complex, though then you will have to compute
with complex numbers. It is clear from the definition that if  is real, then  is real. So you will only need complex numbers in
the computation and you may need to apply Euler’s formula to simplify the result. If simplified properly the final matrix will not
have any complex numbers in it.

Compute the fundamental matrix solution using the matrix exponentials for the system

Then compute the particular solution for the initial conditions  and .

Let  be the coefficient matrix . We first compute (exercise) that the eigenvalues are 3 and -1 and corresponding

eigenvectors are  and . Hence the diagonalization of  is

We write

The initial conditions are  and . Hence, by the property that  we find that the particular solution we

are looking for is  where  is . Then the particular solution we are looking for is

Below is a video on using the matrix exponential to solve a differential equation.

A etA
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x

y

′ 1
2

2
1

x

y

x(0) = 4 y(0) = 2

A [ ]
1
2

2
1

[ ]
1
1

[ ]
1

−1
A

= .[ ]
1
2

2
1

  
A

[ ]
1
1

1
−1

  
E

[ ]
3
0

0
−1

  
D

[ ]
1
1

1
−1

−1

  
E−1

= EetA etDE−1 = [ ][ ]
1
1

1
−1

e3t

0
0

e−t
[ ]

1
1

1
−1

−1

= [ ][ ] [ ]
1
1

1
−1

e3t

0
0

e−t

−1
2

−1
−1

−1
1

= [ ][ ]
−1
2

e3t

e3t

e−t

−e−t

−1
−1

−1
1

= [ ] = [ ] .
−1
2

− −e3t e−t

− +e3t e−t

− +e3t e−t

− −e3t e−t

+e3t e−t

2
−e3t e−t

2

−e3t e−t

2
+e3t e−t

2

(5.8.6)

x(0) = 4 y(0) = 2 = Ie0A

etAb ⃗  b ⃗  [ ]
4
2

[ ] = [ ] [ ] = [ ] = [ ]
x

y

+e3t e−t

2
−e3t e−t

2

−e3t e−t

2
+e3t e−t

2

4
2

2 +2 + −e3t e−t e3t e−t

2 −2 + +e3t e−t e3t e−t

3 +e3t e−t

3 −e3t e−t

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98064?pdf
http://www.jirka.org/diffyqs/htmlver/diffyqsse11.html#x16-36005r2


5.8.5 https://math.libretexts.org/@go/page/98064

5.8.4: Fundamental Matrix Solutions
We note that if you can compute the fundamental matrix solution in a different way, you can use this to find the matrix exponential 

. The fundamental matrix solution of a system of ODEs is not unique. The exponential is the fundamental matrix solution with
the property that for  we get the identity matrix. So we must find the right fundamental matrix solution. Let  be any
fundamental matrix solution to . Then we claim

Clearly, if we plug  into  we get the identity. We can multiply a fundamental matrix solution on the right by any
constant invertible matrix and we still get a fundamental matrix solution. All we are doing is changing what the arbitrary constants
are in the general solution .

5.8.5: Approximations

If you think about it, the computation of any fundamental matrix solution  using the eigenvalue method is just as difficult as the
computation of . So perhaps we did not gain much by this new tool. However, the Taylor series expansion actually gives us a
very easy way to approximate solutions, which the eigenvalue method did not.

The simplest thing we can do is to just compute the series up to a certain number of terms. There are better ways to approximate the
exponential . In many cases however, few terms of the Taylor series give a reasonable approximation for the exponential and may

suffice for the application. For example, let us compute the first  terms of the series for the matrix .

Just like the scalar version of the Taylor series approximation, the approximation will be better for small  and worse for larger .
For larger , we will generally have to compute more terms. Let us see how we stack up against the real solution with . The
approximate solution is approximately (rounded to  decimal places)

And plugging  into the real solution (rounded to  decimal places) we get

Not bad at all! Although if we take the same approximation for  we get

Differential Equations | Homogeneous SDifferential Equations | Homogeneous S……
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while the real value is (again rounded to  decimal places)

So the approximation is not very good once we get up to . To get a good approximation at  (say up to  decimal places)
we would need to go up to the  power (exercise).

5.8.6: Footnotes

[1] C. Moler and C.F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM
Review 45 (1), 2003, 3–49

This page titled 5.8: Matrix exponentials is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

3.8: Matrix exponentials by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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5.9: Nonhomogeneous systems

5.9.1: First Order Constant Coefficient

5.9.1.1: Integrating factor

Let us first focus on the nonhomogeneous first order equation

where  is a constant matrix. The first method we will look at is the integrating factor method. For simplicity we rewrite the
equation as

where . We multiply both sides of the equation by  (being mindful that we are dealing with matrices that may not
commute) to obtain

We notice that . This fact follows by writing down the series definition of ,

We have already seen that . The product rule says,

and so

We can now integrate. That is, we integrate each component of the vector separately

Recall from Exercise 3.8.6 that . Therefore, we obtain

Perhaps it is better understood as a definite integral. In this case it will be easy to also solve for the initial conditions as well.
Suppose we have the equation with initial conditions

The solution can then be written as

Again, the integration means that each component of the vector  is integrated separately. It is not hard to see that 
really does satisfy the initial condition 

(t) = A (t) + (t),x⃗ ′ x⃗  f ⃗ 

A

(t) +P (t) = (t),x⃗ ′ x⃗  f ⃗ 

P = −A etP

(t) + P (t) = (t).etP x⃗  etP x⃗  etP f ⃗ 

P = PetP etP etP
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1
2

(tP )2 P 2 1
2
t2P 3
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1
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)2 etP
(5.9.1)

( ) = P = Pd
dx etP etP etP
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d

dt
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d
dt

etP x⃗  etP f ⃗ 

(t) = ∫ (t)dt+ .etP x⃗  etP f ⃗  c ⃗ 

=( )etP
−1

e−tP

(t) = ∫ (t)dt+ .x⃗  e−tP etP f ⃗  e−tP c ⃗ 

(t) +P (t) = (t), (0) = .x⃗ ′ x⃗  f ⃗  x⃗  b ⃗ 
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Suppose that we have the system

with initial conditions .

Let us write the system as

We have previously computed  for . We immediately have , simply by negating .

Instead of computing the whole formula at once. Let us do it in stages. First

Then

Phew!

Let us confirm that this really works.

Similarly (exercise) . The initial conditions are also satisfied as well (exercise).

For systems, the integrating factor method only works if  does not depend on , that is,  is constant. The problem is that in
general

because matrix multiplication is not commutative.

 Example 5.9.1
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5.9.1.2: Eigenvector Decomposition

For the next method, we note that eigenvectors of a matrix give the directions in which the matrix acts like a scalar. If we solve our
system along these directions these solutions would be simpler as we can treat the matrix as a scalar. We can put those solutions
together to get the general solution.

Take the equation

Assume that  has  linearly independent eigenvectors  Let us write

That is, we wish to write our solution as a linear combination of eigenvectors of . If we can solve for the scalar functions 
through  we have our solution . Let us decompose  in terms of the eigenvectors as well. We wish to write

That is, we wish to find  through  that satisfy . We note that since all the eigenvectors are independent, the matrix 
 is invertible. We see that  can be written as , where the components of are the functions 

 through . Then . Hence it is always possible to find  when there are n linearly independent eigenvectors.

We plug  into , and note that .

If we identify the coefficients of the vectors  through  we get the equations

Each one of these equations is independent of the others. They are all linear first order equations and can easily be solved by the
standard integrating factor method for single equations. That is, for example for the equation we write

We use the integrating factor  to find that

Now we integrate and solve for  to get

If we are looking for just any particular solution, we can set  to be zero. If we leave these constants in, we get the general solution.
Write , and we are done.

Again, as always, it is perhaps better to write these integrals as definite integrals. Suppose that we have an initial condition 
. We take  and note , just like before. Then if we write

(t) = A (t) + (t)x⃗ ′ x⃗  f ⃗  (5.9.6)

A n , … , .x⃗ 1 x⃗ n

(t) = (t) + t+⋯ + (t)x⃗  v1
→
ξ1 v2

→
ξ2 vn

→
ξn (5.9.7)

A

ξ1 ξn x⃗  f ⃗ 

(t) = (t) + t+⋯ + (t)f ⃗  v1
→
g1 v2

→
g2 vn

→
gn (5.9.8)

g1 gn (5.9.8)

E = [ ]v1
→

v2
→

⋯ vn
→ (5.9.8) = Ef ⃗  g ⃗  g ⃗ 

g1 gn =g ⃗  E−1f ⃗  g ⃗ 

(5.9.7) (5.9.6) A =v ⃗ k λkv ⃗ k

+ +⋯ +v ⃗ 1ξ′
1 v ⃗ 2ξ′

2 v ⃗ nξ′
n

  x ⃗ ′

= +A ( + +⋯ + )v ⃗ 1ξ1 v ⃗ 2ξ2 v ⃗ nξn
  Ax ⃗ 

+ +⋯ +v ⃗ 1g1 v ⃗ 2g2 v ⃗ ngn
  

f ⃗ 

= A +A +⋯ +A + + +⋯ +v1
→
ξ1 v2

→
ξ2 vn

→
ξn v1

→
g1 v2

→
g2 vn

→
gn

= + +⋯ + + + +⋯ +v1
→
λ1ξ1 v2

→
λ2ξ2 vn

→
λnξn v1

→
g1 v2

→
g2 vn

→
gn

= ( + ) + ( + ) +⋯ + ( + ) .v1
→

λ1ξ1 g1 v2
→

λ2ξ2 g2 vn
→

λnξn gn

(5.9.9)

v ⃗ 1 v ⃗ n

ξ′
1

ξ′
2

ξ′
n

= + ,λ1ξ1 g1

= + ,λ2ξ2 g2

⋮
= + .λnξn gn

(5.9.10)

kth

(t) − (t) = (t).ξ′
k λkξk gk

e− tλk

[ (t) ] = (t).
d

dx
ξk e− tλk e− tλk gk

ξk

(t) = ∫ (t)dt+ .ξk e tλk e− tλk gk Cke
tλk

Ck

(t) = (t) + (t) +⋯ + (t)x⃗  v ⃗ 1ξ1 v ⃗ 2ξ2 v ⃗ nξn

(0) =x⃗  b ⃗  =c ⃗  E−1b ⃗  = +⋯ +b ⃗  v1
→
a1 vn

→
an

(t) = (s)dt+ ,ξk e (t)λk ∫
t

0
e− sλk gk ake

tλk
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we will actually get the particular solution  satisfying , because .

Let us remark that the technique we just outlined is the eigenvalue method applied to nonhomogeneous systems. If a system is
homogeneous, that is, if , then the equations we get are , and so  are the solutions and that’s precisely
what we got in Section 3.4.

Let . Solve  where  for .

The eigenvalues of  are  and  and corresponding eigenvectors are  and  respectively. This calculation is left as

an exercise. We write down the matrix  of the eigenvectors and compute its inverse (using the inverse formula for 
matrices)

We are looking for a solution of the form . We also wish to write  in terms of the eigenvectors. That

is we wish to write . Thus

So  and .

We further want to write  in terms of the eigenvectors. That is, we wish to write .

Hence

So  and . We plug our  into the equation and get that

We get the two equations

We solve with integrating factor. Computation of the integral is left as an exercise to the student. Note that we will need
integration by parts.

 is the constant of integration. As , then  and hence . Similarly

(t) = + +⋯ +x⃗  v ⃗ 1ξ1 x⃗ 2ξ2 v ⃗ nξn (0) =x⃗  b ⃗  (0) =ξk ak

=f ⃗  0⃗  =ξ′
k

λkξk =ξk Cke tλk

 Example 5.9.2

A = [ ]
1
3

3
1

= A +x⃗ ′ x⃗  f ⃗  (t) = [ ]f ⃗  2et

2t
(0) = [ ]x⃗ 

3
16
−5
16

A −2 4 [ ]
1

−1
[ ]

1
1

E 2 ×2

E = [ ] , = [ ] .
1

−1
1
1

E−1 1
2

1
1

−1
1

= [ ] +[ ]x⃗  1
−1

ξ1
1
1

ξ2 f ⃗ 

= [ ] = [ ] +[ ]f ⃗  2et

2t
1

−1
g1

1
1

g2

[ ] = [ ] = [ ][ ] = [ ] .
g1

g2
E−1 2et

2t
1
2

1
1

−1
1

2et

2t
− tet

+ tet

= − tg1 et = + tg2 et

(0)x⃗  (0) = [ ] = [ ] +[ ]x⃗ 
3

16
−5
16

1
−1

a1
1
1

a2

[ ] = [ ] = [ ] .
a1

a2
E−1

3
16
−5
16

1
4

−1
16

=a1
1
4 =a2

−1
16 x⃗ 

[ ] +[ ]
1

−1
ξ′

1
1
1

ξ′
2

  x ⃗ ′

= +A[ ] +A[ ]
1

−1
ξ1

1
1

ξ2

  Ax ⃗ 

[ ] +[ ]
1

−1
g1

1
1

g2

  
f ⃗ 

= [ ] (−2 ) +[ ]4 +[ ] ( − t) +[ ] ( + t).
1

−1
ξ1

1
1

ξ2
1

−1
et

1
1

et

(5.9.11)

= −2 + − t,ξ′
1 ξ1 et

= 4 + + t,ξ′
2 ξ2 et

where  (0) = = ,ξ1 a1
1
4

where  (0) = = .ξ2 a2
−1
16

(5.9.12)

= ∫ ( − t)dt+ = − + + .ξ1 e−2t e2t et C1e
−2t et

3
t

2
1
4

C1e
−2t

C1 (0) =ξ1
1
4

= + +1
4

1
3

1
4

C1 =C1
−1
3
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As  we have that  and hence . The solution is

That is,  and .

Check that  and  solve the problem. Check both that they satisfy the differential equation and that they satisfy the initial
conditions.

5.9.1.3: Undetermined Coefficients

We also have the method of undetermined coefficients for systems. The only difference here is that we will have to take unknown
vectors rather than just numbers. Same caveats apply to undetermined coefficients for systems as for single equations. This method
does not always work. Furthermore if the right hand side is complicated, we will have to solve for lots of variables. Each element of
an unknown vector is an unknown number. So in system of  equations if we have say  unknown vectors (this would not be
uncommon), then we already have  unknown numbers that we need to solve for. The method can turn into a lot of tedious work.
As this method is essentially the same as it is for single equations, let us just do an example.

Let  Find a particular solution of  where 

Note that we can solve this system in an easier way (can you see how?), but for the purposes of the example, let us use the
eigenvalue method plus undetermined coefficients.

The eigenvalues of  are  and  and corresponding eigenvectors are  and  respectively. Hence our complementary

solution is

for some arbitrary constants  and .

We would want to guess a particular solution of

However, something of the form  appears in the complementary solution. Because we do not yet know if the vector  is a

multiple of , we do not know if a conflict arises. It is possible that there is no conflict, but to be safe we should also try 

. Here we find the crux of the difference for systems. We try both terms  and  in the solution, not just the term .
Therefore, we try

Thus we have  unknowns. We write  and  We plug  into the equation. First

let us compute .

= ∫ ( + t)dt+ = − − − + .ξ2 e4t e−4t et C2e
4t et

3
t

4
1

16
C2e

4t

(0) =ξ2
1

16 = − +−1
16

−1
3

1
16 C2 =C2

1
3

(t) = [ ]( + )+[ ]( − ) = .x⃗ 
1

−1
−et e−2t

3
1 −2t

4
1
1

−e4t et

3
4t+1

16
⎡

⎣

+−e4t e−2t

3
3−12t

16

++ +2e−2t e4t et

3
4t−5

16

⎤

⎦

= +x1
−e4t e−2t

3
3−12t

16
= +x2

+ +2e−2t e4t et

3
4t−5

16

 Exercise 5.9.1

x1 x2

3 4
12

 Example 5.9.3

A = [ ] .
−1
−2

0
1

= A +x⃗ ′ x⃗  f ⃗  = [ ] .f ⃗  et

t

A −1 1 [ ]
1
1

[ ]
0
1

= [ ] + [ ] ,x⃗ c α1
1
1

e−t α2
0
1

et

α1 α2

= + t+ .x⃗  a⃗ et b ⃗  c ⃗ 

a⃗ et a⃗ 

[ ]
0
1

tb ⃗ et a⃗ et tb ⃗ et tb ⃗ et

= + t + t+ .x⃗  a⃗ et b ⃗ et c ⃗  d ⃗ 

8 = [ ] , = [ ] , = [ ] ,a⃗  a1

a2
b ⃗  b1

b2
c ⃗  c1

c2
= [ ] .d ⃗  d1

d2
x⃗ 

x⃗ ′

= ( + ) + t + = [ ] +[ ] t +[ ] .x⃗ ′ a⃗  b ⃗ et b ⃗ et c ⃗  +a⃗ 1 b ⃗ 
1

+a⃗ 2 b ⃗ 
2

et
b1

b2
et

c1

c2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98065?pdf


5.9.6 https://math.libretexts.org/@go/page/98065

Now  must equal , which is

We identify the coefficients of  and any constant vectors in  and in  to find the equations:

We could write the  augmented matrix and start row reduction, but it is easier to just solve the equations in an ad hoc
manner. Immediately we see that  Plugging these back in, we get that  and . The
remaining equations that tell us something are

So  and . Finally,  can be arbitrary and still satisfy the equations. We are looking for just a single solution so
presumably the simplest one is when . Therefore,

That is, . We would add this to the complementary solution to get the general solution of the
problem. Notice also that both  and  were really needed.

Check that  and  solve the problem. Also try setting  and again check these solutions. What is the difference between
the two solutions we obtained (one with  and one with )?

As you can see, other than the handling of conflicts, undetermined coefficients works exactly the same as it did for single equations.
However, the computations can get out of hand pretty quickly for systems. The equation we had done was very simple.

5.9.2: First Order Variable Coefficient

5.9.2.1: Variation of Parameters

Just as for a single equation, there is the method of variation of parameters. In fact for constant coefficient systems, this is essentially
the same thing as the integrating factor method we discussed earlier. However, this method will work for any linear system, even if it
is not constant coefficient, provided we can somehow solve the associated homogeneous problem.

Suppose we have the equation

Further, suppose we have solved the associated homogeneous equation  and found the fundamental matrix solution 
. The general solution to the associated homogeneous equation is  for a constant vector . Just like for variation of

parameters for single equation we try the solution to the nonhomogeneous equation of the form

where  is a vector valued function instead of a constant. Now we substitute into  to obtain

x⃗ ′ A +x⃗  f ⃗ 

A +x⃗  f ⃗  = A +A t +A t+A +a⃗ et b ⃗ et c ⃗  d ⃗  f ⃗ 

= [ ] +[ ] t +[ ] t+[ ] +[ ] +[ ] t.
−a⃗ 1

−2 +a⃗ 1 a⃗ 2
et

−b ⃗ 
1

−2 +b ⃗ 
1 b ⃗ 

2

et
−c ⃗ 1

−2 +c ⃗ 1 c ⃗ 2

−d ⃗ 
1

−2 +d ⃗ 
1 d ⃗ 

2

1
0

et
0
1

= [ ] +[ ] t +[ ] t+[ ] .
− +1a1

−2 +a1 a2
et

−b1

−2 +b1 b2
et

−c1

−2 + +1c1 c2

−d1

−2 +d1 d2

(5.9.13)

, t , tet et x⃗ ′ A +x⃗  f ⃗ 

+a1 b1

+a2 b2

b1

b2

= − +1,a1

= −2 + ,a1 a2

= − ,b1

= −2 + ,b1 b2

0
0
c1

c2

= − ,c1

= −2 + +1,c1 c2

= − ,d1

= −2 + .d1 d2

(5.9.14)

8 ×9
= 0, = 0, = 0.b1 c1 d1 = −1c2 = −1d2

a1

+a2 b2

= − +1,a1

= −2 + .a1 a2
(5.9.15)

=a1
1
2 = −1b2 a2

= 0a2

= + t + t+ = [ ] +[ ] t +[ ] t+[ ] = [ ] .x⃗  a⃗ et b ⃗ et c ⃗  d ⃗ 
1
2

0
et

0
−1

et
0

−1
0

−1

1
2 e

t

−t − t−1et

= , = −t − t−1x1
1
2 e

t x2 et

a⃗ et tb ⃗ et

 Exercise 5.9.2

x1 x2 = 1a2

= 0a2 = 1a2

= A(t) + (t).x⃗ ′ x⃗  f ⃗  (5.9.16)

= A(t)x⃗ ′ x⃗ 
X(t) X(t)c ⃗  c ⃗ 

= X(t) (t),x⃗ p u⃗ 

(t)u⃗  (5.9.16)
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But  is a fundamental matrix solution to the homogeneous problem. So , and

Hence . If we compute , then . We integrate to obtain  and we have the particular
solution . Let us write this as a formula

Note that if  is constant and we let , then  and hence we get a solution , which
is precisely what we got using the integrating factor method.

Find a particular solution to

Here  is most definitely not constant. Perhaps by a lucky guess, we find that  solves 

. Once we know the complementary solution we can easily find a solution to . First we find

Next we know a particular solution to  is

Adding the complementary solution we have that the general solution to .

Check that  and  really solve .

In the variation of parameters, just like in the integrating factor method we can obtain the general solution by adding in constants of
integration. That is, we will add  for a vector of arbitrary constants. But that is precisely the complementary solution.

(t) = = + (t).x⃗ p
′ (t) (t) +X(t) (t)X ′ u⃗  u⃗ ′

  
(t)x ⃗ p

′

A(t)X(t) (t)u⃗ 
  

A(t) (t)x ⃗ p

f ⃗ 

X(t) (t) = A(t)X(t)X ′

+X(t) (t) = + (t).(t) (t)X ′ u⃗  u⃗ ′ (t) (t)X ′ u⃗  f ⃗ 

X(t) (t) = (t)u⃗ ′ f ⃗  [X(t)]−1 (t) = [X(t) (t)u⃗ ′ ]−1f ⃗  u⃗ 
= X(t) (t)x⃗ p u⃗ 

= X(t)∫ [X(t) (t)dt.x⃗ p ]−1f ⃗ 

A X(t) = etA [X(t) =]−1 e−tA = ∫ (t)dtx⃗ p etA e−tAf ⃗ 

 Example 5.9.4

= [ ] +[ ] ( +1).x⃗ ′
1
+1t2

t

1
−1
t

x⃗ 
t

1
t2 (5.9.17)

A = [ ]1
+1t2

t

1
−1
t

X = [ ]
t

1
−1
t

(t) = A(t)X(t)X ′ (5.9.17)

[X(t) = [ ] .]−1 1
+1t2

1
−t

t

1

(5.9.17)

x⃗ p = X(t)∫ [X(t) (t)dt]−1f ⃗ 

= [ ]∫ [ ][ ] ( +1)dt
1
t

−t

1
1
+1t2

1
−t

t

1
t

1
t2

= [ ]∫ [ ]dt
1
t

−t

1
2t

− +1t2

= [ ][ ]
1
t

−t

1

t2

− + t1
3 t

3

= [ ] .
1
3 t

4

+ t2
3
t3

(5.9.18)

(5.9.17)

= [ ][ ]+[ ] = [ ] .x⃗ 
1
t

−t

1
c1

c2

1
3 t

4

+ t2
3 t

3

− t+c1 c2
1
3 t

4

+( +1)t+ +c2 c1
2
3 t

3

 Exercise :5.9.3

=x1
1
3 t

4 = + tx2
2
3 t

3 (5.9.17)

X(t)c ⃗ 
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5.9.3: Second Order Constant Coefficients

5.9.3.1: Undetermined Coefficients

We have already seen a simple example of the method of undetermined coefficients for second order systems in Section 3.6. This
method is essentially the same as undetermined coefficients for first order systems. There are some simplifications that we can make,
as we did in Section 3.6. Let the equation be

where  is a constant matrix. If  is of the form , then as two derivatives of cosine is again cosine we can try a
solution of the form

and we do not need to introduce sines.

If the  is a sum of cosines, note that we still have the superposition principle. If , then we
would try  for the problem , and we would try  for the problem 

. Then we sum the solutions.

However, if there is duplication with the complementary solution, or the equation is of the form , then we
need to do the same thing as we do for first order systems.

You will never go wrong with putting in more terms than needed into your guess. You will find that the extra coefficients will turn
out to be zero. But it is useful to save some time and effort.

5.9.3.2: Eigenvector Decomposition

If we have the system

we can do eigenvector decomposition, just like for first order systems.

Let  be the eigenvalues and  be eigenvectors. Again form the matrix . We write

We decompose  in terms of the eigenvectors

And again .

Now we plug in and doing the same thing as before we obtain

We identify the coefficients of the eigenvectors to get the equations

Each one of these equations is independent of the others. We solve each equation using the methods of Chapter 2. We write 
, and we are done; we have a particular solution. If we have found the general solution for 

= A + (t),x⃗ ′′ x⃗  f ⃗ 

A (t)F ⃗  cos(ωt)F ⃗ 
0

= cos(ωt),x⃗ p c ⃗ 

F ⃗  (t) = cos( t) + cos( t)F ⃗  F ⃗ 
0 ω0 F ⃗ 

1 ω1

cos( t)a⃗  ω0 = A + cos( t)x⃗ ′′ x⃗  F ⃗ 
0 ω0 cos( t)b ⃗  ω1

= A + cos( t)x⃗ ′′ x⃗  F ⃗ 
0 ω1

= A +B + (t)x⃗ ′′ x⃗ ′ x⃗  F ⃗ 

= A + (t, )x⃗ ′′ x⃗  F ⃗ 

, … ,λ1 λn , … ,v ⃗ 1 v ⃗ n E = [ ⋯ ]v ⃗ 1 v ⃗ n

(t) = (t) + (t) +⋯ + (t).x⃗  v ⃗ 1ξ1 v ⃗ 2ξ2 v ⃗ nξn

F ⃗ 

(t) = (t) + (t) +⋯ + (t).f ⃗  v ⃗ 1g1 v ⃗ 2g2 v ⃗ ngn

=g ⃗  E−1F ⃗ 

+ +⋯v ⃗ 1ξ′′
1 v ⃗ 2ξ′′

2 v ⃗ nξ′′
n

  x ⃗ ′′

= +A( + +⋯ )v ⃗ 1ξ1 v ⃗ 2ξ2 v ⃗ nξn
  Ax ⃗ 

+ +⋯ +v ⃗ 1g1 v ⃗ 2g2 v ⃗ ngn
  f ⃗ 

= A +A +⋯A + + +⋯ +v ⃗ 1ξ1 v ⃗ 2ξ2 v ⃗ nξn v ⃗ 1g1 v ⃗ 2g2 v ⃗ ngn
= + +⋯ + + +⋯ +v ⃗ 1λ1ξ1 v ⃗ 2λ2ξ2 v ⃗ nλnξn v ⃗ 1g1 v ⃗ 2g2 v ⃗ ngn
= ( + ) + ( + ) +⋯ + ( + ).v ⃗ 1 λ1ξ1 g1 v ⃗ 2 λ2ξ2 g2 v ⃗ n λnξn gn

(5.9.19)

ξ′′
1

ξ′′
2

ξ′′
n

= + ,λ1ξ1 g1

= + ,λ2ξ2 g2

⋮
= + .λnξn gn

(5.9.20)

(t) = (t) +⋯ + (t)x⃗  v ⃗ 1ξ1 v ⃗ nξn ξ1
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through , then again  is the general solution (and not just a particular solution).

Let us do the example from Section 3.6 using this method. The equation is

The eigenvalues were  and , with eigenvectors  and . Therefore  and .

Therefore,

So after the whole song and dance of plugging in, the equations we get are

For each equation we use the method of undetermined coefficients. We try  for the first equation and  for
the second equation. We plug in to get

We solve each of these equations separately. We get  and . And hence  and 
. So our particular solution is

This solution matches what we got previously in Section 3.6.
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ξ2 (t) = (t) +⋯ + (t)x⃗  v ⃗ 1ξ1 v ⃗ nξn

 Example 5.9.5
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2

1
−1

[ ] = (t) = [ ][ ] = [ ] .
g1

g2
E−1F ⃗  1

3
1
2

1
−1

0
2 cos(3t)

cos(3t)2
3

cos(3t)−2
3

= − + cos(3t), = −4 − cos(3t).ξ′′
1 ξ1

2
3

ξ′′
2 ξ2

2
3

cos(3t)C1 cos(3t)C2

−9 cos(3t)C1

−9 cos(3t)C2

= − cos(3t) + cos(3t),C1
2
3

= −4 cos(3t) − cos(3t).C2
2
3

(5.9.21)

−9 = − +C1 C1
2
3 −9 = −4 −C2 C2

2
3 =C1

−1
12

=C2
2

12

= [ ]( cos(3t))+[ ]( cos(3t)) = [ ] cos(3t).x⃗  1
2

−1
12

1
−1

2
15

1
20
−3
10
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5.E: Systems of ODEs (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted for a one
semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic calculus sequence.

5.E.1: 3.1 Introduction to Systems of ODEs

Find the general solution of .

Find the general solution of .

Write  as a first order system of ODEs.

Write  as a first order system of ODEs.

Suppose two masses on carts on frictionless surface are at displacements  and  as in Example 3.1.3. Suppose that a rocket applies
force  in the positive direction on cart . Set up the system of equations.

Suppose the tanks are as in Example 3.1.2, starting both at volume , but now the rate of flow from tank 1 to tank 2 is , and rate of
flow from tank 2 to tank one is . Notice that the volumes are now not constant. Set up the system of equations.

Find the general solution to .

Answer

, , 

Solve .

Answer

, 

Write  as a first order system.

Answer

, , 

 Exercise 5.E. 3.1.1

= − + t, =x′
1 x2 x1 x′

2 x2

 Exercise 5.E. 3.1.2

= 3 − + , =x′
1 x1 x2 et x′

2 x1

 Exercise 5.E. 3.1.3

a +b +cy = f(x)y′′ y′

 Exercise 5.E. 3.1.4

+ − = sin(t), + −x = 0x′′ y2y′ x3 y′′ ( + )x′ y′
2

 Exercise 5.E. 3.1.5

x1 x2

F x1

 Example 5.E. 3.1.6

V r1
r2

 Exercise 5.E. 3.1.7

= 3 , = + , = +y′1 y1 y′2 y1 y2 y′3 y1 y3

=y1 C1e
3x = y(x) = +y2 C2e

x C1

2
e3x = y(x) = +y3 C3e

x C1

2
e3x

 Exercise 5.E. 3.1.8

= 2x, = x+y, x(0) = 1, y(0) = 3y′ x′

x = −5
3
e2t 2

3
e−t y = +5

3
e2t 4

3
e−t

 Exercise 5.E. 3.1.9

= x+ tx′′′

=x′
1 x2 =x′

2 x3 = + tx′
3 x1
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Write  as a first order system.

Answer

, , , 

Suppose two masses on carts on frictionless surface are at displacements  and  as in Example 3.1.3. Suppose initial displacement is 
, and initial velocity is  for some number . Use your intuition to solve the system, explain your

reasoning.

Answer

. Explanation of the intuition is left to reader.

Suppose the tanks are as in Example 3.1.2 except that clean water flows in at the rate  liters per second into tank 1, and brine flows out
of tank 2 and into the sewer also at the rate of  liters per second.

a. Draw the picture.
b. Set up the system of equations.
c. Intuitively, what happens as  goes to infinity, explain.

Answer
a. Left to reader
b. , .
c. As  goes to infinity, both  and  go to zero, explanation is left to reader.

5.E.2: 3.2: Matrices and linear systems

Solve  by using matrix inverse.

Compute determinant of .

Compute determinant of . Hint: Expand along the proper row or column to make the calculations simpler.

Compute inverse of .

 Exercise 5.E. 3.1.10

+ + = t + − =y′′1 y1 y2 y′′2 y1 y2 t2

+ + = ty′3 y1 y2 + − =y′4 y1 y2 t2 =y′1 y3 =y′2 y4

 Exercise 5.E. 3.1.11

x1 x2

(0) = (0) = 0x1 x2 (0) = (0) = ax′
1 x′

2 a

= = atx1 x2

 Exercise 5.E. 3.1.12

s

s

t

= ( − )x′
1

r

V
x2 x1 = −x′

2
r

V
x1

r−s
V

x2

t x1 x2

 Exercise 5.E. 3.2.1

[ ] = [ ]
1

3

2

4
x⃗ 

5

6

 Exercise 5.E. 3.2.2

⎡

⎣
⎢

9

−8

10

−2

3

−2

−6

6

−6

⎤

⎦
⎥

 Exercise 5.E. 3.2.3

⎡

⎣

⎢
⎢⎢

1

4

6

8

2

0

0

0

3

5

7

10

1

0

0

1

⎤

⎦

⎥
⎥⎥

 Exercise 5.E. 3.2.4

⎡

⎣
⎢

1

1

0

2

1

1

3

1

0

⎤

⎦
⎥
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For which  is  not invertible? Is there only one such ? Are there several? Infinitely many?

For which  is  not invertible? Find all such .

Solve .

Solve .

Solve .

Find 3 nonzero  matrices  and  such that  but .

Compute determinant of 

Answer

Find  such that  is not invertible.

Answer

 Exercise 5.E. 3.2.5

h
⎡

⎣
⎢
1

4

7

2

5

8

3

6

h

⎤

⎦
⎥ h

 Exercise 5.E. 3.2.6

h
⎡

⎣
⎢
h

0

1

1

h

1

1

0

h

⎤

⎦
⎥ h

 Exercise 5.E. 3.2.7

=
⎡

⎣
⎢

9

−8

10

−2

3

−2

−6

6

−6

⎤

⎦
⎥ x⃗ 

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥

 Exercise 5.E. 3.2.8

=
⎡

⎣
⎢

5

8

6

3

4

3

7

4

3

⎤

⎦
⎥ x⃗ 

⎡

⎣
⎢

2

0

0

⎤

⎦
⎥

 Exercise 5.E. 3.2.9

=

⎡

⎣

⎢⎢⎢

3

3

0

2

2

3

2

3

3

3

4

4

0

3

2

3

⎤

⎦

⎥⎥⎥
x⃗ 

⎡

⎣

⎢⎢⎢

2

0

4

1

⎤

⎦

⎥⎥⎥

 Exercise 5.E. 3.2.10

2×2 A,B, C AB=AC B≠C

 Exercise 5.E. 3.2.11

⎡

⎣
⎢
1

2

1

1

3

−1

1

−5

0

⎤

⎦
⎥

−15

 Exercise 5.E. 3.2.12

t [ ]
1

−1

t

2

−2
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Solve .

Answer

Suppose  are nonzero numbers. Let .

a. Compute .
b. Compute .

Answer

1. 

2. 

5.E.3: 3.3: Linear systems of ODEs

Write the system  and  in the form .

a. Verify that the system  has the two solutions  and .

b. Write down the general solution.
c. Write down the general solution in the form ,  (i.e. write down a formula for each element of the solution).

Verify that  and  are linearly independent. Hint: Just plug in .

Verify that  and  and  are linearly independent. Hint: You must be a bit more tricky than in the previous

exercise.

Verify that  and  are linearly independent.

 Exercise 5.E. 3.2.12

[ ] = [ ]
1

1

1

−1
x⃗ 

10

20

= [ ]x⃗ 
15

−5

 Exercise 5.E. 3.2.12

a, b, c M = [ ] ,N =
a

0

0

b

⎡

⎣
⎢
a

0

0

0

b

0

0

0

c

⎤

⎦
⎥

M−1

N−1

[ ]
1
a

0

0
1
b

⎡

⎣

⎢⎢

1
a

0

0

0
1
b

0

0

0
1
c

⎤

⎦

⎥⎥

 Exercise 5.E. 3.3.1

= 2 −3t +sin tx′
1 x1 x2 = −3 +cos tx′

2 et x1 x2 = P (t) + (t)x⃗ 
′

x⃗  f ⃗ 

 Exercise 5.E. 3.3.2

= [ ]x⃗ 
′ 1

3

3

1
x⃗  [ ]

1

1
e4t [ ]

1

−1
e−2t

=?x1 =?x2

 Exercise 5.E. 3.3.3

[ ]
1

1
et [ ]

1

−1
et t = 0

 Exercise 5.E. 3.3.4

⎡

⎣
⎢

1

1

0

⎤

⎦
⎥ et

⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥ et

⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥ e2t

 Exercise 5.E. 3.3.5

[ ]
t

t2
[ ]
t3

t4
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Take the system , .

a. Write it in the form  for matrices  and .
b. Compute  and use that to write the system in the form .

Are  and  linearly independent? Justify.

Answer

Yes.

Are ,  and linearly independent? Justify.

Answer

No. 

Write  and  in matrix notation.

Answer

a. Write  and  in matrix notation.
b. Solve and write the solution in matrix notation.Add exercises text here.

Answer

a. 

b. 

5.E.4: 3.4: Eigenvalue Method

Let  be a  matrix with an eigenvalue of  and a corresponding eigenvector . Find .

a. Find the general solution of  using the eigenvalue method (first write the system in the form  ).
b. Solve the system by solving each equation separately and verify you get the same general solution.

 Exercise 5.E. 3.3.6

+ =x′
1 x′

2 x1 − =x′
1 x′

2 x2

A =Bx⃗ 
′

x⃗  A B

A−1 = Px⃗ ′ x⃗ 

 Exercise 5.E. 3.3.7

[ ]
e2t

et
[ ]
et

e2t

 Exercise 5.E. 3.3.8

[ ]
cosh(t)

1
[ ]
et

1
[ ]
e−t

1

2 [ ] −[ ]−[ ]=cosh(t)1
et

1

e−t

1
0⃗ 

 Exercise 5.E. 3.3.9

= 3x−y+x′ et = txy′

= [ ][ ]+[ ][ ]
x

y

′
3

t

−1

0

x

y

et

0

 Exercise 5.E. 3.3.10

= 2tx′
1 x2 = 2tx′

2 x2

= [ ]x⃗ 
′ 0

0

2t

2t
x⃗ 

= [ ]x⃗ 
+C2e

t2 C1

C2e
t2

 Exercise : (easy)5.E. 3.4.1

A 3×3 3 =v ⃗ 
⎡

⎣
⎢

1

−1

3

⎤

⎦
⎥ Av ⃗ 

 Exercise 5.E. 3.4.2

= 2 , = 3x′
1 x1 x′

2 x2 =Ax⃗ ′ x⃗ 
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Find the general solution of  using the eigenvalue method.

Find the general solution of  using the eigenvalue method. Do not use complex exponentials in your
solution.

a. Compute eigenvalues and eigenvectors of .

b. Find the general solution of .

Compute eigenvalues and eigenvectors of 

Let  be numbers. Find the eigenvalues of 

a. Compute eigenvalues and eigenvectors of .

b. Solve the system .

Answer

a. Eigenvalues:  Eigenvectors: , , 

b. 

a. Compute eigenvalues and eigenvectors of 

b. Solve the system .

Answer

a. Eigenvalues: , , Eigenvectors: , 

b. 

 Exercise 5.E. 3.4.3

= 3 + , = 2 +4x′
1 x1 x2 x′

2 x1 x2

 Exercise 5.E. 3.4.4

= −2 , = 2x′
1 x1 x2 x′

2 x1x2

 Exercise 5.E. 3.4.5

A=
⎡

⎣
⎢

9

−8

10

−2

3

−2

−6

6

−6

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.4.6

.
⎡

⎣
⎢

−2

3

−3

−1

2

−1

−1

1

0

⎤

⎦
⎥

 Exercise 5.E. 3.4.7

a, b, c, d, e, f .
⎡

⎣
⎢

a

0

0

b

d

0

c

e

f

⎤

⎦
⎥

 Exercise 5.E. 3.4.8

A=
⎡

⎣
⎢

1

−1

2

0

0

0

3

1

2

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

4, 0, −1
⎡

⎣
⎢

1

0

1

⎤

⎦
⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥
⎡

⎣
⎢

3

5

−2

⎤

⎦
⎥

= + +x⃗  C1

⎡

⎣
⎢

1

0

1

⎤

⎦
⎥ e4t C2

⎡

⎣
⎢

0

1

0

⎤

⎦
⎥ C3

⎡

⎣
⎢

3

5

−2

⎤

⎦
⎥

 Exercise 5.E. 3.4.9

A= [ ] .
1

−1

1

0
=Ax⃗ ′ x⃗ 

1+ i3√

2

1− i3√

2
[ ]

−2

1− i3
–

√
[ ]

−2

1+ i3
–

√

= +x⃗  C1e
t/2
⎡

⎣
⎢

−2 cos( )
t3√

2

cos( )+ sin( )t3√

2
3
–

√
t3√

2

⎤

⎦
⎥ C2e

t/2
⎡

⎣
⎢

−2 sin( )
t3√

2

sin( )− cos( )t3√

2
3
–

√
t3√

2

⎤

⎦
⎥
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Solve  using the eigenvalue method.

Answer

Solve  using the eigenvalue method.

Answer

5.E.5: 3.5: Two dimensional systems and their vector fields

Take the equation , with  for the mass-spring system.

a. Convert this to a system of first order equations.
b. Classify for what , ,  do you get which behavior.
c. Can you explain from physical intuition why you do not get all the different kinds of behavior here?

Can you find what happens in the case when ? In this case the eigenvalue is repeated and there is only one eigenvector.

What picture does this look like?

Can you find what happens in the case when ? Does this look like any of the pictures we have drawn?

Which behaviors are possible if  is diagonal, that is ? You can assume that  and  are not zero.

Take the system from Example 3.1.2, , . As we said, one of the eigenvalues is zero. What is the
other eigenvalue, how does the picture look like and what happens when  goes to infinity.

Describe the behavior of the following systems without solving:

a. 
b. 
c. 
d. 
e. 

Answer

 Exercise 5.E. 3.4.10

= , =x′
1 x2 x′

2 x1

= [ ] + [ ]x⃗  C1
1

1
et C2

1

−1
e−t

 Exercise 5.E. 3.4.11

= , =−x′
1 x2 x′

2 x1

= [ ]+ [ ]x⃗  C1
cos(t)

−sin(t)
C2

sin(t)

cos(t)

 Exercise 5.E. 3.5.1

m +c +kx = 0x′′ x′ m > 0, c ≥ 0, k> 0

m c k

 Exercise 5.E. 3.5.2

P = [ ]
1

0

1

1

 Exercise 5.E. 3.5.3

P = [ ]
1

1

1

1

 Exercise 5.E. 3.5.4

P P = [ ]
a

0

0

b
a b

 Exercise 5.E. 3.5.5

= ( − )x′
1

r

V
x2 x1 = ( − )x′

2
r

V
x1 x2

t

 Exercise 5.E. 3.5.6

= x+y, = x−yx′ y′

= + , = 2x′
1 x1 x2 x′

2 x2

=−2 , = 2x′
1 x2 x′

2 x1

= x+3y, = −2x−4yx′ y′

= x−4y, = −4x+yx′ y′
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a. Two eigenvalues:  so the behavior is a saddle.
b. Two eigenvalues:  and , so the behavior is a source.
c. Two eigenvalues: , so the behavior is a center (ellipses).
d. Two eigenvalues:  and , so the behavior is a sink.
e. Two eigenvalues:  and , so the behavior is a saddle.

Suppose that  where  is a  matrix with eigenvalues . Describe the behavior.

Answer

Spiral source.

Take . Draw the vector field and describe the behavior. Is it one of the behaviours that we have seen before?

Answer

The solution does not move anywhere if . When  is positive, the solution moves (with constant speed) in the positive 
direction. When  is negative, the solution moves (with constant speed) in the negative  direction. It is not one of the behaviors we
saw. Note that the matrix has a double eigenvalue  and the general solution is  and , which agrees with the
description

5.E.6: 3.6: Second order systems and applications

Find a particular solution to

Let us take the example in Figure 3.6.3 with the same parameters as before:  and  except for , which is
unknown. Suppose that there is a force  acting on the first mass. Find an  such that there exists a particular solution where the
first mass does not move.

This idea is called dynamic damping. In practice there will be a small amount of damping and so any transient solution will
disappear and after long enough time, the first mass will always come to a stop.

Let us take the Example 3.6.2, but that at time of impact, cart 2 is moving to the left at the speed of .

a. Find the behavior of the system after linkup.
b. Will the second car hit the wall, or will it be moving away from the wall as time goes on?

± 2
–

√
1 2
±2i
−1 −2
5 −3

 Exercise 5.E. 3.5.7

=Ax⃗  x⃗  A 2×2 2± i

 Exercise 5.E. 3.5.8

= [ ][ ][ ]
x

y

′
0

0

1

0

x

y

y = 0 y x

y x

0 x = t+C1 C2 y =C1

 Exercise 5.E. 3.6.1

= [ ] +[ ] cos(2t).x⃗ 
′′ −3

2

1

−2
x⃗ 

0

2
(5.E.1)

 Exercise : challenging5.E. 3.6.2

= 2, = 4,m1 k1 = 2,k2 m2

cos(5t) m2

 Note

 Example 5.E. 3.6.3

3 m
s
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c. At what speed would the first car have to be traveling for the system to essentially stay in place after linkup?

Let us take the example in Figure 3.6.2 with parameters . Does there exist a set of initial conditions for
which the first cart moves but the second cart does not? If so, find those conditions. If not, argue why not.

Find the general solution to

Answer

Suppose there are three carts of equal mass  and connected by two springs of constant  (and no connections to walls). Set up the
system and find its general solution.

Answer

.

Solution: 

.

Suppose a cart of mass  is attached by a spring of constant  to a cart of mass , which is attached to the wall by a spring
also of constant . Suppose that the initial position of the first cart is  meter in the positive direction from the rest position, and the
second mass starts at the rest position. The masses are not moving and are let go. Find the position of the second mass as a function of
time.

Answer

5.E.7: 3.7: Multiple Eigenvalues

Let . Find the general solution of .

 Exercise 5.E. 3.6.4

= = 1, = = 1m1 m2 k1 k2

 Exercise 5.E. 3.6.5

= + .
⎡

⎣
⎢
1

0

0

0

2

0

0

0

3

⎤

⎦
⎥ x⃗ ′′

⎡

⎣
⎢
−3

2

0

0

−4

6

0

0

−3

⎤

⎦
⎥ x⃗ 

⎡

⎣
⎢

cos(2t)

0

0

⎤

⎦
⎥ (5.E.2)

= ( cos( t)+ sin( t))+ ( cos( t)+ sin( t))+ ( cos(t)+ sin(t))+ cos(2t)x⃗ 
⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥ a1 3

–
√ b1 3

–
√

⎡

⎣
⎢

0

1

−2

⎤

⎦
⎥ a2 2

–
√ b2 2

–
√

⎡

⎣
⎢

0

0

1

⎤

⎦
⎥ a3 b3

⎡

⎣
⎢

−1

1/2

2/3

⎤

⎦
⎥

 Exercise 5.E. 3.6.6

m k

=
⎡

⎣
⎢

m

0

0

0

m

0

0

0

m

⎤

⎦
⎥ x⃗ 

′′
⎡

⎣
⎢

−k

k

0

k

−2k

k

0

k

−k

⎤

⎦
⎥ x⃗ 

= ( cos( t)+ sin( t))+ ( cos( t)+ sin( t))+ ( t+ )x⃗ 
⎡

⎣
⎢

1

−2

1

⎤

⎦
⎥ a1 3k/m

− −−−−
√ b1 3k/m

− −−−−
√

⎡

⎣
⎢

1

0

−1

⎤

⎦
⎥ a2 k/m

− −−−
√ b2 k/m

− −−−
√

⎡

⎣
⎢
1

1

1

⎤

⎦
⎥ a3 b3

 Exercise 5.E. 3.6.7

2 kg k= 1 3 kg
k= 1 1

= ( ) cos( t)−( ) cos(t)x2
2
5

1
6

−−
√ 2

5

 Exercise 5.E. 3.7.1

A= [ ]
5

3

−3

−1
=Ax⃗ 

′
x⃗ 
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Let 

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of  in two different ways and verify you get the same answer.

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Suppose that A is a  matrix with a repeated eigenvalue . Suppose that there are two linearly independent eigenvectors. Show that
.

Let .

 Exercise 5.E. 3.7.2

A= .
⎡

⎣
⎢

5

0

−2

−4

3

4

4

0

−1

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.7.3

A=
⎡

⎣
⎢

2

0

0

1

2

0

0

0

2

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.7.4

A=
⎡

⎣
⎢

0

−1

−4

1

−2

4

2

−2

7

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.7.5

A=
⎡

⎣
⎢

0

−1

0

4

−4

0

−2

1

−2

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.7.6

⎡

⎣
⎢

2

−1

−1

1

0

−2

−1

2

4

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

 Exercise 5.E. 3.7.7

2×2 λ

A= λI

 Exercise 5.E. 3.7.8

A=
⎡

⎣
⎢
1

1

1

1

1

1

1

1

1

⎤

⎦
⎥
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a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Answer
a. 
b. No defects.

c. 

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Answer
a. 
b. Eigenvalue  has a defect of 

c. 

Let .

a. What are the eigenvalues?
b. What is/are the defect(s) of the eigenvalue(s)?
c. Find the general solution of .

Answer
a. 
b. Eigenvalue  has a defect of 

c. 

Let , where , , and  are unknowns. Suppose that 5 is a doubled eigenvalue of defect 1, and suppose that  is the

eigenvector. Find  and show that there is only one solution.

Answer

=Ax⃗ 
′

x⃗ 

3, 0, 0

= + +x⃗  C1

⎡

⎣
⎢

1

1

1

⎤

⎦
⎥ e3t C2

⎡

⎣
⎢

1

0

−1

⎤

⎦
⎥ C3

⎡

⎣
⎢

0

1

−1

⎤

⎦
⎥

 Exercise 5.E. 3.7.9

A=
⎡

⎣
⎢

1

1

−1

3

1

1

3

0

2

⎤

⎦
⎥

=Ax⃗ ′ x⃗ 

1, 1, 2
1 1

= + + t +x⃗  C1

⎡

⎣
⎢

0

1

−1

⎤

⎦
⎥ et C2

⎛

⎝
⎜
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

0

1

−1

⎤

⎦
⎥
⎞

⎠
⎟ et C3

⎡

⎣
⎢

3

3

−2

⎤

⎦
⎥ e2t

 Exercise 5.E. 3.7.10

A=
⎡

⎣
⎢

2

−1

0

0

−1

−1

0

9

5

⎤

⎦
⎥

=Ax⃗ 
′

x⃗ 

2, 2, 2
2 2

= + + t + + t +x⃗  C1

⎡

⎣
⎢

0

3

1

⎤

⎦
⎥ e2t C2

⎛

⎝
⎜
⎡

⎣
⎢

0

−1

0

⎤

⎦
⎥

⎡

⎣
⎢

0

3

1

⎤

⎦
⎥
⎞

⎠
⎟ e2t C3

⎛

⎝
⎜
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

0

−1

0

⎤

⎦
⎥ t2

2

⎡

⎣
⎢

0

3

1

⎤

⎦
⎥
⎞

⎠
⎟ e2t

 Exercise 5.E. 3.7.11

A= [ ]
a

b

a

c
a b c [ ]

1

0
A

A= [ ]
5

0

5

5
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5.E.8: 3.8: Matrix Exponentials

Using the matrix exponential, find a fundamental matrix solution for the system , .

Find  for the matrix .

Find a fundamental matrix solution for the system , . Then

find the solution that satisfies .

Compute the matrix exponential  for .

Suppose  . Show that under this assumption, .

Use Exercise  to show that . In particular this means that  is invertible even if A is not.

Suppose  is a matrix with eigenvalues , , and corresponding eigenvectors , .

a. Find matrix  with these properties.
b. Find the fundamental matrix solution to .

c. Solve the system in with initial conditions .

Suppose that  is an  matrix with a repeated eigenvalue  of multiplicity n. Suppose that there are n linearly independent
eigenvectors. Show that the matrix is diagonal, in particular . Hint: Use diagonalization and the fact that the identity matrix
commutes with every other matrix.

Let .

a. Find .

b. Solve , .

 Exercise 5.E. 3.8.1

= 3x+y, = x+3yx′ y′

 Exercise 5.E. 3.8.2

etA A= [ ]
2

0

3

2

 Exercise 5.E. 3.8.3

= 7 +4 +12 ,     = +2 + ,     = −3 −2 −5x′
1 x1 x2 x3 x′

2 x1 x2 x3 x′
3 x1 x2 x3

=x⃗ 
⎡

⎣
⎢

0

1

−2

⎤

⎦
⎥

 Exercise 5.E. 3.8.4

eA A= [ ]
1

0

2

2

 Exercise : (challenging)5.E. 3.8.5

AB=BA =eA+B eAeB

 Exercise 5.E. 3.8.6

5.E. 3.8.5 ( =eA)−1 e−A eA

 Exercise 5.E. 3.8.7

A −1 1 [ ]
1

1
[ ]
0

1

A

=Ax⃗ 
′

x⃗ 

(0) = [ ]x⃗ 
2

3

 Exercise 5.E. 3.8.8

A n×n λ

A= λI

 Exercise 5.E. 3.8.9

A= [ ]
−1

1

−1

−3

etA

=Ax⃗ ′ x⃗  (0) = [ ]x⃗ 
1

−2
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Let . Approximate  by expanding the power series up to the third order.

For any positive integer , find a formula (or a recipe) for  for the following matrices:

a. 

b. 

c. 

d. 

Compute  where .

Answer

Compute  where .

Answer

a. Compute  where .

b. Solve  for .

Answer

a. 

b. 

 Exercise 5.E. 3.8.10

A= [ ]
1

3

2

4
etA

 Exercise 5.E. 3.8.11

n An

[ ]
3

0

0

9

[ ]
5

4

2

7

[ ]
0

0

1

0

[ ]
2

0

1

2

 Exercise 5.E. 3.8.12

etA A= [ ]
1

−2

−2

1

=etA
⎡

⎣

+e3t e−t

2

−e−t e3t

2

−e−t e3t

2

+e3t e−t

2

⎤

⎦

 Exercise 5.E. 3.8.13

etA A=
⎡

⎣
⎢

1

−2

−1

−3

1

−3

2

2

4

⎤

⎦
⎥

=etA
⎡

⎣

⎢⎢⎢

2 −4 +3e3t e2t et

2 −2et e2t

2 −5 +3e3t e2t et

−3et

2
3e3t

2

et

−3et

2
3e3t

2

− +4 −3e3t e2t et

2 −2e2t et

− +5 −3e3t e2t et

⎤

⎦

⎥⎥⎥

 Exercise 5.E. 3.8.14

etA A= [ ]
3

1

−1

1

=Ax⃗ 
′

x⃗  (0) = [ ]x⃗ 
1

2

= [ ]etA
(t+1)e2t

te2t
−te2t

(1− t)e2t

= [ ]x⃗ 
(1− t)e2t

(2− t)e2t
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Compute the first 3 terms (up to the second degree) of the Taylor expansion of  where  (Write as a single matrix). Then

use it to approximate .

Answer

 

For any positive integer , find a formula (or a recipe) for  for the following matrices:

a. 

b. 

c. 

Answer

a. 

b. 

c.  if  is even, and  if  is odd.

5.E.9: 3.9: Nonhomogeneous Systems

Find a particular solution to ,

a. using integrating factor method,
b. using eigenvector decomposition,
c. using undetermined coefficients.

Find the general solution to ,

a. using integrating factor method,
b. using eigenvector decomposition,
c. using undetermined coefficients.

Find the general solution to ,

a. using eigenvector decomposition,
b. using undetermined coefficients.

Find the general solution to ,

a. using eigenvector decomposition,
b. using undetermined coefficients.

 Exercise 5.E. 3.8.15

etA A= [ ]
2

2

3

2
e0.1A

[ ]
1+2t+5t2

2t+4t2
3t+6t2

1+2t+5t2
≈ [ ]e0.1A

1.25

0.24

0.36

1.25

 Exercise 5.E. 3.8.16

n An

[ ]
7

−5

4

−2

[ ]
−3

−6

4

−7

[ ]
0

1

1

0

[ ]
5( )−3n 2n+2

5( )−5( )2n 3n
4( )−3n 2n+2

5( )−4( )2n 3n

[ ]
3−2( )3n

3−3n+1

2( )−23n

−23n+1

[ ]
1

0

0

1
n [ ]

0

1

1

0
n

 Exercise 5.E. 3.9.1

= x+2y+2t, = 3x+2y−4x′ y′

 Exercise 5.E. 3.9.2

= 4x+y−1, = x+4y−x′ y′ et

 Exercise 5.E. 3.9.3

=−6 +3 +cos(t), = 2 −7 +3 cos(t)x′′
1 x1 x2 x′′

2 x1 x2

 Exercise 5.E. 3.9.4

=−6 +3 +cos(2t), = 2 −7 +cos(2t)x′′
1 x1 x2 x′′

2 x1 x2
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Take the equation

a. Check that

is the complementary solution.
b. Use variation of parameters to find a particular solution.

Find a particular solution to ,

a. using integrating factor method,
b. using eigenvector decomposition,
c. using undetermined coefficients.

Answer

The general solution is (particular solutions should agree with one of these): , 

Find a particular solution to ,

a. using integrating factor method,
b. using eigenvector decomposition,
c. using undetermined coefficients.

Answer

The general solution is (particular solutions should agree with one of these): , 

Solve  with initial conditions , using eigenvector decomposition.

Answer

Solve  with initial conditions , using
eigenvector decomposition.

Answer

 Exercise 5.E. 3.9.5

= [ ] +[ ] .x⃗ ′
1
t

1

−1
1
t

x⃗ 
t2

−t
(5.E.3)

= [ ]+ [ ]x⃗ c c1
t sin t

−t cos t
c2

t cos t

t sin t
(5.E.4)

 Exercise 5.E. 3.9.6

= 5x+4y+ t, = x+8y− tx′ y′

x(t) = +4 − −C1e
9t C2e

4t t

3
5
54

y(t) = − + +C1e
9t C2e

4t t

6
7

216

 Exercise 5.E. 3.9.7

= y+ , = x+x′ et y′ et

x(t) = + + tC1e
t C2e

−t et

y(t) = − + tC1e
t C2e

−t et

 Exercise 5.E. 3.9.8

= + t, = + tx′
1 x2 x′

2 x1 (0) = 1, (0) = 2x1 x2

= [ ]( − t−1)+[ ]x⃗ 
1

1
5
2
et

1

−1
−1
2
e−t

 Exercise 5.E. 3.9.9

=−3 + + t, = 9 +5 +cos(t)x′′
1 x1 x2 x′′

2 x1 x2 (0) = 0, (0) = 0, (0) = 0, (0) = 0x1 x2 x′
1 x′

2

= [ ](( + ) +( + ) − − )+[ ]( sin(2t)+ cos(2t)+ − )x⃗ 
1

9
1

140
1

120 6√
e t6√ 1

140
1

120 6√
e− t6√ t

60

cos(t)

70

1

−1
−9
80

1
30

9t
40

cos(t)

30
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6.1: Boundary value problems
Before we tackle the Fourier series, we need to study the so-called boundary value problems (or endpoint problems). For
example, suppose we have

for some constant , where  is defined for  in the interval . Unlike before, when we specified the value of the solution
and its derivative at a single point, we now specify the value of the solution at two different points. Note that  is a solution to
this equation, so existence of solutions is not an issue here. Uniqueness of solutions is another issue. The general solution to 

 has two arbitrary constants present.  It is, therefore, natural (but wrong) to believe that requiring two conditions
guarantees a unique solution.

Take . That is,

Then  is another solution (besides ) satisfying both boundary conditions. There are more. Write down the
general solution of the differential equation, which is . The condition  forces . Letting 

 does not give us any more information as  already satisfies both boundary conditions. Hence, there are
infinitely many solutions of the form , where  is an arbitrary constant.

On the other hand, change to .

Then the general solution is . Letting  still forces . We apply the second
condition to find . As  we obtain . Therefore  is the unique solution to this
problem.

What is going on? We will be interested in finding which constants  allow a nonzero solution, and we will be interested in
finding those solutions. This problem is an analogue of finding eigenvalues and eigenvectors of matrices.

6.1.1: Eigenvalue Problems
For basic Fourier series theory we will need the following three eigenvalue problems. We will consider more general equations, but
we will postpone this until Chapter 5.

and

A number  is called an eigenvalue of  (resp.  or ) if and only if there exists a nonzero (not identically zero)
solution to  (resp.  or ) given that specific . The nonzero solution we found is called the corresponding
eigenfunction.

Note the similarity to eigenvalues and eigenvectors of matrices. The similarity is not just coincidental. If we think of the equations
as differential operators, then we are doing the same exact thing. Think of a function  as a vector with infinitely many
components (one for each ). Let  be the linear operator. Then the eigenvalue/eigenfunction pair should be  and nonzero

 such that . In other words, we are looking for nonzero functions  satisfying certain endpoint conditions that solve 
. A lot of the formalism from linear algebra still applies here, though we will not pursue this line of reasoning too far.

+λx = 0, x(a) = 0, x(b) = 0,x′′

λ x(t) t [a, b]
x = 0

+λx = 0x′′ 1

 Example 6.1.1

λ = 1, a = 0, b = π

+x = 0, x(0) = 0, x(π) = 0.x′′

x = sin t x = 0
x = A cos t+B sin t x(0) = 0 A = 0

x(π) = 0 x = B sin t
x = B sin t B

 Example 6.1.2

λ = 2

+2x = 0, x(0) = 0, x(π) = 0.x′′

x = A cos( t) +B sin( t)2
–

√ 2
–

√ x(0) = 0 A = 0
0 = x(π) = B sin( t)2

–
√ sin( t) ≠ 02

–
√ B = 0 x = 0

λ

+λx = 0,x′′

+λx = 0,x′′
x(a) = 0,

(a) = 0,x′
x(b) = 0,

(b) = 0,x′
(6.1.1)

(6.1.2)

+λx = 0,    x(a) = x(b),     (a) = (b),x′′ x′ x′ (6.1.3)

λ (6.1.1) (6.1.2) (6.1.3)
(6.1.1) (6.1.2) (6.1.3) λ

x(t)

t L = − d2

dt2
λ

x Lx = λx x

(L−λ)x = 0
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Let us find the eigenvalues and eigenfunctions of

For reasons that will be clear from the computations, we will have to handle the cases  separately. First
suppose that , then the general solution to  is

The condition  implies immediately . Next

If  is zero, then  is not a nonzero solution. So to get a nonzero solution we must have that . Hence, 
must be an integer multiple of . In other words,  for a positive integer . Hence the positive eigenvalues are  for all
integers . The corresponding eigenfunctions can be taken as . Just like for eigenvectors, we get all the
multiples of an eigenfunction, so we only need to pick one.

Now suppose that . In this case the equation is  and the general solution is . The condition 
implies that , and  implies that . This means that  is not an eigenvalue.

Finally, suppose that . In this case we have the general solution

Letting  implies that  (recall  and ). So our solution must be  and
satisfy . This is only possible if  is zero. Why? Because  is only zero when . You should plot  to see
this fact. We can also see this from the definition of sinh. We get . Hence , which implies 
and that is only true if . So there are no negative eigenvalues.

In summary, the eigenvalues and corresponding eigenfunctions are

Let us compute the eigenvalues and eigenfunctions of

Again we will have to handle the cases  separately. First suppose that . The general solution to 
 is . So

The condition  implies immediately . Next

Again  cannot be zero if  is to be an eigenvalue, and  is only zero if  for a positive integer . Hence the
positive eigenvalues are again  for all integers . And the corresponding eigenfunctions can be taken as .

Now suppose that . In this case the equation is  and the general solution is  so . The condition
 implies that . Now  also simply implies . This means that  could be anything (let us take it

to be 1). So  is an eigenvalue and  is a corresponding eigenfunction.

Finally, let . In this case we have the general solution  and hence

 Example 6.1.3

+λx = 0, x(0) = 0, x(π) = 0.x′′

λ > 0,λ = 0,λ < 0
λ > 0 +λx = 0x′′

x = A cos( t) +B sin( t).λ
−−

√ λ
−−

√

x(0) = 0 A

0 = x(π) = B sin( π).λ
−−

√

B x sin( π) = 0λ
−−

√ πλ
−−

√
π = kλ

−−
√ k k2

k ≥ 1 x = sin(kt)

λ = 0 = 0x′′ x = At+B x(0) = 0
B = 0 x(π) = 0 A = 0 λ = 0

λ < 0 2

x = A cosh( t) +B sinh( t).−λ
−−−

√ −λ
−−−

√

x(0) = 0 A = 0 cosh0 = 1 sinh0 = 0 x = B sinh( t)−λ
−−−

√
x(π) = 0 B sinhξ ξ = 0 sinh

0 = sinh t = −et e−t

2
=et e−t t = −t

t = 0

= with an eigenfucntion = sin(kt) for all integers k ≥ 1.λk k2 xk

 Example 6.1.4

+λx = 0,     (0) = 0,     (π) = 0.x′′ x′ x′

λ > 0,λ = 0,λ < 0 λ > 0
+λx = 0x′′ x = A cos( t) +B sin( t)λ

−−
√ λ

−−
√

= −A sin( t) +B cos( t).x′ λ
−−

√ λ
−−

√ λ
−−

√ λ
−−

√

(0) = 0x′ B = 0

0 = (π) = −A sin( π).x′ λ
−−

√ λ
−−

√

A λ sin( π)λ
−−

√ = kλ
−−

√ k

k2 k ≥ 1 x = cos(kt)

λ = 0 = 0x′′ x = At+B = Ax′

(0) = 0x′ A = 0 (π) = 0x′ A = 0 B

λ = 0 x = 1

λ < 0 x = A cosh( t) +B sinh( t)−λ
−−−

√ −λ
−−−

√

= A sinh( t) +B cosh( t).x′ −λ
−−−

√ −λ
−−−

√ −λ
−−−

√ −λ
−−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98068?pdf


6.1.3 https://math.libretexts.org/@go/page/98068

We have already seen (with roles of  and  switched) that for this to be zero at  and  it implies that .
Hence there are no negative eigenvalues.

In summary, the eigenvalues and corresponding eigenfunctions are

and there is another eigenvalue

The following problem is the one that leads to the general Fourier series.

Let us compute the eigenvalues and eigenfunctions of

Notice that we have not specified the values or the derivatives at the endpoints, but rather that they are the same at the
beginning and at the end of the interval.

Let us skip . The computations are the same as before, and again we find that there are no negative eigenvalues.

For , the general solution is . The condition  implies that  
implies . The second condition  says nothing about  and hence  is an eigenvalue with a
corresponding eigenfunction .

For  we get that . Now

We remember that  and . Therefore,

Hence either  or . Similarly (exercise) if we differentiate  and plug in the second condition we find that 
 or . Therefore, unless we want  and  to both be zero (which we do not) we must have 

. Hence,  is an integer and the eigenvalues are yet again  for an integer . In this case, however, 
 is an eigenfunction for any  and any . So we have two linearly independent eigenfunctions 

 and . Remember that for a matrix we could also have had two eigenvectors corresponding to a single
eigenvalue if the eigenvalue was repeated.

In summary, the eigenvalues and corresponding eigenfunctions are

6.1.2: Orthogonality of Eigenfunctions
Something that will be very useful in the next section is the orthogonality property of the eigenfunctions. This is an analogue of the
following fact about eigenvectors of a matrix. A matrix is called symmetric if . Eigenvectors for two distinct eigenvalues of
a symmetric matrix are orthogonal. That symmetry is required. We will not prove this fact here. The differential operators we are
dealing with act much like a symmetric matrix. We, therefore, get the following theorem.

Suppose that  and  are two eigenfunctions of the problem ,  or  for two different eigenvalues 
 and . Then they are orthogonal in the sense that

A B t = 0 t = π A = B = 0

= with an eigenfunction = cos(kt) for all integers k ≥ 1,λk k2 xk

= 0 with an eigenfunction = 1.λ0 x0

 Example 6.1.5

+λx = 0,     x(−π) = x(π),      (−π) = (π).x′′ x′ x′

λ < 0

λ = 0 x = At+B x(−π) = x(π) A = 0 (Aπ+B = −Aπ+B

A = 0) (−π) = (π)x′ x′ B λ = 0
x = 1

λ > 0 x = A cos( t) +B sin( t)λ
−−

√ λ
−−

√

= .A cos(− π) +B sin(− π)λ
−−

√ λ
−−

√
  

x(−π)

A cos( π) +B sin( π)λ
−−

√ λ
−−

√
  

x(π)

cos(−θ) = cos(θ) sin(−θ) = −sin(θ)

A cos( π) −B sin( π) = A cos( π) +B sin( π).λ
−−

√ λ
−−

√ λ
−−

√ λ
−−

√

B = 0 sin( π) = 0λ
−−

√ x

A = 0 sin( π) = 0λ
−−

√ A B

sin( π) = 0λ
−−

√ λ
−−

√ λ = k2 k ≥ 1
x = A cos(kt) +B sin(kt) A B

sin(kt) cos(kt)

=λk k2

= 0λ0

with eigenfunctions

with an eigenfunction

cos(kt) and sin(kt)

= 1.x0

for all integers k ≥ 1,
(6.1.4)

A = AT

 Theorem : Orthogonal6.1.1

(t)x1 (t)x2 (6.1.1) (6.1.2) (6.1.3)
λ1 λ2
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Note that the terminology comes from the fact that the integral is a type of inner product. We will expand on this in the next
section. The theorem has a very short, elegant, and illuminating proof so let us give it here. First note that we have the following
two equations.

Multiply the first by  and the second by  and subtract to get

Now integrate both sides of the equation.

The last equality holds because of the boundary conditions. For example, if we consider  we have 
 and so  is zero at both  and . As , the theorem follows.

Finish the theorem (check the last equality in the proof) for the cases  and .

We have seen previously that  was an eigenfunction for the problem . Hence we have
the integral

Similarly,

And finally we also get

and

6.1.3: Fredholm Alternative
We now touch on a very useful theorem in the theory of differential equations. The theorem holds in a more general setting than we
are going to state it, but for our purposes the following statement is sufficient. We will give a slightly more general version in
Chapter 5.

(t) (t)dt = 0.∫
b

a

x1 x2

+ = 0    and     + = 0.x′′
1 λ1x1 x′′

2 λ2x2

x2 x1

( − ) = − .λ1 λ2 x1x2 x′′
2x1 x2x

′′
1

( − ) dtλ1 λ2 ∫
b

a

x1x2 = − dt∫
b

a

x′′
2x1 x2x′′

1

= ( − )dt∫
b

a

d

dt
x′

2x1 x2x′
1

= [ − = 0.x′
2
x1 x2x′

1
]bt=a

(6.1.5)

(6.1.1)
(a) = (b) = (a) = (b) = 0x1 x1 x2 x2 −x′

2x1 x2x′
1 a b ≠λ1 λ2

 Exercise : (easy)6.1.1

(6.1.2) (6.1.3)

sin(nt) +λx = 0, x(0) = 0, x(π) = 0x′′

sin(mt) sin(nt)dt = 0, when m ≠ n.∫
π

0

cos(mt) cos(nt)dt = 0, when m ≠ n, and cos(nt)dt = 0.∫
π

0
∫

π

0

sin(mt) sin(nt)dt = 0, when m ≠ n, and sin(nt)dt = 0,∫
π

−π

∫
π

−π

cos(mt) cos(nt)dt = 0, when m ≠ n, and cos(nt)dt = 0,∫
π

−π

∫
π

−π

cos(mt) sin(nt)dt = 0 (even if m = n).∫
π

−π
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Fredholm alternative

Exactly one of the following statements holds. Either

has a nonzero solution, or

has a unique solution for every function  continuous on .

The theorem is also true for the other types of boundary conditions we considered. The theorem means that if  is not an
eigenvalue, the nonhomogeneous equation  has a unique solution for every right hand side. On the other hand if  is an
eigenvalue, then  need not have a solution for every , and furthermore, even if it happens to have a solution, the solution is
not unique.

We also want to reinforce the idea here that linear differential operators have much in common with matrices. So it is no surprise
that there is a finite dimensional version of Fredholm alternative for matrices as well. Let  be an  matrix. The Fredholm
alternative then states that either  has a nontrivial solution, or  has a solution for every .

A lot of intuition from linear algebra can be applied to linear differential operators, but one must be careful of course. For example,
one difference we have already seen is that in general a differential operator will have infinitely many eigenvalues, while a matrix
has only finitely many.

6.1.3.1: Application

Let us consider a physical application of an endpoint problem. Suppose we have a tightly stretched quickly spinning elastic string
or rope of uniform linear density . Let us put this problem into the plane. The  axis represents the position on the string. The
string rotates at angular velocity , so we will assume that the whole plane rotates at angular velocity . We will assume that
the string stays in this plane and  will measure its deflection from the equilibrium position, , on the  axis. Hence, we
will find a graph giving the shape of the string. We will idealize the string to have no volume to just be a mathematical curve. If we
take a small segment and we look at the tension at the endpoints, we see that this force is tangential and we will assume that the
magnitude is the same at both end points. Hence the magnitude is constant everywhere and we will call its magnitude . If we
assume that the deflection is small, then we can use Newton’s second law to get an equation

Let  be the length of the string and the string is fixed at the beginning and end points. Hence,  and . See Figure 
.

Figure : Whirling string.

We rewrite the equation as . The setup is similar to Example , except for the interval length being  instead of 

. We are looking for eigenvalues of  where . As before there are no nonpositive
eigenvalues. With , the general solution to the equation is . The condition  implies
that  as before. The condition  implies that  and hence  for some integer , so

What does this say about the shape of the string? It says that for all parameters , ,  not satisfying the equation above, the string

is in the equilibrium position, . When , then the string will some distance . We cannot compute  with the

 Theorem 6.1.2

3

+λx = 0,     x(a) = 0,     x(b) = 0x′′

+λx = f(t),     x(a) = 0,     x(b) = 0x′′ (6.1.6)

f [a, b]

λ

(6.1.6) λ

(6.1.6) f

A n×n

(A−λI) =x⃗  0⃗  (A−λI) =x⃗  b ⃗  b ⃗ 

ρ xy− x

ω xy− ω

xy− y y = 0 x

T

T +ρ y = 0.y′′ ω2

L y(0) = 0 y(L) = 0
6.1.1

6.1.1

+ y = 0y′′ ρω2

T
6.1.3 L

π +λy = 0, y(0) = 0, y(L) = 0y′′ λ =
ρω2

T

λ > 0 y = A cos( x) +B sin( x)λ
−−

√ λ
−−

√ y(0) = 0
A = 0 y(L) = 0 sin( L) = 0λ

−−
√ L = kπλ

−−
√ k > 0

= λ = .
ρω2

T

k2π2

L2

ρ ω T

y = 0 =
ρω2

T

k2π2

L2 B B

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98068?pdf


6.1.6 https://math.libretexts.org/@go/page/98068

information we have.

Let us assume that  and  are fixed and we are changing . For most values of  the string is in the equilibrium state. When the

angular velocity  hits a value , then the string pops out and has the shape of a sin wave crossing the -axis  times

between the end points. For example, at , the string does not cross the -axis and the shape looks like in Figure . On the
other hand, when  the string crosses the -axis 2 times, see Figure . When  changes again, the string returns to the
equilibrium position. The higher the angular velocity, the more times it crosses the -axis when it is popped out.

Figure : Whirling string at the third eigenvalue .

For another example, if you have a spinning jump rope (then  as it is completely ) and you pull on the ends to increase the
tension, then the velocity also increases for the rope to stay "popped out".

6.1.4: Footnotes

[1] See Example 2.2.1 and Example 2.2.3.

[2] Recall that  and . As an exercise try the computation with the general solution
written as  (for different  and  of course).

[3] Named after the Swedish mathematician Erik Ivar Fredholm (1866–1927).

This page titled 6.1: Boundary value problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.
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kπ T√
L ρ√
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x

6.1.2 (k = 3)

k = 1

coshs = ( + )1
2
es e−s sinhs = ( − )1

2
es e−s

x = A +Be t−λ√ e− t−λ√ A B
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6.2: The Trigonometric Series

6.2.1: Periodic Functions and Motivation

As motivation for studying Fourier series, suppose we have the problem

for some periodic function . We have already solved

One way to solve  is to decompose  as a sum of cosines (and sines) and then solve many problems of the form .
We then use the principle of superposition, to sum up all the solutions we got to get a solution to .

Before we proceed, let us talk a little bit more in detail about periodic functions. A function is said to be periodic with period  if 
 for all . For brevity we will say  is periodic. Note that a periodic function is also periodic, periodic and

so on. For example,  and  are periodic. So are  and  for all integers . The constant functions are an
extreme example. They are periodic for any period (exercise).

Normally we will start with a function  defined on some interval  and we will want to extend  periodically to make
it a periodic function. We do this extension by defining a new function  such that for  in , . For  in 

, we define , for  in , , and so on. We assumed that . We
could have also started with  defined only on the half-open interval  and then define .

Define  on . Now extend  periodically to a -periodic function. See Figure  on the facing page.

Figure : Periodic extension of the function .

You should be careful to distinguish between  and its extension. A common mistake is to assume that a formula for  holds
for its extension. It can be confusing when the formula for  is periodic, but with perhaps a different period.

Define  on . Take the periodic extension and sketch its graph. How does it compare to the graph of 

?

6.2.2: Inner Product and Eigenvector Decomposition

Suppose we have a symmetric matrix, that is . We have said before that the eigenvectors of  are then orthogonal. Here
the word orthogonal means that if  and  are two distinct (and not multiples of each other) eigenvectors of , then . In
this case the inner product  is the dot product, which can be computed as .

To decompose a vector  in terms of mutually orthogonal vectors  and  we write

Let us find the formula for  and . First let us compute

+ x = f(t),x′′ ω2
0 (6.2.1)

f(t)

+ x = cos(ωt).x′′ ω2
0 F0 (6.2.2)

(6.2.1) f(t) (6.2.2)

(6.2.1)

P

f(t) t f(t) P− P− 2P− 3P−

cos(t) sin(t) 2π− cos(kt) sin(kt) k

f(t) [−L,L] f(t)

2L− F (t) t [−L,L] F (t) = f(t) t

[L, 3L] F (t) = f(t−2L) t [−3L, −L] F (t) = f(t+2L) f(−L) = f(L)

f (−L,L] f(−L) = f(L)

 Example 6.2.1

f(t) = 1 − t2 [−1, 1] f(t) 2 6.2.1

6.2.1 1 − t2

f(t) f(t)

f(t)

 Exercise 6.2.1

f(t) = cos t [ , ]
−π

2

π

2
π−

cos t

= AAT A

v ⃗  w⃗  A ⟨ , ⟩ = 0v ⃗  w⃗ 

⟨ , ⟩v ⃗  w⃗  v ⃗ T w⃗ 

v ⃗  w⃗ 1 w⃗ 2

= + .v ⃗  a1w⃗ 1 a2w⃗ 2

a1 a2
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Therefore,

Similarly

You probably remember this formula from vector calculus.

Write  as a linear combination of  and .

First note that  and  are orthogonal as . Then

Hence

6.2.3: Trigonometric Series

Instead of decomposing a vector in terms of eigenvectors of a matrix, we will decompose a function in terms of eigenfunctions of a
certain eigenvalue problem. The eigenvalue problem we will use for the Fourier series is

We have previously computed that the eigenfunctions are . That is, we will want to find a representation of a 
periodic function  as

This series is called the Fourier series  or the trigonometric series for . We write the coefficient of the eigenfunction  as 

for convenience. We could also think of , so that we only need to look at  and .

As for matrices we want to find a projection of  onto the subspace generated by the eigenfunctions. So we will want to define
an inner product of functions. For example, to find  we want to compute . We define the inner product as

With this definition of the inner product, we have seen in the previous section that the eigenfunctions (including the
constant eigenfunction), and  are orthogonal in the sense that

⟨ , ⟩ = ⟨ + , ⟩ = ⟨ , ⟩+ = ⟨ , ⟩.v ⃗ w1
→

a1w⃗ 1 a2w⃗ 2 w1
→

a1 w⃗ 1 w1
→

a2⟨ , ⟩w⃗ 2 w1
→

  
=0

a1 w⃗ 1 w1
→

= .a1

⟨ , ⟩v ⃗  w⃗ 1

⟨ , ⟩w⃗ 1 w⃗ 1

= .a2

⟨ , ⟩v ⃗  w⃗ 2

⟨ , ⟩w⃗ 2 w⃗ 2

 Example 6.2.2

= [ ]v ⃗ 
2

3
= [ ]w⃗ 1

1

−1
= [ ]w⃗ 2

1

1

w⃗ 1 w⃗ 2 ⟨ , ⟩ = 1(1) +(−1)1 = 0w⃗ 1 w⃗ 2

a1

a2

= = = ,
⟨ , ⟩v ⃗  w⃗ 1

⟨ , ⟩w⃗ 1 w⃗ 1

2(1) +3(−1)

1(1) +(−1)(−1)

−1

2

= = = .
⟨ , ⟩v ⃗  w⃗ 2

⟨ , ⟩w⃗ 2 w⃗ 2

2 +3

1 +1

5

2

(6.2.3)

[ ] = [ ]+ [ ] .
2

3

−1

2

1

−1

5

2

1

1

+λx = 0,     x(−π) = x(π)     (−π) = (π).x′′ x′ x′

1, cos(kt), sin(kt)

2π− f(t)

f(t) = + cos(nt) + sin(nt).
a0

2
∑
n=1

∞

an bn

1 f(t) 1
a0

2
1 = cos(0t) cos(kt) sin(kt)

f(t)

an ⟨f(t), cos(nt)⟩

⟨f(t), g(t)⟩ = f(t)g(t)dt.∫
π

−π

cos(kt)

sin(kt)

⟨ cos(mt) , cos(nt) ⟩ = 0

⟨ sin(mt) , sin(nt) ⟩ = 0

⟨ sin(mt) , cos(nt) ⟩ = 0

for m ≠ n,

for m ≠ n,

for all m and n.

(6.2.4)
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By elementary calculus for  we have  and . For the constant we get

The coefficients are given by

Compare these expressions with the finite-dimensional example. For  we get a similar formula

Let us check the formulas using the orthogonality properties. Suppose for a moment that

Then for  we have

And hence 

Carry out the calculation for  and .

Take the function

for  in . Extend  periodically and write it as a Fourier series. This function is called the sawtooth.

The plot of the extended periodic function is given in Figure . Let us compute the coefficients.

Figure : The graph of the sawtooth function.

Solution

n = 1, 2, 3, … . ⟨cos(nt), cos(nt)⟩ = π ⟨sin(nt), sin(nt)⟩ = π

⟨1, 1⟩ = 1 ⋅ 1 dt = 2π.∫
π

π

an

bn

= = f(t) cos(nt)dt,
⟨f(t), cos(nt)⟩

⟨cos(nt), cos(nt)⟩

1

π
∫

π

−π

= = f(t) sin(nt)dt.
⟨f(t), sin(nt)⟩

⟨sin(nt), sin(nt)⟩

1

π
∫

π

−π

(6.2.5)

a0

= 2 f(t)dt.a0

⟨f(t), 1⟩

⟨1, 1⟩

1

π
∫

π

−π

f(t) = + cos(nt) + sin(nt).
a0

2
∑
n=1

∞

an bn

m ≥ 1

⟨f(t), cos(mt)⟩ =⟨ + cos(nt) + sin(nt), cos(mt)⟩
a0

2
∑
n=1

∞

an bn

= ⟨1, cos(mt)⟩+ ⟨cos(nt), cos(mt)⟩+ ⟨sin(nt), sin(mt)⟩
a0

2
∑
n=1

∞

an bn

= ⟨cos(mt), cos(mt)⟩ .am

(6.2.6)

= .am
⟨f(t),cos(mt)⟩

⟨cos(mt),cos(mt)⟩

 Exercise 6.2.2

a0 bm

 Example 6.2.3
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t (−π, π] f(t)
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We start with ,

We will often use the result from calculus that says that the integral of an odd function over a symmetric interval is zero. Recall
that an odd function is a function  such that . For example the functions , or (importantly for us) 

 are all odd functions. Thus

Let us move to . Another useful fact from calculus is that the integral of an even function over a symmetric interval is twice
the integral of the same function over half the interval. Recall an even function is a function  such that . For
example  is even.

We have used the fact that

The series, therefore, is

Let us write out the first  harmonics of the series for .

The plot of these first three terms of the series, along with a plot of the first  terms is given in Figure .

Figure : First 3 (left graph) and 20 (right graph) harmonics of the sawtooth function.

a0

= tdt = 0.a0
1

π
∫

π

−π

φ(t) φ(−t) = −φ(t) t, sin t

t cos(nt)

= t cos(nt)dt = 0.an
1

π
∫

π

−π

bn
φ(t) φ(−t) = φ(t)

t sin(nt)

bn = t sin(nt)dt
1

π
∫

π

−π

= t sin(nt)dt
2

π
∫

π

0

= ( + cos(nt)dt)
2

π
[ ]

−t cos(nt)

n

π

t=0

1

n
∫

π

0

= ( +0)
2

π

−π cos(nπ)

n

= = .
−2 cos(nπ)

n

2(−1)n+1

n

(6.2.7)

cos(nπ) = (−1 ={)n
1     if n even,  

−1     if n odd.  

sin(nt).∑
n=1

∞ 2(−1)n+1

n

3 f(t)

2 sin(t) −sin(2t) + sin(3t) +⋯
2

3

20 6.2.3
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Take the function

Extend  periodically and write it as a Fourier series. This function or its variants appear often in applications and the
function is called the square wave.

Figure : The graph of the square wave function.

The plot of the extended periodic function is given in Figure . Now we compute the coefficients. Let us start with 

Next,

And finally

The Fourier series is

Let us write out the first 3 harmonics of the series for .

The plot of these first three and also of the first 20 terms of the series is given in Figure .

 Example 6.2.4

f(t) ={
0

π

     if  −π < t ≤ 0,

 if 0 < t ≤ π.

f(t)

6.2.4

6.2.4 a0

= f(t)dt = πdt = π.a0
1

π
∫

π

−π

1

π
∫

π

0

= f(t) cos(nt)dt = π cos(nt)dt = 0.an
1

π
∫

π

−π

1

π
∫

π

0

bn = f(t) sin(nt)dt
1

π
∫

π

−π

= π sin(nt)dt
1

π
∫

π

0

= [ ]
−cos(nt)

n

π

t=0

= = ={
1 −cos(πn)

n

1 −(−1)n

n

     if n is odd,  2
n

0     if n is even.  

(6.2.8)

+ sin(nt) + sin((2k−1)t).
π

2
∑

n=1 n odd

∞ 2

n
∑
k=1

∞ 2

2k−1

f(t)

+2 sin(t) + sin(3t) +⋯
π

2

2

3
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Figure : First 3 (left graph) and 20 (right graph) harmonics of the square wave function.

We have so far skirted the issue of convergence. For example, if  is the square wave function, the equation

is only an equality for such  where  is continuous. That is, we do not get an equality for  and all the other
discontinuities of . It is not hard to see that when  is an integer multiple of  (which includes all the discontinuities), then

We redefine  on  as

and extend periodically. The series equals this extended  everywhere, including the discontinuities. We will generally not
worry about changing the function values at several (finitely many) points.

We will say more about convergence in the next section. Let us however mention briefly an effect of the discontinuity. Let us zoom
in near the discontinuity in the square wave. Further, let us plot the first 100 harmonics, see Figure . You will notice that while
the series is a very good approximation away from the discontinuities, the error (the overshoot) near the discontinuity at  does
not seem to be getting any smaller. This behavior is known as the Gibbs phenomenon. The region where the error is large does get
smaller, however, the more terms in the series we take.

Figure : Gibbs phenomenon in action.

We can think of a periodic function as a “signal” being a superposition of many signals of pure frequency. For example, we could
think of the square wave as a tone of certain base frequency. This base frequency is called the fundamental frequency. The square
wave will be a superposition of many different pure tones of frequencies that are multiples of the fundamental frequency. In music,
the higher frequencies are called the overtones. All the frequencies that appear are called the spectrum of the signal. On the other
hand a simple sine wave is only the pure tone (no overtones). The simplest way to make sound using a computer is the square
wave, and the sound is very different from a pure tone. If you ever played video games from the 1980s or so, then you heard what
square waves sound like.

6.2.5

f(t)

f(t) = + sin((2k−1)t).
π

2
∑
k=1

∞ 2

2k−1

t f(t) t = −π, 0, π

f(t) t π

+ sin((2k−1)t) = .
π

2
∑
k=1

∞ 2

2k−1

π

2

f(t) [−π, π]

f(t) =

⎧

⎩
⎨
⎪

⎪

0

π

π/2

     if  −π < t < 0,

 if 0 < t < π,

                   if t = −π, t = 0,  or t = π,

f(t)
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6.2.4: Footnotes
[1] Named after the French mathematician Jean Baptiste Joseph Fourier (1768 – 1830).
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6.3: More on the Fourier Series
Before reading the lecture, it may be good to first try Project IV (Fourier series) from the IODE website:
https://conf.math.illinois.edu/iode/fsgui.html. After reading the lecture it may be good to continue with Project V (Fourier series
again).

6.3.1: 2L-Periodic Functions
We have computed the Fourier series for a -periodic function, but what about functions of different periods. Well, fear not, the
computation is a simple case of change of variables. We can just rescale the independent axis. Suppose that we have a -periodic
function  (  is called the half period). Let . Then the function

is -periodic. We want to also rescale all our sines and cosines. We want to write

If we change variables to  we see that

We compute  and  as before. After we write down the integrals we change variables from  back to .

The two most common half periods that show up in examples are  and  because of the simplicity. We should stress that we have
done no new mathematics, we have only changed variables. If you understand the Fourier series for -periodic functions, you
understand it for -periodic functions. All that we are doing is moving some constants around, but all the mathematics is the
same.

Let

extended periodically. The plot of the periodic extension is given in Figure . Compute the Fourier series of .

Figure : Periodic extension of the function .

2π
2L

f(t) L S = t
π

L
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2π
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2
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∞

an
nπ

L
bn

nπ

L

s
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a0

2
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∞

an bn

an bn s t

a0

an

bn

= g(s)ds = f(t)dt,
1

π
∫

π

−π

1

L
∫

L

−L

= g(s) cos(ns)ds = f(t) cos( t)dt,
1

π
∫

π

−π

1

L
∫

L

−L

nπ

L

= g(s) sin(ns)ds = f(t) sin( t)dt.
1

π
∫

π

−π

1

L
∫

L

−L

nπ

L

π 1
2π

2L
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Solution

We want to write . For  we note that 
 is even and hence

Next we find 

You should be able to find this integral by thinking about the integral as the area under the graph without doing any
computation at all. Finally we can find . Here, we notice that  is odd and, therefore,

Hence, the series is

Let us explicitly write down the first few terms of the series up to the  harmonic.

The plot of these few terms and also a plot up to the  harmonic is given in Figure . You should notice how close the
graph is to the real function. You should also notice that there is no “Gibbs phenomenon” present as there are no
discontinuities.

Figure : Fourier series of  up to the  harmonic (left graph) and up to the  harmonic (right graph).

6.3.2: Convergence
We will need the one sided limits of functions. We will use the following notation

f(t) = + cos(nπt) + sin(nπt)a0

2
∑∞

n=1 an bn n ≥ 1

|t| cos(nπt)

an = f(t) cos(nπt)dt∫
1

−1

= 2 t cos(nπt)dt∫
1

0

= 2 −2 sin(nπt)dt[ sin(nπt)]
t

nπ

1

t=0

∫
1

0

1

nπ

= 0 + = =
1

n2π2
[cos(nπt)]1t=0

2((−1 −1))n

n2π2

⎧

⎩
⎨

0
−4

n2π2

 if n is even,

 if n is odd.

(6.3.1)

a0

= |t|dt = 1.a0 ∫
1

−1

bn |t| sin(nπt)

= f(t) sin(nπt)dt = 0.bn ∫
1

−1

+ cos(nπt)
1

2
∑
n=1
n odd

∞ −4

n2π2

3rd

− cos(πt) − cos(3πt) −⋯
1

2

4

π2

4

9π2

20th 6.3.2

6.3.2 f(t) 3rd 20th

f(c−) = f(t), and f(c+) = f(t).lim
t↑c
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If you are unfamiliar with this notation,  means we are taking a limit of  as  approaches  from below (i.e. )
and  means we are taking a limit of  as  approaches  from above (i.e. ). For example, for the square wave
function

we have  and .

Let  be a function defined on an interval . Suppose that we find finitely many points  in the
interval, such that  is continuous on the intervals . Also suppose that all the one sided limits
exist, that is, all of  exist and are finite. Then we say  is piecewise
continuous.

If moreover,  is differentiable at all but finitely many points, and  is piecewise continuous, then  is said to be
piecewise smooth.

The square wave function  is piecewise smooth on  or any other interval. In such a case we simply say that the
function is piecewise smooth.

The function  is piecewise smooth.

The function  is not piecewise smooth on  (or any other interval containing zero). In fact, it is not even

piecewise continuous.

The function  is not piecewise smooth on  (or any other interval containing zero).  is continuous, but the
derivative of  is unbounded near zero and hence not piecewise continuous.

Piecewise smooth functions have an easy answer on the convergence of the Fourier series.

Suppose  is a -periodic piecewise smooth function. Let

be the Fourier series for . Then the series converges for all . If  is continuous near , then

Otherwise

f(t)limt↑c f(t) t c t < c

f(t)limt↓c f(t) t c t > c

f(t) ={
0

π

if

if

−π < t ≤ 0,

0 < t ≤ π,
(6.3.2)
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f( +), f( −), f( +), f( −), f( +), … , f( −)t0 t1 t1 t2 t2 tk f(t)

f(t) (t)f ′ f(t)

 Example 6.3.2
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 Example 6.3.3
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 Example 6.3.4
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t
[−1, 1]

 Example 6.3.5
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If we happen to have that  at all the discontinuities, the Fourier series converges to  everywhere. We

can always just redefine  by changing the value at each discontinuity appropriately. Then we can write an equals sign between 
 and the series without any worry. We mentioned this fact briefly at the end last section.

Note that the theorem does not say how fast the series converges. Think back to the discussion of the Gibbs phenomenon in the last
section. The closer you get to the discontinuity, the more terms you need to take to get an accurate approximation to the function.

6.3.3: Differentiation and Integration of Fourier Series
Not only does Fourier series converge nicely, but it is easy to differentiate and integrate the series. We can do this just by
differentiating or integrating term by term.

Suppose

is a piecewise smooth continuous function and the derivative  is piecewise smooth. Then the derivative can be obtained
by differentiating term by term,

It is important that the function is continuous. It can have corners, but no jumps. Otherwise the differentiated series will fail to
converge. For an exercise, take the series obtained for the square wave and try to differentiate the series. Similarly, we can also
integrate a Fourier series.

Suppose

is a piecewise smooth function. Then the antiderivative is obtained by antidifferentiating term by term and so

where  and  is an arbitrary constant.

Note that the series for  is no longer a Fourier series as it contains the  term. The antiderivative of a periodic function need

no longer be periodic and so we should not expect a Fourier series.

6.3.4: Rates of Convergence and Smoothness

Let us do an example of a periodic function with one derivative everywhere.

Take the function

and extend to a 2-periodic function. The plot is given in Figure .
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Figure : Smooth -periodic function.

Note that this function has one derivative everywhere, but it does not have a second derivative whenever  is an integer.

Compute  and .

Let us compute the Fourier series coefficients. The actual computation involves several integration by parts and is left to student.

That is, the series is

This series converges very fast. If you plot up to the third harmonic, that is the function

it is almost indistinguishable from the plot of  in Figure . In fact, the coefficient  is already just 0.0096

(approximately). The reason for this behavior is the  term in the denominator. The coefficients  in this case go to zero as fast

as  goes to zero.

For functions constructed piecewise from polynomials as above, it is generally true that if you have one derivative, the Fourier

coefficients will go to zero approximately like . If you have only a continuous function, then the Fourier coefficients will go to

zero as . If you have discontinuities, then the Fourier coefficients will go to zero approximately as . For more general

functions the story is somewhat more complicated but the same idea holds, the more derivatives you have, the faster the

coefficients go to zero. Similar reasoning works in reverse. If the coefficients go to zero like  you always obtain a continuous

function. If they go to zero like  you obtain an everywhere differentiable function.

To justify this behavior, take for example the function defined by the Fourier series

6.3.3 2

t
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(0+)f ′′ (0−)f ′′

a0

an
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= f(t)dt = (t+1)tdt+ (1 − t)tdt = 0,∫
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−1
∫

0

−1
∫

1

0
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1

−1
∫

0

−1
∫

1

0

= f(t) sin(nπt)dt = (t+1)t sin(nπt)dt+ (1 − t)t sin(nπt)dt∫
1

−1
∫

0

−1
∫

1

0

= =
4(1 −(−1 ))n

π3n3

⎧

⎩⎨
8

π3n3

0

 if n is odd,

 if n is even.

(6.3.3)
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8
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8

27π3
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1

n3

1

n2

1

n

1

n2

1

n3

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98070?pdf


6.3.6 https://math.libretexts.org/@go/page/98070

When we differentiate term by term we notice

Therefore, the coefficients now go down like , which means that we have a continuous function. The derivative of  is

defined at most points, but there are points where  is not differentiable. It has corners, but no jumps. If we differentiate again
(where we can) we find that the function , now fails to be continuous (has jumps)

This function is similar to the sawtooth. If we tried to differentiate the series again we would obtain

  which does not converge!

Use a computer to plot the series we obtained for ,  and . That is, plot say the first  harmonics of the functions.
At what points does  have the discontinuities?
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6.4: Sine and Cosine Series

6.4.1: 4.4.1:Even Periodic Functions

You may have noticed by now that an odd function has no cosine terms in the Fourier series and an even function has no sine terms
in the Fourier series. This observation is not a coincidence. Let us look at even and odd periodic function in more detail.

Recall that a function  is odd if . A function  is even if . For example,  is even and 
 is odd. Similarly the function  is even if  is even and odd when  is odd.

Take two functions  and  and define their product .

a. Suppose both  and  are odd, is  odd or even?
b. Suppose one is even and one is odd, is  odd or even?
c. Suppose both are even, is  odd or even?

If  and  are both odd, then  is odd. Similarly for even functions. On the other hand, if  is odd and 
even, then we cannot say anything about the sum . In fact, the Fourier series of any function is a sum of an odd (the sine
terms) and an even (the cosine terms) function.

In this section we consider odd and even periodic functions. We have previously defined the -periodic extension of a function
defined on the interval . Sometimes we are only interested in the function on the range  and it would be convenient to
have an odd (resp. even) function. If the function is odd (resp. even), all the cosine (resp. sine) terms will disappear. What we will
do is take the odd (resp. even) extension of the function to  and then extend periodically to a -periodic function.

Take a function  defined on . On  define the functions

Extend  and  to be -periodic. Then  is called the odd periodic extension of , and  is called
the even periodic extension of . For the odd extension we generally assume that .

Check that  is odd and that  is even. For , assume .

Take the function  defined on . Figure  shows the plots of the odd and even extensions of .

Figure : Odd and even -periodic extension of , .

f(t) f(−t) = −f(t) f(t) f(−t) = f(t) cos (nt)

sin(nt) tk k k

 Exercise 6.4.1

f(t) g(t) h(t) = f(t) g(t)

f(t) g(t) h(t)

h(t)

h(t)

f(t) g(t) f(t) +g(t) f(t) g(t)

f(t) +g(t)

2L

[−L,L] [0,L]

[−L,L] 2L

f(t) [0,L] (−L,L]

(t)Fodd

(t)Feven

{=
def f(t)

−f(−t)

if

if

0 ≤ t ≤ L,

−L < t < 0,

{=
def f(t)

f(−t)

if

if

0 ≤ t ≤ L,

−L < t < 0.

(6.4.1)

(t)Fodd (t)Feven 2L (t)Fodd f(t) (t)Feven

f(t) f(0) = f(L) = 0

 Exercise 6.4.2

(t)Fodd (t)Feven Fodd f(0) = f(L) = 0
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f(t) = t(1 − t) [0, 1] 6.4.1 f(t)

6.4.1 2 f(t) = t(1 − t) 0 ≤ t ≤ 1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98071?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/06%3A_Fourier_series_and_PDEs/6.04%3A_Sine_and_Cosine_Series


6.4.2 https://math.libretexts.org/@go/page/98071

6.4.2: Sine and Cosine Series
Let  be an odd -periodic function. We write the Fourier series for . First, we compute the coefficients  (including 

) and get

That is, there are no cosine terms in the Fourier series of an odd function. The integral is zero because  is an odd
function (product of an odd and an even function is odd) and the integral of an odd function over a symmetric interval is always
zero. The integral of an even function over a symmetric interval  is twice the integral of the function over the interval 

. The function  is the product of two odd functions and hence is even.

We now write the Fourier series of  as

Similarly, if  is an even -periodic function. For the same exact reasons as above, we find that  and

The formula still works for , in which case it becomes

The Fourier series is then

An interesting consequence is that the coefficients of the Fourier series of an odd (or even) function can be computed by just
integrating over the half interval . Therefore, we can compute the Fourier series of the odd (or even) extension of a function
by computing certain integrals over the interval where the original function is defined.

Let  be a piecewise smooth function defined on . Then the odd periodic extension of  has the Fourier series

where

The even periodic extension of  has the Fourier series

where

f(t) 2L f(t) an
n = 0

= f(t)cos( t)dt = 0.an
1

L
∫

L

−L

nπ

L

f(t) cos ( t)nπ

L

[−L,L]

[0,L] f(t) sin( t)nπ

L

= f(t) sin( t) dt = f(t) sin( t) dt.bn
1

L
∫

L

−L

nπ

L

2

L
∫

L

0

nπ

L

f(t)

sin( t).∑
n=1

∞

bn
nπ

L

f(t) 2L = 0bn

= f(t) cos( t) dt.an
2

L
∫

L

0

nπ

L

n = 0

= f(t)dt.a0
2

L
∫

L

0

+ cos( t).
a0

2
∑
n=1

∞

an
nπ

L

[0,L]

 Theorem 6.4.1

f(t) [0,L] f(t)

(t) = sin( t),Fodd ∑
n=1

∞

bn
nπ

L

= f(t) sin( t) dt.bn
2

L
∫

L

0

nπ

L

f(t)

(t) = + cos( t),Feven
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2
∑
n=1

∞
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The series  is called the sine series of  and the series  is called the cosine

series of . We often do not actually care what happens outside of . In this case, we pick whichever series fits our problem
better.

It is not necessary to start with the full Fourier series to obtain the sine and cosine series. The sine series is really the eigenfunction
expansion of  using eigenfunctions of the eigenvalue problem  , . The cosine series is the
eigenfunction expansion of  using eigenfunctions of the eigenvalue problem , , . We could
have, therefore, gotten the same formulas by defining the inner produ

and following the procedure of Section 4.2. This point of view is useful, as we commonly use a specific series that arose because
our underlying question led to a certain eigenvalue problem. If the eigenvalue problem is not one of the three we covered so far,
you can still do an eigenfunction expansion, generalizing the results of this chapter. We will deal with such a generalization in
Chapter 5.

Find the Fourier series of the even periodic extension of the function  for .

Solution

We want to write

where

and

Note that we have “detected” the continuity of the extension since the coefficients decay as . That is, the even extension of 
 has no jump discontinuities. It does have corners, since the derivative, which is an odd function and a sine series, has jumps;

it has a Fourier series whose coefficients decay only as .

Explicitly, the first few terms of the series are

a. Compute the derivative of the even extension of  above and verify it has jump discontinuities. Use the actual definition
of , not its cosine series!

b. Why is it that the derivative of the even extension of  is the odd extension of ?

6.4.3: Application
Fourier series ties in to the boundary value problems we studied earlier. Let us see this connection in more detail.

Suppose we have the boundary value problem for .

sin( t)∑∞
n=1 bn

nπ

L
f(t) + cos( t)

a0

2
∑∞

n=1 an
nπ

L
f(t) [0,L]

f(t) +λx = 0x′′ x(0) = 0 x(L) = L

f(t) +λx = 0x′′ (0) = 0x′ (L) = Lx′

⟨f(t), g(y)⟩ = f(t)g(t)dt,∫
L

0

 Example 6.4.2
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∫
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0
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3

an = cos(nt)dt = − t sin(nt)dt
2

π
∫

π

0

t2 2

π
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n

π

0
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∫

π

0

= + cos(nt)dt = .
4

πn2
[t cos(nt)]π0

4

πn2
∫
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(6.4.2)
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for the Dirichlet boundary conditions . By using the Fredholm alternative (Theorem 4.1.2) we note that as long
as  is not an eigenvalue of the underlying homogeneous problem, there exists a unique solution. Note that the eigenfunctions of
this eigenvalue problem are the functions . Therefore, to find the solution, we first find the Fourier sine series for .
We write  also as a sine series, but with unknown coefficients. We substitute the series for  into the equation and solve for the
unknown coefficients. If we have the Neumann boundary conditions  and , we do the same procedure using
the cosine series.

Let us see how this method works on examples.

Take the boundary value problem for ,

where  on , and satisfying the Dirichlet boundary conditions  and . We write  as a
sine series

Compute

We write  as

We plug in to obtain

Therefore,

or

That  is not zero for any , and that we can solve for , is precisely because  is not an eigenvale of the problem.
We have thus obtained a Fourier series for the solution

(t) +λx(t) = f(t),x′′

x(0) = 0, x(L) = 0

λ

sin( t)nπ

L
f(t)

x x

(0) = 0x′ (L) = 0x′

 Example 6.4.3
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See Figure  for a graph of the solution. Notice that because the eigenfunctions satisfy the boundary conditions, and  is
written in terms of the boundary conditions, then  satisfies the boundary conditions.

Figure : Plot of the solution of , , .

Similarly we handle the Neumann conditions. Take the boundary value problem for ,

where again  on , but now satisfying the Neumann boundary conditions  and . We write 
 as a cosine series

where

and

We also write  as a cosine series

We plug in to obtain

Therefore,  and  for  even ( ) and for  odd we have

or
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The Fourier series for the solution  is
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6.5: Applications of Fourier Series

6.5.1: Periodically Forced Oscillation

Let us return to the forced oscillations. Consider a mass-spring system as before, where we have a mass  on a spring with spring
constant , with damping , and a force  applied to the mass. Suppose the forcing function  is -periodic for some 

. We have already seen this problem in chapter 2 with a simple .

Figure 

The equation that governs this particular setup is

The general solution consists of  consists of the complementary solution , which solves the associated homogeneous
equation , and a particular solution of Equation  we call . For , the complementary solution 
will decay as time goes by. Therefore, we are mostly interested in a particular solution  that does not decay and is periodic with
the same period as . We call this particular solution the steady periodic solution and we write it as  as before. What will be
new in this section is that we consider an arbitrary forcing function  instead of a simple cosine.

For simplicity, let us suppose that . The problem with  is very similar. The equation

has the general solution

where . Any solution to  is of the form . The steady periodic

solution  has the same period as .

In the spirit of the last section and the idea of undetermined coefficients we first write

Then we write a proposed steady periodic solution  as

where  and  are unknowns. We plug  into the differential equation and solve for  and  in terms of  and . This
process is perhaps best understood by example.

Suppose that , and . The units are again the mks units (meters-kilograms-seconds). There is a jetpack strapped to
the mass, which fires with a force of 1 newton for 1 second and then is off for 1 second, and so on. We want to find the steady
periodic solution.

Solution

The equation is, therefore,

where  is the step function

m

k c F (t) F (t) 2L

L > 0 F (t)

6.5.1
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extended periodically. We write

We compute

So

We want to try

Once we plug  into the differential equation , it is clear that  for  as there are no corresponding
terms in the series for . Similarly  for  even. Hence we try

We plug into the differential equation and obtain

So ,  for even , and for odd  we get
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The steady periodic solution has the Fourier series

We know this is the steady periodic solution as it contains no terms of the complementary solution and it is periodic with the
same period as  itself. See Figure  for the plot of this solution.

Figure : Plot of the steady periodic solution  of Example .

6.5.1.1: Resonance

Just like when the forcing function was a simple cosine, resonance could still happen. Let us assume  and we will discuss
only pure resonance. Again, take the equation

When we expand  and find that some of its terms coincide with the complementary solution to , we cannot use
those terms in the guess. Just like before, they will disappear when we plug into the left hand side and we will get a contradictory
equation (such as ). That is, suppose

where  for some positive integer . In this case we have to modify our guess and try

In other words, we multiply the offending term by . From then on, we proceed as before.

Of course, the solution will not be a Fourier series (it will not even be periodic) since it contains these terms multiplied by .

Further, the terms  will eventually dominate and lead to wild oscillations. As before, this

behavior is called pure resonance or just resonance.

Note that there now may be infinitely many resonance frequencies to hit. That is, as we change the frequency of  (we change ),
different terms from the Fourier series of  may interfere with the complementary solution and will cause resonance. However, we
should note that since everything is an approximation and in particular  is never actually zero but something very close to zero,
only the first few resonance frequencies will matter.

Find the steady periodic solution to the equation
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extended periodically. We note that

Compute the Fourier series of  to verify the above equation.

As , the solution to  is

for some particular solution .

If we just try an  given as a Fourier series with  as usual, the complementary equation, , eats our 
harmonic. That is, the term with  is already in in our complementary solution. Therefore, we pull that term out and
multiply it by . We also add a cosine term to get everything right. That is, we try

Let us compute the second derivative.

We now plug into the left hand side of the differential equation.

If we simplify we obtain

This series has to equal to the series for . We equate the coefficients and solve for  and .

That is,
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n=1
n odd

∞ 4
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When , you will not have to worry about pure resonance. That is, there will never be any conflicts and you do not need to
multiply any terms by . There is a corresponding concept of practical resonance and it is very similar to the ideas we already
explored in Chapter 2. Basically what happens in practical resonance is that one of the coefficients in the series for  can get very
big. We will not go into details here.
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6.6: PDEs, Separation of Variables, and The Heat Equation
Let us recall that a partial differential equation or PDE is an equation containing the partial derivatives with respect to several
independent variables. Solving PDEs will be our main application of Fourier series.

A PDE is said to be linear if the dependent variable and its derivatives appear at most to the first power and in no functions. We
will only talk about linear PDEs. Together with a PDE, we usually have specified some boundary conditions, where the value of
the solution or its derivatives is specified along the boundary of a region, and/or some initial conditions where the value of the
solution or its derivatives is specified for some initial time. Sometimes such conditions are mixed together and we will refer to
them simply as side conditions.

We will study three specific partial differential equations, each one representing a more general class of equations. First, we will
study the heat equation, which is an example of a parabolic PDE. Next, we will study the wave equation, which is an example of a
hyperbolic PDE. Finally, we will study the Laplace equation, which is an example of an elliptic PDE. Each of our examples will
illustrate behavior that is typical for the whole class.

6.6.1: Heat on an Insulated Wire

Let us first study the heat equation. Suppose that we have a wire (or a thin metal rod) of length  that is insulated except at the
endpoints. Let  denote the position along the wire and let  denote time. See Figure .

Figure : Insulated wire.

Let  denote the temperature at point  at time . The equation governing this setup is the so-called one-dimensional heat
equation:

where  is a constant (the thermal conductivity of the material). That is, the change in heat at a specific point is proportional to
the second derivative of the heat along the wire. This makes sense; if at a fixed  the graph of the heat distribution has a maximum
(the graph is concave down), then heat flows away from the maximum. And vice-versa.

We will generally use a more convenient notation for partial derivatives. We will write  instead of , and we will write 

instead of . With this notation the heat equation becomes

For the heat equation, we must also have some boundary conditions. We assume that the ends of the wire are either exposed and
touching some body of constant heat, or the ends are insulated. For example, if the ends of the wire are kept at temperature 0, then
we must have the conditions

If, on the other hand, the ends are also insulated we get the conditions

Let us see why that is so. If  is positive at some point , then at a particular time,  is smaller to the left of , and higher to the
right of . Heat is flowing from high heat to low heat, that is to the left. On the other hand if  is negative then heat is again
flowing from high heat to low heat, that is to the right. So when  is zero, that is a point through which heat is not flowing. In
other words,  means no heat is flowing in or out of the wire at the point .
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We have two conditions along the -axis as there are two derivatives in the  direction. These side conditions are said to be
homogeneous (i.e.,  or a derivative of  is set to zero).

We also need an initial condition—the temperature distribution at time . That is,

for some known function . This initial condition is not a homogeneous side condition.

6.6.2: Separation of Variables

The heat equation is linear as  and its derivatives do not appear to any powers or in any functions. Thus the principle of
superposition still applies for the heat equation (without side conditions). If  and  are solutions and  are constants, then 

 is also a solution.

Verify the principle of superposition for the heat equation.

Superposition also preserves some of the side conditions. In particular, if  and  are solutions that satisfy  and 
, and  are constants, then  is still a solution that satisfies  and . Similarly

for the side conditions  and . In general, superposition preserves all homogeneous side conditions.

The method of separation of variables is to try to find solutions that are sums or products of functions of one variable. For
example, for the heat equation, we try to find solutions of the form

That the desired solution we are looking for is of this form is too much to hope for. What is perfectly reasonable to ask, however, is
to find enough “building-block” solutions of the form  using this procedure so that the desired solution to the
PDE is somehow constructed from these building blocks by the use of superposition.

Let us try to solve the heat equation

Let us guess . We will try to make this guess satisfy the differential equation, , and the
homogeneous side conditions,  and . Then, as superposition preserves the differential equation and the
homogeneous side conditions, we will try to build up a solution from these building blocks to solve the nonhomogeneous initial
condition .

First we plug  into the heat equation to obtain

We rewrite as

This equation must hold for all  and all . But the left hand side does not depend on  and the right hand side does not depend on 
. Hence, each side must be a constant. Let us call this constant  (the minus sign is for convenience later). We obtain the two

equations

In other words

x x

u u
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The boundary condition  implies . We are looking for a nontrivial solution and so we can assume that 
 is not identically zero. Hence . Similarly,  implies . We are looking for nontrivial solutions 

of the eigenvalue problem . We have previously found that the only eigenvalues are 
, for integers , where eigenfunctions are . Hence, let us pick the solutions

The corresponding  must satisfy the equation

By the method of integrating factor, the solution of this problem is

It will be useful to note that . Our building-block solutions are

We note that . Let us write  as the sine series

That is, we find the Fourier series of the odd periodic extension of . We used the sine series as it corresponds to the eigenvalue
problem for  above. Finally, we use superposition to write the solution as

Why does this solution work? First note that it is a solution to the heat equation by superposition. It satisfies  and 
, because  or  makes all the sines vanish. Finally, plugging in , we notice that  and so

Suppose that we have an insulated wire of length , such that the ends of the wire are embedded in ice (temperature 0). Let 
. Then suppose that initial heat distribution is . See Figure .

Figure : Initial distribution of temperature in the wire.

We want to find the temperature function . Let us suppose we also want to find when
(at what ) does the maximum temperature in the wire drop to one half of the initial
maximum of .
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We are solving the following PDE problem:

We write  for  as a sine series. That is, , where

Figure : Plot of the temperature of the wire at position  at time .

The solution , plotted in Figure  for \( 0 \leq t \leq 100\), is given by the series:

Finally, let us answer the question about the maximum temperature. It is relatively easy to see that the maximum temperature
will always be at , in the middle of the wire. The plot of  confirms this intuition.

If we plug in  we get

For  and higher (remember  is only odd), the terms of the series are insignificant compared to the first term. The first
term in the series is already a very good approximation of the function. Hence

The approximation gets better and better as  gets larger as the other terms decay much faster. Let us plot the function ,
the temperature at the midpoint of the wire at time , in Figure . The figure also plots the approximation by the first term.
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Figure : Temperature at the midpoint of the wire (the bottom curve), and the approximation of this temperature by using
only the first term in the series (top curve).

After  or so it would be hard to tell the difference between the first term of the series
for  and the real solution . This behavior is a general feature of solving the
heat equation. If you are interested in behavior for large enough , only the first one or two
terms may be necessary.
Let us get back to the question of when is the maximum temperature one half of the initial maximum temperature. That is,
when is the temperature at the midpoint . We notice on the graph that if we use the approximation by the first
term we will be close enough. We solve

That is,

So the maximum temperature drops to half at about .

We mention an interesting behavior of the solution to the heat equation. The heat equation “smoothes” out the function  as 

grows. For a fixed , the solution is a Fourier series with coefficients . If , then these coefficients go to zero faster
than any  for any power . In other words, the Fourier series has infinitely many derivatives everywhere. Thus even if the
function  has jumps and corners, then for a fixed , the solution  as a function of  is as smooth as we want it to be.

When the initial condition is already a sine series, then there is no need to compute anything, you just need to plug in. Consider

The solution is then

6.6.3: Insulated Ends
Now suppose the ends of the wire are insulated. In this case, we are solving the equation

Yet again we try a solution of the form . By the same procedure as before we plug into the heat equation and
arrive at the following two equations
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At this point the story changes slightly. The boundary condition  implies . Hence .
Similarly,  implies . We are looking for nontrivial solutions  of the eigenvalue problem  

 . We have previously found that the only eigenvalues are , for integers , where
eigenfunctions are  (we include the constant eigenfunction). Hence, let us pick solutions

The corresponding  must satisfy the equation

For , as before,

For , we have  and hence . Our building-block solutions will be

and

We note that . Let us write  using the cosine series

That is, we find the Fourier series of the even periodic extension of .

We use superposition to write the solution as

Let us try the same equation as before, but for insulated ends. We are solving the following PDE problem

For this problem, we must find the cosine series of . For  we have

The calculation is left to the reader. Hence, the solution to the PDE problem, plotted in Figure , is given by the series
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Figure : Plot of the temperature of the insulated wire at position  at time .

Note in the graph that the temperature evens out across the wire. Eventually, all the terms
except the constant die out, and you will be left with a uniform temperature of \(\frac{25}{3}
\approx{8.33}\) along the entire length of the wire.

Let us expand on the last point. The constant term in the series is

In other words,  is the average value of , that is, the average of the initial temperature. As the wire is insulated everywhere,
no heat can get out, no heat can get in. So the temperature tries to distribute evenly over time, and the average temperature must
always be the same, in particular it is always . As time goes to infinity, the temperature goes to the constant  everywhere.

This page titled 6.6: PDEs, Separation of Variables, and The Heat Equation is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jiří Lebl.

4.6: PDEs, Separation of Variables, and The Heat Equation by Jiří Lebl is licensed CC BY-SA 4.0. Original source:
https://www.jirka.org/diffyqs.
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6.7: One Dimensional Wave Equation
Imagine we have a tensioned guitar string of length . Suppose we only consider vibrations in one direction. That is, let  denote
the position along the string, let  denote time, and let  denote the displacement of the string from the rest position. See Figure 

.

Figure : Vibrating string of length ,  is position,  is displacement.

The equation that governs this setup is the so-called one-dimensional wave equation:

for some constant . The intuition is similar to the heat equation, replacing velocity with acceleration: the acceleration at a
specific point is proportional to the second derivative of the shape of the string. In other words when the string is concave down
then  is negative and the string wants to accelerate downwards, so  should be negative. And vice versa. The wave equation is
an example of a hyperbolic PDE.

Assume that the ends of the string are fixed in place:

Note that we have two conditions along the  axis as there are two derivatives in the  direction.

There are also two derivatives along the  direction and hence we need two further conditions here. We need to know the initial
position and the initial velocity of the string. That is, for some known functions  and , we impose

As the equation is again linear, superposition works just as it did for the heat equation. And again we will use separation of
variables to find enough building-block solutions to get the overall solution. There is one change however. It will be easier to solve
two separate problems and add their solutions.

The two problems we will solve are

and

The principle of superposition implies that  solves the wave equation and furthermore 
 and . Hence,  is a solution to

L x

t y

6.7.1

6.7.1 L x y

= ,ytt a2yxx

a > 0

uxx utt

y(0, t) = 0 and y(L, t) = 0.

x x

t

f(x) g(x)

y(x, 0) = f(x) and (x, 0) = g(x).yt

= ,wtt a2wxx

w(0, t) = w(L, t) = 0,

w(x, 0) = 0

(x, 0) = g(x)wt

for  0 < x < L,

for  0 < x < L,
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= ,ztt a2zxx
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The reason for all this complexity is that superposition only works for homogeneous conditions such as , 
, or . Therefore, we will be able to use the idea of separation of variables to find many building-block

solutions solving all the homogeneous conditions. We can then use them to construct a solution solving the remaining
nonhomogeneous condition.

Let us start with . We try a solution of the form  again. We plug into the wave equation to obtain

Rewriting we get

Again, left hand side depends only on  and the right hand side depends only on . Therefore, both equal a constant, which we will
denote by .

We solve to get two ordinary differential equations

The conditions  implies  and  implies that . Therefore, the only

nontrivial solutions for the first equation are when  and they are

The general solution for  for this particular  is

We also have the condition that  or . This implies that , which in turn forces . It is

convenient to pick  (you will see why in a moment) and hence

Our building-block solutions are

We differentiate in , that is

Hence,

We expand  in terms of these sines as

Using superposition we can just write down the solution to  as a series

y(0, t) = y(L, t) = 0

y(x, 0) = 0 (x, 0) = 0yt

(6.7.1) w(x, t) = X(x)T (t)

X(x) (t) = (x)T (t).T ′′ a2X ′′

= .
(t)T ′′

T (t)a2

(x)X ′′

X(x)

t x

−λ

= −λ = .
(t)T ′′

T (t)a2

(x)X ′′

X(x)

(x) +λX(x)X ′′

(t) +λ T (t)T ′′ a2

= 0,

= 0.
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Check that  and .

Similarly we proceed to solve . We again try . The procedure works exactly the same at first. We obtain

and the conditions , . So again  and

This time the condition on  is . Thus we get that  and we take

Our building-block solution will be

As , we expand  in terms of these sines as

And we write down the solution to  as a series

Fill in the details in the derivation of the solution of . Check that the solution satisfies all the side conditions.

Putting these two solutions together, let us state the result as a theorem.

Take the equation

where

and
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Then the solution  can be written as a sum of the solutions of (4.7.4) and (4.7.5). In other words,

Let us try a simple example of a plucked string. Suppose that a string of length 2 is plucked in the middle such that it has the
initial shape given in Figure . That is

Figure : Initial shape of a plucked string from Example .

The string starts at rest ( ). Suppose that  in the wave equation for simplicity. In other words, we wish to solve
the problem:

We leave it to the reader to compute the sine series of . The series will be

Note that  is the sequence  for . Therefore,

The solution  is given by

See Figure  for a plot for . Notice that unlike the heat equation, the solution does not become "smoother," the
"sharp edges" remain. We will see the reason for this behavior in the next section where we derive the solution to the wave
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equation in a different way.

Figure : Shape of the plucked string for .

Make sure you understand what the plot, such as the one in the figure, is telling you. For each fixed , you can think of the
function  as just a function of . This function gives you the shape of the string at time . See Figure  for plots of at

 as a function of  at several different values of . On this plot you can see the sharp edges remaining much better.

Figure : Plucked string for , , , and .

One thing to take away from all this is how a guitar sounds. Notice that the (angular) frequencies that come up in the solution are 
. That is, there is a certain base fundamental frequency , and then we also get all the multiples of this frequency, which in

music are called the overtones. Which overtones appear and with what amplitude is what musicians call the timbre of the note.
Mathematicians usually call this the spectrum. Because all the frequencies are multiples of one frequency (the fundamental) we get
a nice pleasing sound.

The fundamental frequency  increases as we decrease length . That is, if we place a finger on the fingerboard and then pluck a
string we get a higher note. The constant  is given by

6.7.3 0 < t < 3

t

y(x, t) x t 6.7.4

y x t

6.7.4 t = 0 t = 0.4 t = 0.8 t = 1.2
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where  is tension and  is the linear density of the string. Tightening the string (turning the tuning peg on a guitar) increases  and
hence produces a higher fundamental frequency (a higher note). On the other hand using a heavier string reduces  and produces a
lower fundamental frequency (a lower note). A bass guitar has longer thicker strings, while a ukulele has short strings made of
lighter material.

Something rather interesting is the almost symmetry between space and time. In its simplest form we see this symmetry in the
solutions

Except for the , time and space are just the same.

In general, the solution for a fixed  is a Fourier series in , for a fixed  it is a Fourier series in , and the coefficients are related.
If the shape  or the initial velocity have lots of corners, then the sound wave will have lots of corners. That is because the
Fourier coefficients of the initial shape decay to zero (as ) at the same rate as the Fourier coefficients of the wave in time
(for some fixed ). So if you use a sharp object to pick the string, you get a sharper sound with lots of high frequency components,
while if you use your thumb, you get a softer sound without so many high overtones. Similarly if you pluck close to the bridge, you
are getting a pluck that looks more like the sawtooth, and you get an even sharper sound.

In fact, if you look at the formula for the solution, you see that for any fixed  we get an almost arbitrary Fourier series in ,
everything except the constant term. You can essentially obtain any sound you want by plucking the string in just the right way. Of
course we are considering an ideal string of no stiffness and no air resistance. Those variables clearly impact the sound as well.

This page titled 6.7: One Dimensional Wave Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

4.7: One Dimensional Wave Equation by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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6.8: D’Alembert Solution of The Wave Equation
We have solved the wave equation by using Fourier series. But it is often more convenient to use the so-called d’Alembert solution
to the wave equation.  While this solution can be derived using Fourier series as well, it is really an awkward use of those
concepts. It is easier and more instructive to derive this solution by making a correct change of variables to get an equation that can
be solved by simple integration.

Suppose we have the wave equation

We wish to solve the equation  given the conditions

6.8.1: Change of Variables
We will transform the equation into a simpler form where it can be solved by simple integration. We change variables to 

, . The chain rule says:

We compute

In the above computations, we used the fact from calculus that . We plug what we got into the wave equation,

Therefore, the wave equation  transforms into . It is easy to find the general solution to this equation by integrating
twice. Keeping  constant, we integrate with respect to  first  and notice that the constant of integration depends on ; for each 
we might get a different constant of integration. We get . Next, we integrate with respect to  and notice that the constant
of integration must depend on . Thus, . The solution must, therefore, be of the following form for some
functions  and  :

The solution is a superposition of two functions (waves) traveling at speed  in opposite directions. The coordinates  and  are
called the characteristic coordinates, and a similar technique can be applied to more complicated hyperbolic PDE. And in fact, in
Section 1.9 it is used to solve first order linear PDE. Basically, to solve the wave equation (or more general hyperbolic equations)
we find certain characteristic curves along which the equation is really just an ODE, or a pair of ODEs. In this case these are the
curves where  and  are constant.

6.8.2: D’Alembert’s Formula
We know what any solution must look like, but we need to solve for the given side conditions. We will just give the formula and
see that it works. First let  denote the odd extension of , and let  denote the odd extension of . Define

1
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We claim this  and  give the solution. Explicitly, the solution is  or in other words:

Let us check that the d’Alembert formula really works.

So far so good. Assume for simplicity  is differentiable. And we use the first form of  as it is easier to differentiate. By the
fundamental theorem of calculus we have

So

Yay! We’re smoking now. OK, now the boundary conditions. Note that  and  are odd. Also  is an even
function of  because  is odd (to see this fact, do the substitution ). So

Note that  and  are  periodic. We compute

And voilà, it works.

D’Alembert says that the solution is a superposition of two functions (waves) moving in the opposite direction at “speed” . To
get an idea of how it works, let us work out an example. Consider the simpler setup

Here  is an impulse of height 1 centered at :
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(6.8.10)

f(x) x = 0.5

f(x) =

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

0

20(x−0.45)

20(0.55 −x)

0

if

if

if

if

0 ≤ x < 0.45,

0.45 ≤ x < 0.5,

0.5 ≤ x < 0.55

0.55 ≤ x ≤ 1.
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The graph of this impulse is the top left plot in Figure .

Let  be the odd periodic extension of . Then from  we know that the solution is given as

It is not hard to compute specific values of . For example, to compute  we notice  and 
. Now  and . Hence 

. As you can see the d’Alembert solution is much easier to actually compute and to plot than the
Fourier series solution. See Figure  for plots of the solution  for several different .

Figure : Plot of the d'Alembert solution for , , , and .

6.8.3: Another Way to Solve for the Side Conditions
It is perhaps easier and more useful to memorize the procedure rather than the formula itself. The important thing to remember is
that a solution to the wave equation is a superposition of two waves traveling in opposite directions. That is,

If you think about it, the exact formulas for  and  are not hard to guess once you realize what kind of side conditions  is
supposed to satisfy. Let us give the formula again, but slightly differently. Best approach is to do this in stages. When 
(and hence ) we have the solution

On the other hand, when  (and hence ), we let

The solution in this case is

By superposition we get a solution for the general side conditions  (when neither  nor  are identically zero).

6.8.1

F (x) f(x) (6.8.6)

y(x, t) = .
F (x− t) +F (x+ t)

2

y(x, t) y(0.1, 0.6) x− t = −0.5

x+ t = 0.7 F (−0.5) = −f(0.5) = −20(0.55 −0.5) = −1 F (0.7) = f(0.7) = 0

y(0.1, 0.6) = = −0.5−1+0
2

6.8.1 y t

6.8.1 t = 0 t = 0.2 t = 0.4 t = 0.6

y(x, t) = A(x−at) +B(x+at).

A B y(x, t)

g(x) = 0

G(x) = 0

.
F (x−at) +F (x+at)

2

f(x) = 0 F (x) = 0

H(x) = G(s)ds.∫
x

0

G(s)ds = .
1

2a
∫

x+at

x−at

−H(x−at) +H(x+at)

2a

(6.8.2) f(x) g(x)

y(x, t) = + .
F (x−at) +F (x+at)

2

−H(x−at) +H(x+at)

2a
(6.8.11)
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Do note the minus sign before the , and the  in the second denominator.

Check that the new formula  satisfies the side conditions .

Warning: Make sure you use the odd extensions  and , when you have formulas for  and . The thing is, those
formulas in general hold only for , and are not usually equal to  and  for other .

6.8.4: Remarks

Let us remark that the formula  is the reason why the solution of the wave equation doesn’t get
as time goes on, that is, why in the examples where the initial conditions had corners, the solution also has corners at every time .

The corners bring us to another interesting remark. Nobody ever notices at first that our example solutions are not even
differentiable (they have corners): In Example  above, the solution is not differentiable whenever  or 

 for example. Really to be able to compute  or , you need not one, but two derivatives. Fear not, we could
think of a shape that is very nearly  but does have two derivatives by rounding the corners a little bit, and then the solution

would be very nearly  and nobody would notice the switch.

One final remark is what the d’Alembert solution tells us about what part of the initial conditions influence the solution at a certain
point. We can figure this out by Let us suppose that the string is very long (perhaps infinite) for simplicity. Since the solution at
time  is

we notice that we have only used the initial conditions in the interval . These two endpoints are called the
wavefronts, as that is where the wave front is given an initial ( ) disturbance at . So if , an observer sitting at  at
time  has only seen the initial conditions for  in the range  and is blissfully unaware of anything else. This is why for
example we do not know that a supernova has occurred in the universe until we see its light, millions of years from the time when it
did in fact happen.

6.8.5: Footnotes

[1] Named after the French mathematician Jean le Rond d’Alembert (1717 – 1783).

[2] There is nothing special about , you can integrate with  first, if you wish.
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F (x) G(x) f(x) g(x)

0 < x < L F (x) G(x) x

y(x, t) = A(x−at) +B(x+at)

t

6.8.1 x = t+0.5

x = −t+0.5 uxx utt
F (x)

F(x−t)+F(x+t)

2

t

y(x, t) = + G(s)ds,
F (x−at) +F (x+at)

2

1

2a
∫

x+at

x−at

[x−at, x+at]

t = 0 x a = 1 x = 0

t = 1 x [−1, 1]

η ξ
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6.9: Steady State Temperature and the Laplacian
Suppose we have an insulated wire, a plate, or a 3-dimensional object. We apply certain fixed temperatures on the ends of the wire,
the edges of the plate, or on all sides of the 3-dimensional object. We wish to find out what is the steady state temperature
distribution. That is, we wish to know what will be the temperature after long enough period of time.

We are really looking for a solution to the heat equation that is not dependent on time. Let us first solve the problem in one space
variable. We are looking for a function  that satisfies

but such that  for all  and . Hence, we are looking for a function of  alone that satisfies . It is easy to solve this
equation by integration and we see that  for some constants  and .

Suppose we have an insulated wire, and we apply constant temperature  at one end (say where ) and  on the other end
(at  where  is the length of the wire). Then our steady state solution is

This solution agrees with our common sense intuition with how the heat should be distributed in the wire. So in one dimension, the
steady state solutions are basically just straight lines.

Things are more complicated in two or more space dimensions. Let us restrict to two space dimensions for simplicity. The heat
equation in two space variables is

or more commonly written as  or . Here the  and  symbols mean . We will use  from

now on. The reason for using such a notation is that you can define  to be the right thing for any number of space dimensions and
then the heat equation is always . The operator  is called the Laplacian.

OK, now that we have notation out of the way, let us see what does an equation for the steady state solution look like. We are
looking for a solution to Equation  that does not depend on , or in other words . Hence we are looking for a function 

 such that

This equation is called the Laplace equation . Solutions to the Laplace equation are called harmonic functions and have many
nice properties and applications far beyond the steady state heat problem.

Harmonic functions in two variables are no longer just linear (plane graphs). For example, you can check that the functions 
 and  are harmonic. However, if you remember your multi-variable calculus we note that if  is positive,  is concave

up in the  direction, then  must be negative and  must be concave down in the  direction. Therefore, a harmonic function can
never have any “hilltop” or “valley” on the graph. This observation is consistent with our intuitive idea of steady state heat
distribution; the hottest or coldest spot will not be inside.

Commonly the Laplace equation is part of a so-called Dirichlet problem . That is, we have a region in the -plane and we specify
certain values along the boundaries of the region. We then try to find a solution  defined on this region such that  agrees with the
values we specified on the boundary.

For simplicity, we consider a rectangular region. Also for simplicity we specify boundary values to be zero at 3 of the four edges
and only specify an arbitrary function at one edge. As we still have the principle of superposition, we can use this simpler solution
to derive the general solution for arbitrary boundary values by solving 4 different problems, one for each edge, and adding those
solutions together. This setup is left as an exercise.

We wish to solve the following problem. Let  and  be the height and width of our rectangle, with one corner at the origin and
lying in the first quadrant.

u

= k ,ut uxx

= 0ut x t x = 0uxx

u = Ax +B A B

T1 x = 0 T2

x = L L

u(x) = x + .
−T2 T1

L
T1

= k( + ),ut uxx uyy (6.9.1)

= kΔuut = k uut ∇2 Δ ∇2 +
∂2

∂x2

∂2

∂y2
Δ

Δ

= kΔuut Δ

(6.9.1) t = 0ut

u(x, y)

Δu = + = 0.uxx uyy

1

−x2 y2 xy uxx u

x uyy u y

2 xy

u u

h w
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Figure 

The method we apply is separation of variables. Again, we will come up with enough building-block solutions satisfying all the
homogeneous boundary conditions (all conditions except ). We notice that superposition still works for the equation and all
the homogeneous conditions. Therefore, we can use the Fourier series for  to solve the problem as before.

We try . We plug  into the equation to get

We put the s on one side and the s on the other to get

The left hand side only depends on  and the right hand side only depends on . Therefore, there is some constant  such that 

. And we get two equations

Furthermore, the homogeneous boundary conditions imply that  and . Taking the equation for  we

have already seen that we have a nontrivial solution if and only if  and the solution is a multiple of

For these given , the general solution for  (one for each ) is

We only have one condition on  and hence we can pick one of  or  to be something convenient. It will be useful to have 
, so we let . Setting  and solving for  we get that

After we plug the  and  we into  and simplify, we find

Δu = 0,

u(0, y) = 0

u(x, h) = 0

u(w, y) = 0

u(x, 0) = f(x)

for 0 < y < h,

for 0 < x < w,

for 0 < y < h,

for 0 < x < w.

(6.9.2)

(6.9.3)

(6.9.4)

(6.9.5)

(6.9.6)

6.9.1

(6.9.6)

f(x)

u(x, y) = X(x)Y (y) u

Y +X = 0.X ′′ Y ′′

X Y

− = .
X ′′

X

Y ′′

Y

x y λ

λ = =
−X ′′

X

Y ′′

Y

+λX = 0,X ′′

−λY = 0.Y ′′

X(0) = X(w) = 0 Y (h) = 0 X

λ = =λn

n2π2

w2

(x) = sin( x).Xn

nπ

w

λn Y n

(y) = cosh( y)+ sinh( y).Yn An

nπ

w
Bn

nπ

w
(6.9.7)

Yn An Bn

(0) = 1Yn = 1An (h) = 0Yn Bn

= .Bn

−cosh( )
nπh

w

sinh( )
nπh

w

An Bn (6.9.7)
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We define . And note that  satisfies  - .

Observe that

Suppose

Then we get a solution of  -  of the following form.

As  satisfies Equation  -  and any linear combination (finite or infinite) of  must also satisfy  - ,
we see that  must satisfy Equations  - . By plugging in  it is easy to see that  satisfies  as well.

Suppose that we take  and we let . We compute the sine series for the function (we will get the square
wave). We find that for  we have

Therefore the solution , see Figure , to the corresponding Dirichlet problem is given as

(y) = .Yn

sinh( )
nπ(h −y)

w

sinh( )
nπh

w

(x, y) = (x) (y)un Xn Yn un (6.9.2) (6.9.5)

(x, 0) = (x) (0) = sin( x).un Xn Yn

nπ

w

f(x) = sin( ).∑
n=1

∞

bn

nπx

w

(6.9.2) (6.9.6)

u(x, y) = (x, y) = sin( x) .∑
n=1

∞

bnun ∑
n=1

∞

bn

nπ

w

⎛

⎝

⎜
⎜
⎜

sinh( )
nπ(h −y)

w

sinh( )
nπh

w

⎞

⎠

⎟
⎟
⎟

un (6.9.2) (6.9.5) un (6.9.2) (6.9.5)

u (6.9.2) (6.9.5) y = 0 u (6.9.6)

 Example 6.9.1

w = h = π f(x) = π π

0 < x < π

f(x) = sin(nx).∑
n=1
n odd

∞ 4

n

u(x, y) 6.9.2

u(x, y) = sin(nx)( ) .∑
n=1
n odd

∞ 4

n

sinh(n(π −y))

sinh(nπ)
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Figure : Steady state temperature of a square plate, three sides held at zero and one side held at .

This scenario corresponds to the steady state temperature on a square plate of width  with 3
sides held at 0 degrees and one side held at  degrees. If we have arbitrary initial data on all
sides, then we solve four problems, each using one piece of nonhomogeneous data. Then we
use the principle of superposition to add up all four solutions to have a solution to the
original problem.
A different way to visualize solutions of the Laplace equation is to take a wire and bend it so that it corresponds to the graph of
the temperature above the boundary of your region. Cut a rubber sheet in the shape of your region—a square in our case—and
stretch it fixing the edges of the sheet to the wire. The rubber sheet is a good approximation of the graph of the solution to the
Laplace equation with the given boundary data.

6.9.1: Footnotes
[1] Named after the French mathematician Pierre-Simon, marquis de Laplace (1749–1827).

[2] Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805–1859).

This page titled 6.9: Steady State Temperature and the Laplacian is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Jiří Lebl.

4.9: Steady State Temperature and the Laplacian by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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6.10: Dirichlet Problem in the Circle and the Poisson Kernel

6.10.1: Laplace in Polar Coordinates

A more natural setting for the Laplace equation  is the circle rather than the square. On the other hand, what makes the
problem somewhat more difficult is that we need polar coordinates.

Figure 

Recall that the polar coordinates for the -plane are :

where  and . So  is distance  from the origin at angle  from the positive -axis.

Figure 

Now that we know our coordinates, let us give the problem we wish to solve. We have a circular region of radius 1, and we are
interested in the Dirichlet problem for the Laplace equation for this region. Let  denote the temperature at the point  in
polar coordinates. We have the problem:

The first issue we face is that we do not know what the Laplacian is in polar coordinates. Normally we would find  and  in
terms of the derivatives in  and . We would need to solve for  and  in terms of  and . While this is certainly possible, it
happens to be more convenient to work in reverse. Let us instead compute derivatives in  and  in terms of derivatives in  and 
and then solve. The computations are easier this way. First

Next by chain rule we obtain

Similarly for the  derivative. Note that we have to use product rule for the second derivative.

Δu = 0

6.10.1

(x, y) (r, θ)

x = r cosθ,     y = r sinθ,

r ≥ 0 −π < θ < π (x, y) r θ x

6.10.2

u(r, θ) (r, θ)

Δu

u(1, θ)

= 0,

= g(θ),

for r < 1,

for π < θ ≤ π.

(6.10.1)

(6.10.2)

uxx uyy
r θ r θ x y

r θ x y

xr
yr

= cosθ,

= sinθ,

= −r sinθ,xθ
= r cosθ.yθ

(6.10.3)

ur

urr

= + = cos(θ) +sin(θ) ,uxxr uyyr ux uy

= cos(θ)( + ) +sin(θ)( + )uxxxr uxyyr uyxxr uyyyr

= (θ) +2 cos(θ) sin(θ) + (θ) .cos2 uxx uxy sin2 uyy

(6.10.4)

θ

uθ

uθθ

= + = −r sin(θ) +r cos(θ) ,uxxθ uyyθ ux uy

= −r cos(θ)( ) −r sin(θ)( + ) −r sin(θ)( ) +r cos(θ)( + )ux uxxxθ uxyyθ uy uyxxθ uyyyθ

= −r cos(θ) −r sin(θ) + (θ) − 2 sin(θ) cos(θ) + (θ) .ux uy r2 sin2 uxx r2 uxy r2 cos2 uyy

(6.10.5)
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Let us now try to solve for . We start with  to get rid of those pesky . If we add  and use the fact that 
, we get

We’re not quite there yet, but all we are lacking is . Adding it we obtain the Laplacian in polar coordinates:

Notice that the Laplacian in polar coordinates no longer has constant coefficients.

6.10.2: Series Solution
Let us separate variables as usual. That is let us try . Then

Let us put  on one side and  on the other and conclude that both sides must be constant.

We get two equations:

Let us first focus on . We know that  ought to be -periodic in , that is, . Therefore, the solution
to  must be -periodic. We have seen such a problem in Example 4.1.5. We conclude that  for a nonnegative
integer . The equation becomes . When  the equation is just , so we have the general
solution . As  is periodic, . For convenience let us write this solution as

for some constant . For positive , the solution to  is

for some constants  and .

Next, we consider the equation for ,

This equation has appeared in exercises before—we solved it in Exercise 2.E.2.1.6 and Exercise 2.E.1.7. The idea is to try a
solution  and if that does not work out try a solution of the form . When  we obtain

and if , we get

The function  must be finite at the origin, that is, when . Therefore,  in both cases. Let us set  in both
cases as well, the constants in  will pick up the slack so we do not lose anything. Therefore let

Hence our building block solutions are

+uxx uyy
1
r2
uθθ r2 urr

(θ) + (θ) = 1cos2 sin2

+ = + − cos(θ) − sin(θ) .
1

r2
uθθ urr uxx uyy

1

r
ux

1

r
uy

1
r
ur

+ + = + = Δu.
1

r2
uθθ

1

r
ur urr uxx uyy

u(r, θ) = R(r)Θ(θ)

0 = Δu = R + Θ+ Θ.
1

r2
Θ′′ 1

r
R′ R′′

R Θ

R
1

r2
Θ′′

Θ′′

Θ

= −( + )Θ.
1

r
R′ R′′

= − +−λ.
r +R′ r2R′′

R

(6.10.6)

+λΘΘ′′

+r −λRr2R′′ R′

= 0,

= 0.
(6.10.7)

Θ u(r, θ) 2π θ u(r, θ) = u(r, θ+2π)

+λΘ = 0Θ′′ 2π λ = n2

n = 0, 1, 2, 3, . . . + Θ = 0Θ′′ n2 n = 0 = 0Θ′′

Aθ+B Θ A = 0

=Θ0
a0

2

a0 n + Θ = 0Θ′′ n2

= cos(nθ) + sin(nθ),Θn an bn

an bn

R

+r − R = 0.r2R′′ R′ n2

rs lnrrs n = 0

= A +B lnr = A+B lnr,R0 r0 r0

n > 0

= A +B .Rn rn r−n

u(r, θ) r = 0 B = 0 A = 1

Θn

= 1, and = .R0 Rn rn
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Putting everything together our solution is:

We look at the boundary condition in ,

Therefore, the solution  is to expand , which is a -periodic function as a Fourier series, and then the  coordinate
is multiplied by . In other words, to compute  and  from the formula we can, as usual, compute

Suppose we wish to solve

The solution is

See the plot in Figure . The thing to notice in this example is that the effect of a high frequency is mostly felt at the
boundary. In the middle of the disc, the solution is very close to zero. That is because  rather small when  is close to .

Figure : The solution of the Dirichlet problem in the disc with  as boundary data.

Let us solve a more difficult problem. Suppose we have a long rod with circular cross section of radius  and we wish to solve
the steady state heat problem. If the rod is long enough we simply need to solve the Laplace equation in two dimensions. Let us
put the center of the rod at the origin and we have exactly the region we are currently studying—a circle of radius . For the
boundary conditions, suppose in Cartesian coordinates  and , the temperature is fixed at  when  and at  when 

.

We set the problem up. As , then on the circle of radius  we have . So

(r, θ) = , (r, θ) = cos(nθ) + sin(nθ).u0
a0

2
un anr

n bnr
n

u(r, θ) = + cos(nθ) + sin(nθ).
a0

2
∑
n=1

∞

anr
n bnr

n

(6.10.1)

g(θ) = u(1, θ) = + cos(nθ) + sin(nθ).
a0

2
∑
n=1

∞

an bn

(6.10.1) g(θ) 2π nth

rn an bn

= g(θ) cos(nθ)dθ, and = g(θ) sin(nθ)dθ.an
1

π
∫

−π

π

bn
1

π
∫

−π

π

 Example 6.10.1

Δu = 0, 0 ≤ r < 1, −π < θ ≤ π,

u(1, θ) = cos(10 θ), −π < θ ≤ π.
(6.10.8)

u(r, θ) = cos(10θ).r10

6.10.3

r10 r 0

6.10.3 cos(10θ)

 Example 6.10.2

1

1

x y 0 y < 0 2y

y > 0

y = r sin(θ) 1 2y = 2 sin(θ)
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We must now compute the Fourier series for the boundary condition. By now the reader has plentiful experience in computing
Fourier series and so we simply state that

Compute the series for  and verify that it really is what we have just claimed. Hint: Be careful, make sure not to divide
by zero.

We now simply write the solution (see Figure ) by multiplying by  in the right places.

Figure : The solution of the Dirichlet problem with boundary data  for  and  for .

6.10.3: Poisson Kernel
There is another way to solve the Dirichlet problem with the help of an integral kernel. That is, we will find a function 
called the Poisson kernel  such that

While the integral will generally not be solvable analytically, it can be evaluated numerically. In fact, unless the boundary data is
given as a Fourier series already, it will be much easier to numerically evaluate this formula as there is only one integral to
evaluate.

The formula also has theoretical applications. For instance, as  will have infinitely many derivatives, then via
differentiating under the integral we find that the solution  has infinitely many derivatives, at least when inside the circle, 

. By infinitely many derivatives what you should think of is that  has “no corners” and all of its partial derivatives exist
too and also have “no corners”.

We will compute the formula for  from the series solution, and this idea can be applied anytime you have a convenient
series solution where the coefficients are obtained via integration. Hence you can apply this reasoning to obtain such integral

Δu = 0, 0 ≤ r < 1, −π < θ ≤ π,

u(1, θ) ={ 2 sin(θ)
0

if  0 ≤ θ ≤ π,
if  −π < θ < 0.

(6.10.9)

u(1, θ) = +sin(θ) + cos(2nθ).
2

π
∑
n=1

∞ −4

π(4 −1)n2

 Exercise 6.10.1

u(1, θ)

6.10.4 rn

u(r, θ) = +r sin(θ) + cos(2nθ).
2

π
∑
n=1

∞ −4r2n

π(4 −1)n2

6.10.4 0 y < 0 2y y > 0

P (r, θ,α)
1

u(r, θ) = P (r, θ,α)g(α)dα.
1

2π
∫

π

−π

P (r, θ,α)

u(r, θ)

r < 1 u(r, θ)

P (r, θ,α)
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kernels for other equations, such as the heat equation. The computation is long and tedious, but not overly difficult. Since the ideas
are often applied in similar contexts, it is good to understand how this computation works.

What we do is start with the series solution and replace the coefficients with the integrals that compute them. Then we try to write
everything as a single integral. We must use a different dummy variable for the integration and hence we use  instead of .

OK, so we have what we wanted, the expression in the parentheses is the Poisson kernel, . However, we can do a lot
better. It is still given as a series, and we would really like to have a nice simple expression for it. We must work a little harder. The
trick is to rewrite everything in terms of complex exponentials. Let us work just on the kernel.

In the above expression we recognize the geometric series. That is, recall from calculus that as long as , then

Note that  starts at  and that is why we have the  in the numerator. It is the standard geometric series multiplied by . Let us
continue with the computation.

α θ

u(r, θ) = + cos(nθ) + sin(nθ)
a0

2
∑
n=1

∞

anr
n bnr

n

= + cos(nθ)( g(α)dα)
1

2π
∫

π

−π  
a0

2

∑
n=1

∞

( g(α) cos(nα)dα)
1

π
∫

π

−π  
an

rn

+ sin(nθ)( g(α) sin(nα)dα)
1

π
∫

π

−π  
bn

rn

= (g(α) +2 g(α) cos(nα) cos(nθ) +g(α) sin(nα) sin(nθ)) dα
1

2π
∫

π

−π

∑
n=1

∞

rn rn

= g(α)dα
1

2π
∫

π

−π

(1 +2 (cos(nα) cos(nθ) +sin(nα) sin(nθ)))∑
n=1

∞

rn

  
P(r,θ,α)

(6.10.10)

P (r, θ,α)

P (r, θ,α) = 1 +2 (cos(nα) cos(nθ) +sin(nα) sin(nθ))∑
n=1

∞

rn

= 1 +2 cos(n(θ−α))∑
n=1

∞

rn

= 1 +2 ( + )∑
n=1

∞

rn ein(θ−α) e−in(θ−α)

= 1 + (r + (r .∑
n=1

∞

ei(θ−α) )n ∑
n=1

∞

e−i(θ−α) )n

(6.10.11)

|z| < 1

= .∑
n=1

∞

zn
z

1 −z

n 1 z z

P (r, θ,α) = 1 + (r + (r∑
n=1

∞

ei(θ−α) )n ∑
n=1

∞

e−i(θ−α) )n

= 1 + +
rei(θ−α)

1 −rei(θ−α)

re−i(θ−α)

1 −re−i(θ−α)

=
(1 −r )(1 −r ) +(1 −r )r +(1 −r )rei(θ−α) e−i(θ−α) e−i(θ−α) ei(θ−α) ei(θ−α) e−i(θ−α)

(1 −r )(1 −r )ei(θ−α) e−i(θ−α)

=
1 −r2

1 −r −r +ei(θ−α) e−i(θ−α) r2

= .
1 −r2

1 −2r cos(θ−α) +r2

(6.10.12)
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Now that’s a formula we can live with. The solution to the Dirichlet problem using the Poisson kernel is

Sometimes the formula for the Poisson kernel is given together with the constant , in which case we should of course not leave it
in front of the integral. Also, often the limits of the integral are given as  to ; everything inside is -periodic in , so this does
not change the integral.

Let us not leave the Poisson kernel without explaining its geometric meaning. Let  be the distance from  to . You may
recall from calculus that this distance  in polar coordinates is given precisely by the square root of . That
is, the Poisson kernel is really the formula

Figure 

One final note we make about the formula is to note that it is really a weighted average of the boundary values. First let us look at
what happens at the origin, that is when .

So  is precisely the average value of  and therefore the average value of  on the boundary. This is a general feature of
harmonic functions, the value at some point  is equal to the average of the values on a circle centered at .

What the formula says is that the value of the solution at any point in the circle is a weighted average of the boundary data .
The kernel is bigger when  is closer to . Therefore when computing  we give more weight to the values 
when  is closer to  and less weight to the values  when  far from .

6.10.4: Footnotes

[1] Named for the French mathematician Siméon Denis Poisson (1781 – 1840).

This page titled 6.10: Dirichlet Problem in the Circle and the Poisson Kernel is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jiří Lebl.

4.10: Dirichlet Problem in the Circle and the Poisson Kernel by Jiří Lebl is licensed CC BY-SA 4.0. Original source:
https://www.jirka.org/diffyqs.

u(r, θ) = g(α)dα.
1

2π
∫

π

−π

1 −r2

1 −2r cos(θ−α) +r2

1
2π

0 2π 2π α

s (r, θ) (1,α)

s 1 −2r cos(θ−α) +r2

.
1 −r2

s2

6.10.5

r = 0

u(0, 0) = g(α)dα
1

2π
∫

π

−π

1 −02

1 −2(0) cos(θ−α) +02

= g(α)dα.
1

2π
∫

π

−π

(6.10.13)

u(0, 0) g(θ) u

p p

g(θ)

(r, θ) (1,α) u(r, θ) g(α)

(1,α) (r, θ) g(θ) (1,α) (r, θ)
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6.E: Fourier Series and PDEs (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted
for a one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic
calculus sequence.

6.E.1: 4.1: Boundary value problems
Hint for the following exercises: Note that when , then  and  are also solutions of the
homogeneous equation.

Compute all eigenvalues and eigenfunctions of  (assume ).

Compute all eigenvalues and eigenfunctions of  (assume ).

Compute all eigenvalues and eigenfunctions of  (assume ).

Compute all eigenvalues and eigenfunctions of  (assume ).

We have skipped the case of  for the boundary value problem . Finish the
calculation and show that there are no negative eigenvalues.

Consider a spinning string of length 2 and linear density 0.1 and tension 3. Find smallest angular velocity when the string pops
out.

Answer

Suppose  and . Find all  for which there is more than one solution. Also find the
corresponding solutions (only for the eigenvalues).

Answer

 for   (for any )

Suppose  and . Find all the solution(s) if any exist.

Answer

λ > 0 cos( (t−a))λ
−−

√ sin( (t−a))λ
−−

√

 Exercise 6.E. 4.1.1

+λx = 0, x(a) = 0, x(b) = 0x′′ a < b

 Exercise 6.E. 4.1.2

+λx = 0, (a) = 0, (b) = 0x′′ x′ x′ a < b

 Exercise 6.E. 4.1.3

+λx = 0, (a) = 0, x(b) = 0x′′ x′ a < b

 Exercise 6.E. 4.1.4

+λx = 0, x(a) = x(b), (a) = (b)x′′ x′ x′ a < b

 Exercise 6.E. 4.1.5

λ < 0 +λx = 0, x(−π) = x(π), (−π) = (π)x′′ x′ x′

 Exercise 6.E. 4.1.6

ω = π 15
2

−−
√

 Exercise 6.E. 4.1.7

+λx = 0x′′ x(0) = 1, x(1) = 1 λ

= 4λk k2π2 k = 1, 2, 3, … = cos(2kπt) +B sin(2kπt)xk B

 Exercise 6.E. 4.1.8

+x = 0x′′ x(0) = 0, (π) = 1x′

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98078?pdf
https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Book%3A_Differential_Equations_for_Science_(Lebl_and_Trench)/06%3A_Fourier_series_and_PDEs/6.E%3A_Fourier_Series_and_PDEs_(Exercises)
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/4%3A_Fourier_series_and_PDEs/4.01%3A_Boundary_value_problems


6.E.2 https://math.libretexts.org/@go/page/98078

Consider  and . Why does it not have any eigenvalues? Why does any first order equation
with two endpoint conditions such as above have no eigenvalues?

Answer

General solution is . Since  then , and so . Therefore, the solution is always identically
zero. One condition is always enough to guarantee a unique solution for a first order equation.

Suppose  and . Suppose that . Find an equation that all such eigenvalues
must satisfy. Hint: Note that  is a root of .

Answer

6.E.2: 4.2: The Trigonometric Series

Suppose  is defined on  as . Extend periodically and compute the Fourier series of .

Suppose  is defined on  as . Extend periodically and compute the Fourier series of .

Suppose  is defined on  as . Extend periodically and compute the Fourier series of .

Suppose  is defined on  as

Extend periodically and compute the Fourier series of .

Suppose  is defined on  as . Extend periodically and compute the Fourier series of .

Suppose  is defined on  as . Extend periodically and compute the Fourier series of .

There is another form of the Fourier series using complex exponentials  for  instead of 
and  for positive . This form may be easier to work with sometimes. It is certainly more compact to write, and there is

x(t) = −sin(t)

 Exercise 6.E. 4.1.9

+λx = 0x′ x(0) = 0, x(1) = 0

x = Ce−λt x(0) = 0 C = 0 x(t) = 0

 Exercise : (challenging)6.E. 4.1.10

+λx = 0x′′′ x(0) = 0, (0) = 0, x(1) = 0x′ λ > 0
− λ

−−
√3 +λ = 0r3

− cos( )+sin( ) = 0
3√

3
e

−3

2
λ√3 3√

3

3√ λ√3

2

3√ λ√3

2

 Exercise 6.E. 4.2.1

f(t) [−π, π] sin(5t) +cos(3t) f(t)

 Exercise 6.E. 4.2.2

f(t) [−π, π] |t| f(t)

 Exercise 6.E. 4.2.3

f(t) [−π, π] |t|3 f(t)

 Exercise 6.E. 4.2.4

f(t) (−π, π]

f(t) ={
−1

1

     if  −π < t ≤ 0,

 if 0 < t ≤ π.
(6.E.1)

f(t)

 Exercise 6.E. 4.2.5

f(t) (−π, π] t3 f(t)

 Exercise 6.E. 4.2.6

f(t) [−π, π] t2 f(t)

ent n = … , −2, −1, 0, 1, 2, … cos(nt)
sin(nt) n
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only one formula for the coefficients. On the downside, the coefficients are complex numbers.

Let

Use Euler’s formula  to show that there exist complex numbers  such that

Note that the sum now ranges over all the integers including negative ones. Do not worry about convergence in this
calculation. Hint: It may be better to start from the complex exponential form and write the series as

Suppose  is defined on  as . Extend periodically and compute the Fourier series.

Answer

Suppose  is defined on  as . Extend periodically and compute the Fourier series.

Answer

Suppose  is defined on  as . Extend periodically and compute the Fourier series.

Answer

Suppose  is defined on  as . Extend periodically and compute the Fourier series.

Answer

6.E.3: 4.3: More on the Fourier series

 Exercise 6.E. 4.2.7

f(t) = + cos(nt) + sin(nt).
a0

2
∑
n=1

∞

an bn (6.E.2)

= cos(θ) + i sin(θ)eiθ cm

f(t) = .∑
m=−∞

∞

cme
imt (6.E.3)

+ + .c0 ∑
m=1

∞

cme
imt c−me

−imt (6.E.4)

 Exercise 6.E. 4.2.8

f(t) [−π, π] f(t) = sin(t)

sin(t)

 Exercise 6.E. 4.2.9

f(t) (−π, π] f(t) = sin(πt)

sin(nt)∑∞
n=1

(π−n) sin(πn+ )+(π+n) sin(πn− )π2 π2

π −n2 π3

 Exercise 6.E. 4.2.10

f(t) (−π, π] f(t) = (t)sin2

− cos(2t)1
2

1
2

 Exercise 6.E. 4.2.11

f(t) (−π, π] f(t) = t4

+ cos(nt)π4

5
∑∞

n=1
(−1 (8 −48))n π2n2

n4
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Let

extended periodically.

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Let

extended periodically.

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Let

extended periodically (period is 20).

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Let . Is  continuous and differentiable everywhere? Find the derivative (if it exists everywhere)

or justify why  is not differentiable everywhere.

Let . Is  differentiable everywhere? Find the derivative (if it exists everywhere) or justify

why  is not differentiable everywhere.

Let

extended periodically.

 Exercise 6.E. 4.3.1

f(t) ={
0

t

if

if

−1 < t ≤ 0,

0 < t ≤ 1,
(6.E.5)

f(t)
3rd

 Exercise 6.E. 4.3.2

f(t) ={
−t

t2

if

if

−1 < t ≤ 0,

0 < t ≤ 1,
(6.E.6)

f(t)

3rd

 Exercise 6.E. 4.3.3

f(t) =

⎧

⎩
⎨
⎪⎪

⎪⎪

−t

10
t

10

if

if

−10 < t ≤ 0,

0 < t ≤ 10,
(6.E.7)

f(t)

3rd

 Exercise 6.E. 4.3.4

f(t) = cos(nt)∑∞
n=1

1

n3
f(t)

f(t)

 Exercise 6.E. 4.3.5

f(t) = sin(nt)∑∞
n=1

(−1)n

n
f(t)

f(t)

 Exercise 6.E. 4.3.6

f(t) =
⎧

⎩
⎨
⎪

⎪

0

t

−t+2

   if  −2 < t ≤ 0,

if 0 < t ≤ 1,

if 1 < t ≤ 2,

(6.E.8)
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a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Let

extended periodically.

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.
c. What does the series converge to at .

Let

extended periodically.

a. Compute the Fourier series for .

b. By plugging in , evaluate 

c. Now evaluate .

Let

extended periodically. Suppose  is the function given by the Fourier series of . Without computing the Fourier series
evaluate.

a. 
b. 
c. 
d. 
e. 
f. 

Let

extended periodically.

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Answer

a. 

f(t)
3rd

 Exercise 6.E. 4.3.7

f(t) =      for  −1 < t ≤ 1et (6.E.9)

f(t)
3rd

t = 1

 Exercise 6.E. 4.3.8

f(t) =      for  −1 < t ≤ 1t2 (6.E.10)

f(t)

t = 0 = 1 − + −⋯ .∑∞
n=1

(−1)n

n2

1

4

1

9

= 1 + + +⋯ .∑∞
n=1

1

n2

1

4

1

9

 Exercise 6.E. 4.3.9

f(t) ={
0

t

if

if

−3 < t ≤ 0,

0 < t ≤ 3,
(6.E.11)

F (t) f

F (2)
F (−2)
F (4)
F (−4)
F (3)
F (−9)

 Exercise 6.E. 4.3.10

f(t) =      for  −2 < t ≤ 2t2 (6.E.12)

f(t)
3rd

+ cos( t)8
6

∑∞
n=1

16(−1)n

π2n2

nπ

2
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b. 

Let

extended periodically.

a. Compute the Fourier series for .
b. Write out the series explicitly up to the  harmonic.

Answer

a. 

b. 

Let

Compute .

Answer

Let

a. Find the antiderivative.
b. Is the antiderivative periodic?

Answer

a. 
b. no

Let

extended periodically.

a. Compute the Fourier series for .

b. Plug in  to find a series representation for .

− cos( t)+ cos(πt) − cos( t)+⋯8
6

16

π2

π

2
4

π2

16

9π2

3π
2

 Exercise 6.E. 4.3.11

f(t) = t     for λ < t ≤ λ (for some λ) (6.E.13)

f(t)
3rd

sin( t)∑∞
n=1

(−1 2λ)
n+1

nπ
nπ

λ

sin( t)− sin( t)+ sin( t)−⋯2λ
π

π

λ

λ
π

2π
λ

2λ
3π

3π
λ

 Exercise 6.E. 4.3.12

f(t) = + sin(nπt).
1

2
∑
n=1

∞ 1

n( +1)n2
(6.E.14)

(t)f ′

(t) = cos(nπt)f ′ ∑∞
n=1

π

+1n2

 Exercise 6.E. 4.3.13

f(t) = + cos(nt).
1

2
∑
n=1

∞
1

)n3
(6.E.15)

F (t) = +C + sin(nt)t

2
∑∞

n=1
1
n4

 Exercise 6.E. 4.3.14

f(t) =      for  −π < t ≤ π
t

2
(6.E.16)

f(t)

t =
π

2

π

4
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c. Using the first 4 terms of the result from part b) approximate .

Answer

a. 
b.  is continuous at  so the Fourier series converges to . Obtain 

.
c. Using the first  terms get  (quite a bad approximation, you would have to take about  terms to start to

get to within  of ).

Let

extended periodically. Suppose  is the function given by the Fourier series of . Without computing the Fourier series
evaluate.

a. 
b. 
c. 
d. 
e. 
f. 

Answer
a. 
b. 
c. 
d. 
e. 
f. 

6.E.4: 4.4: Sine and Cosine Series

Take  defined on .

a. Sketch the plot of the even periodic extension of .
b. Sketch the plot of the odd periodic extension of .

Find the Fourier series of both the odd and even periodic extension of the function  for . Can you tell
which extension is continuous from the Fourier series coefficients?

Find the Fourier series of both the odd and even periodic extension of the function  for .

π

4

sin(nt)∑∞
n=1

(−1)n+1

n

f t = π

2
f ( ) =π

2
π

4

= = 1 − + − +⋯π

4
∑∞

n=1
(−1)n+1

2n−1
1
3

1
5

1
7

4 76/105 ≈ 0.72 50
0.01 π

4

 Exercise 6.E. 4.3.15

f(t) ={
0

2

if

if

−2 < t ≤ 0,

0 < t ≤ 2,
(6.E.17)

F (t) f

F (0)
F (−1)
F (1)
F (−2)
F (4)
F (−8)

F (0) = 1
F (−1) = 0
F (1) = 2
F (−2) = 1
F (4) = 1
F (−9) = 0

 Exercise 6.E. 4.4.1

f(t) = (t−1)2 0 ≤ t ≤ 1

f

f

 Exercise 6.E. 4.4.2

f(t) = (t−1)2 0 ≤ t ≤ 1

 Exercise 6.E. 4.4.3

f(t) = t 0 ≤ t ≤ π

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98078?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/4%3A_Fourier_series_and_PDEs/4.04%3A_Sine_and_cosine_series


6.E.8 https://math.libretexts.org/@go/page/98078

Find the Fourier series of the even periodic extension of the function  for .

Consider

where  on .

a. Solve for the Dirichlet conditions , .
b. Solve for the Neumann conditions , .

Consider

for  on .

a. Solve for the Dirichlet conditions .
b. b) Solve for the Neumann conditions .

Consider

where . Write the solution  as a Fourier series, where the coefficients are given in terms of .

Let  for . Let  be the odd periodic extension. Compute 
. Note: Do not compute using the sine series.

Let  on .

a. Find the Fourier series of the even periodic extension.
b. Find the Fourier series of the odd periodic extension.

Answer

a. 

b. 

Let  on .

a. Find the Fourier series of the even periodic extension.
b. Find the Fourier series of the odd periodic extension.

 Exercise 6.E. 4.4.4

f(t) = sin t 0 ≤ t ≤ π

 Exercise 6.E. 4.4.5

(t) +4x(t) = f(t),x′′ (6.E.18)

f(t) = 1 0 < t < 1

x(0) = 0 x(1) = 0
(0) = 0x′ (1) = 0x′

 Exercise 6.E. 4.4.6

(t) +9x(t) = f(t),x′′ (6.E.19)

f(t) = sin(2πt) 0 < t < 1

x(0) = 0, x(1) = 0
(0) = 0, (1) = 0x′ x′

 Exercise 6.E. 4.4.7

(t) +3x(t) = f(t), x(0) = 0, x(1) = 0,x′′ (6.E.20)

f(t) = sin(nπt)∑∞
n=1 bn x(t) bn

 Exercise 6.E. 4.4.8

f(t) = (2 − t)t2 0 ≤ t ≤ 2 F (t)

F (1), F (2), F (3), F (−1), F ( ), F (101), F (103)9
2

 Exercise 6.E. 4.4.9

f(t) = t

3
0 ≤ t < 3

+ cos( t)1
2

∑

n odd
n=1

∞
−4

π2n2

nπ

3

sin( t)∑
n=1

∞
2(−1)

n+1

πn
nπ

3

 Exercise 6.E. 4.4.10

f(t) = cos(2t) 0 ≤ t < π
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Answer
a. 

b. 

Let  be defined on . Now take the average of the two extensions .

a. What is  if  (Justify!)
b. What is  if  (Justify!)

Answer
a. 
b. 

Let . Solve  for the Dirichlet conditions  and .

Answer

Let . Solve  for the Dirichlet conditions  and . Hint: Note that 
 satisfies the given Dirichlet conditions.

Answer

6.E.5: 4.5: Applications of Fourier series

Let . Find the steady periodic solution to . Express your solution as a Fourier
series.

Let . Find the steady periodic solution to . Express your solution as a Fourier
series.

Let . Find the steady periodic solution to . Express your solution as a Fourier
series.

cos(2t)

sin(nt)∑

n odd
n=1

∞
−4n

π −4πn2

 Exercise 6.E. 4.4.11

f(t) 0 ≤ t < 1 g(t) =
(t)+ (t)Fodd Feven

2

g(t) 0 ≤ t < 1
g(t) −1 < t < 0

f(t)
0

 Exercise 6.E. 4.4.12

f(t) = sin(nt)∑∞
n=1

1
n2 −x = f(t)x′′ x(0) = 0 x(π) = 0

sin(nt)∑
n=1

∞
−1

(1+ )n2 n2

 Exercise : (challenging)6.E. 4.4.13

f(t) = t+ sin(nt)∑∞
n=1

1
2n

+πx = f(t)x′′ x(0) = 0 x(π) = 1
t

π

+ sin(nt)t
π ∑

n=1

∞
1

(π− )2n n2

 Exercise 6.E. 4.5.1

F (t) = + cos(nπt)1
2

∑∞
n=1

1
n2 +2x = F (t)x′′

 Exercise 6.E. 4.5.2

F (t) = sin(nπt)∑∞
n=1

1
n3 + +x = F (t)x′′ x′

 Exercise 6.E. 4.5.3

F (t) = cos(nπt)∑∞
n=1

1
n2

+4x = F (t)x′′
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Let  for  and extended periodically. Find the steady periodic solution to . Express your
solution as a series.

Let  for  and extended periodically. Find the steady periodic solution to . Express your
solution as a series.

Let . Find the steady periodic solution to . Express your solution as a
Fourier series.

Answer

Let . Find the steady periodic solution to . Express your solution as a Fourier
series.

Answer

Let  for  extended periodically. Find the steady periodic solution to . Express your
solution as a series.

Answer

Let  for  extended periodically. Find the steady periodic solution to . Express your
solution as a series.

Answer

6.E.6: 4.6: PDEs, Separation of Variables, and the Heat Equation

 Exercise 6.E. 4.5.4

F (t) = t −1 < t < 1 +x = F (t)x′′

 Exercise 6.E. 4.5.5

F (t) = t −1 < t < 1 + x = F (t)x′′ π2

 Exercise 6.E. 4.5.6

F (t) = sin(2πt) +0.1 cos(10πt) + x = F (t)x′′ 2
–

√

x = sin(2πt) + cos(10πt)1

−42√ π2

0.1

−1002√ π2

 Exercise 6.E. 4.5.7

F (t) = cos(2nt)∑∞
n=1 e

−n +3x = F (t)x′′

x = cos(2nt)∑
n=1

∞
e−n

3−(2n)2

 Exercise 6.E. 4.5.8

F (t) = |t| −1 ≤ t ≤ 1 + x = F (t)x′′ 3
–

√

x = + cos(nπt)1
2 3√

∑

n odd
n=1

∞
−4

( − )n2π2 3√ n2π2

 Exercise 6.E. 4.5.9

F (t) = |t| −1 ≤ t ≤ 1 + x = F (t)x′′ π2

x = − t sin(πt) + cos(nπt)1
2 3√

2
π3

∑

n odd
n=3

∞
−4

(1− )n2π4 n2
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Imagine you have a wire of length , with  and an initial temperature distribution of . Suppose that
both the ends are embedded in ice (temperature 0). Find the solution as a series.

Find a series solution of

Find a series solution of

Find a series solution of

Find a series solution of

Hint: Use the fact that  is a solution satisfying . Then usesuperposition.

Find the steady state temperature solution as a function of  alone, by letting  in the solution from exercises  and 
. Verify that it satisfies the equation .

Use separation variables to find a nontrivial solution to , where  and . Hint: Try 
.

Suppose that one end of the wire is insulated (say at ) and the other end is kept at zero temperature. That is, find a series
solution of

 Exercise 6.E. 4.6.1

2 k = 0.001 u(x, 0) = 50x

 Exercise 6.E. 4.6.2

ut
u(0, t)

u(x, 0)

= ,uxx
= u(1, t) = 0,

= 100    for 0 < x < 1.

(6.E.21)

 Exercise 6.E. 4.6.3

ut
(0, t)ux

u(x, 0)

= ,uxx
= (π, t) = 0,ux

= 3 cos(x) +cos(3x)    for 0 < x < π.

(6.E.22)

 Exercise 6.E. 4.6.4

ut

(0, t)ux

u(x, 0)

= ,
1

3
uxx

= (π, t) = 0,ux

=     for 0 < x < π.
10x

π

(6.E.23)

 Exercise 6.E. 4.6.5

ut

u(0, t)

u(x, 0)

= ,uxx

= 0,    u(1, t) = 100,

= sin(πx)    for 0 < x < 1.

(6.E.24)

u(x, t) = 100x = , u(0, t) = 0, u(1, t) = 100ut uxx

 Exercise 6.E. 4.6.6

x t → ∞ 6.E. 4
6.E. 5 = 0uxx

 Exercise 6.E. 4.6.7

+ = 0uxx uyy u(x, 0) = 0 u(0, y) = 0
u(x, y) = X(x)Y (y)

 Exercise : (challenging)6.E. 4.6.8

x = 0
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Express any coefficients in the series by integrals of .

Suppose that the wire is circular and insulated, so there are no ends. You can think of this as simply connecting the two ends
and making sure the solution matches up at the ends. That is, find a series solution of

Express any coefficients in the series by integrals of .

Consider a wire insulated on both ends, , , and .

a. Find the solution . Hint: a trig identity.
b. Find the average temperature.
c. Initially the temperature variation is  (maximum minus the minimum). Find the time when the variation is .

Find a series solution of

Answer

Find a series solution of

Answer

Use separation of variables to find a nontrivial solution to .

Answer

 for some 

ut

(0, t)ux

u(x, 0)

= k ,uxx

= u(L, t) = 0,

= f(x)    for 0 < x < L.

(6.E.25)

f(x)

 Exercise : (challenging)6.E. 4.6.9

ut
u(0, t)

u(x, 0)

= k ,uxx
= u(L, t),      (0, t) = (L, t)ux ux

= f(x)    for 0 < x < L.

(6.E.26)

f(x)

 Exercise 6.E. 4.6.10

L = 1 k = 1 u(x, 0) = (πx)cos2

u(x, t)

1 1
2

 Exercise 6.E. 4.6.11

ut
u(0, t)

u(x, 0)

= 3 ,uxx
= u(π, t) = 0,

= 5 sin(x) +2 sin(5x)    for 0 < x < π.

(6.E.27)

u(x, t) = 5 sin(x) +2 sin(5x)e3t e−75t

 Exercise 6.E. 4.6.12

ut
(0, t)ux

u(x, 0)

= 0.1 ,uxx
= (π, t) = 0,ux

= 1 +2 cos(x)    for 0 < x < π.

(6.E.28)

u(x, t) = 1 +2 cos(x)e−0.1t

 Exercise 6.E. 4.6.13

=uxt uxx

u(x, t) = eλteλx λ
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Use separation of variables to find a nontrivial solution to . (Hint: try ).

Answer

Suppose that the temperature on the wire is fixed at  at the ends, , , and .

a. What is the temperature at  at any time.
b. What is the maximum and the minimum temperature on the wire at .
c. At what time is the maximum temperature on the wire exactly one half of the initial maximum at .

Answer
a. 
b. , 
c. 

6.E.7: 4.7: One dimensional wave equation

Solve

Solve

Derive the solution for a general plucked string of length , where we raise the string some distance  at the midpoint and let
go, and for any constant  (in the equation ).

Imagine that a stringed musical instrument falls on the floor. Suppose that the length of the string is 1 and . When the
musical instrument hits the ground the string was in rest position and hence . However, the string was moving at
some velocity at impact )), say . Find the solution  for the shape of the string at time .

 Exercise 6.E. 4.6.14

+ = uux ut u(x, t) = X(x) +T (t)

u(x, t) = A +Bex et

 Exercise 6.E. 4.6.15

0 L = 1 k = 1 u(x, 0) = 100 sin(2πx)

x = 1
2

t = 0
t = 0

0
minimum  −100 maximum 100

t = ln 2
4π2

 Exercise 6.E. 4.7.1

ytt
y(0, t)

y(x, 0)

(x, 0)yt

= 9 ,yxx
= y(1, t) = 0,

= sin(3πx) + sin(6πx)
1

4
= 0

for 0 < x < 1,

for 0 < x < 1.

(6.E.29)

 Exercise 6.E. 4.7.2

ytt

y(0, t)

y(x, 0)

(x, 0)yt

= 4 ,yxx

= y(1, t) = 0,

= sin(3πx) + sin(6πx)
1

4
= sin(9πx)

for 0 < x < 1,

for 0 < x < 1.

(6.E.30)

 Exercise 6.E. 4.7.3

L b

a =ytt a2yxx

 Exercise 6.E. 4.7.4

a = 1
y(x, 0) = 0

(t = 0 (x, 0) = −1yt y(x, t) t
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Suppose that you have a vibrating string and that there is air resistance proportional to the velocity. That is, you have

Suppose that . Derive a series solution to the problem. Any coefficients in the series should be expressed as
integrals of .

Suppose you touch the guitar string exactly in the middle to ensure another condition  for all time. Which
multiples of the fundamental frequency  show up in the solution?

Solve

Answer

Solve

Answer

Solve

Answer

 Exercise : (challenging)6.E. 4.7.5

ytt
y(0, t)

y(x, 0)

(x, 0)yt

= −k ,a2yxx yt
= y(1, t) = 0,

= f(x)

= 0

for 0 < x < 1,

for 0 < x < 1.

(6.E.31)

0 < k < 2πa
f(x)

 Exercise 6.E. 4.7.6

u ( , t) = 0L

2
πa

L

 Exercise 6.E. 4.7.7

ytt
y(0, t)

y(x, 0)

(x, 0)yt

= ,yxx
= y(π, t) = 0,

= sin(x)

= sin(x)

for 0 < x < π,

for 0 < x < π.

(6.E.32)

y(x, t) = sin(x) (sin(t) +cos(t))

 Exercise 6.E. 4.7.8

ytt
y(0, t)

y(x, 0)

(x, 0)yt

= 25 ,yxx
= y(2, t) = 0,

= 0

= sin(πx) +0.1 sin(2πt)

for 0 < x < 2,

for 0 < x < 2.

(6.E.33)

y(x, t) = sin(πx) sin(5πt) + sin(2πx) sin(10πt)1
5π

1
100π

 Exercise 6.E. 4.7.9

ytt
y(0, t)

y(x, 0)

(x, 0)yt

= 2 ,yxx
= y(π, t) = 0,

= x

= 0

for 0 < x < π,

for 0 < x < π.

(6.E.34)

y(x, t) = sin(nx) cos(n t)∑
n=1

∞ 2(−1)n+1

n 2
–

√
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Let’s see what happens when . Find a solution to 

Answer

6.E.8: 4.8: D’Alembert solution of the wave equation

Using the d’Alembert solution solve , , and 
. Hint: Note that  is the odd extension of  and .

Using the d’Alembert solution solve , , and 
.

Take , , and .

a. Solve using the d’Alembert formula. Hint: You can use the sine series for .
b. Find the solution as a function of  for a fixed  and . Do not use the sine series here.

Derive the d’Alembert solution for , , and ,
using the Fourier series solution of the wave equation, by applying an appropriate trigonometric identity. Hint: Do it first for a
single term of the Fourier series solution, in particular do it when  is .

The d’Alembert solution still works if there are no boundary conditions and the initial condition is defined on the whole real
line. Suppose that  (for all  on the real line and ), , and , where

Solve using the d’Alembert solution. That is, write down a piecewise definition for the solution. Then sketch the solution for 
, and .

Using the d’Alembert solution solve , , and 
.

Answer

 Exercise 6.E. 4.7.10

a = 0 = 0, y(0, t) = y(π, t) = 0, y(x, 0) = sin(2x), (x, 0) = sin(x).ytt yt

y(x, t) = sin(2x) + t sin(x)

 Exercise 6.E. 4.8.1

= 4ytt yxx 0 < x < π, t > 0, y(0, t) = y(π, t) = 0, y(x, 0) = sinx
(x, 0) = sinxyt sinx y(x, 0) (x, 0)yt

 Exercise 6.E. 4.8.2

= 2ytt yxx 0 < x < 1, t > 0, y(0, t) = y(1, t) = 0, y(x, 0) = (πx)sin5

(x, 0) = (πx)yt sin3

 Exercise 6.E. 4.8.3

= 4ytt yxx 0 < x < π, t > 0, y(0, t) = y(π, t) = 0, y(x, 0) = x(π−x) (x, 0) = 0yt

y(x, 0)
x t = 0.5, t = 1, t = 2

 Exercise 6.E. 4.8.4

=ytt a2yxx 0 < x < π, t > 0, y(0, t) = y(π, t) = 0, y(x, 0) = f(x) (x, 0) = 0yt

y sin( x) sin( t)nπ

L

nπa

L

 Exercise 6.E. 4.8.5

=ytt yxx x t ≥ 0 y(x, 0) = f(x) (x, 0)yt

f(x) =

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

0

x+1

−x+1

0

if

if

if

if

x < −1,

−1 ≤ x < 0,

0 ≤ x < 1

x > 1.

t = 0, t = 1/2, t = 1 t = 2

 Exercise 6.E. 4.8.6

= 9ytt yxx 0 < x < 1, t > 0, y(0, t) = y(1, t) = 0, y(x, 0) = sin(2πx)
(x, 0) = sin(3πx)yt

y(x, t) = +
sin(2π(x−3t))+sin(2π(3t+x))

2

cos(3π(x−3t))−cos(3π(3t+x))

18π
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Take , , and . Using the D’Alembert
solution find the solution at

a. ,
b. ,
c. .

You may have to split your answer up by cases.

Answer

a. 

b. 
c. 

Take , , and . Suppose that 
. Using the D’Alembert solution find

a. ,
b. ,
c. .

Answer

a. 
b. 
c. 

6.E.9: 4.9: Steady state temperature and the Laplacian

Let  be the region described by  and . Solve the problem

Let  be the region described by  and . Solve the problem

Let  be the region described by  and . Solve the problem

for some constant . Hint: Guess, then check your intuition.

 Exercise 6.E. 4.8.7

= 4ytt yxx 0 < x < 1, t > 0, y(0, t) = y(1, t) = 0, y(x, 0) = x−x2 (x, 0) = 0yt

t = 0.1
t = 1/2
t = 1

y(x, t) =
⎧

⎩
⎨
⎪

⎪

x− −0.04x2

0.6x

0.6 −0.6x

if

if

if

0.2 ≤ x ≤ 0.8

x ≤ 0.2

x ≥ 0.8
y(x, ) = −x+1

2
x2

y(x, 1) = x−x2

 Exercise 6.E. 4.8.8

= 100ytt yxx 0 < x < 4, t > 0, y(0, t) = y(4, t) = 0, y(x, 0) = F (x) (x, 0) = 0yt
F (0) = 0, F (1) = 2, F (2) = 3, F (3) = 1

y(1, 1)
y(4, 3)
y(3, 9)

y(1, 1) = − 1
2

y(4, 3) = 0

y(3, 9) = 1
2

 Exercise 6.E. 4.9.1

R 0 < x < π 0 < y < π

Δu = 0,     u(x, 0) = sinx,     u(x, π) = 0,     u(0, y) = 0,     u(π, y) = 0.

 Exercise 6.E. 4.9.2

R 0 < x < 1 0 < y < 1

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= sin(πx) −sin(2πx),    u(x, 1) = 0,

= 0,    u(1, y) = 0.

(6.E.35)

 Exercise 6.E. 4.9.3

R 0 < x < 1 0 < y < 1

+uxx uyy

u(x, 0)

= 0,

= u(x, 1) = u(0, y) = u(1, y) = C.
(6.E.36)

C
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Let  be the region described by  and . Solve

Hint: Try a solution of the form  (different separation of variables).

Use the solution of Exercise  to solve

Hint: Use superposition.

Let  be the region described by  and . Solve the problem

The solution should be in series form using the Fourier series coefficients of .

Let  be the region described by  and . Solve the problem

The solution should be in series form using the Fourier series coefficients of .

Let  be the region described by  and . Solve the problem

The solution should be in series form using the Fourier series coefficients of .

Let  be the region described by  and . Solve the problem

Hint: Use superposition.

 Exercise 6.E. 4.9.4

R 0 < x < π 0 < y < π

Δu = 0,    u(x, 0) = 0,    u(x, π) = π,    u(0, y) = y,    u(π, y) = y.

u(x, y) = X(x) +Y (y)

 Exercise 6.E. 4.9.5

6.E. 4

Δu = 0,    u(x, 0) = sinx,    u(x, π) = π,    u(0, y) = y,    u(π, y) = y.

 Exercise 6.E. 4.9.6

R 0 < x < w 0 < y < h

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= 0,

= 0,

u(x,h) = f(x),

u(w, y) = 0.

(6.E.37)

f(x)

 Exercise 6.E. 4.9.7

R 0 < x < w 0 < y < h

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= 0,

= f(y),

u(x,h) = 0,

u(w, y) = 0.

(6.E.38)

f(y)

 Exercise 6.E. 4.9.8

R 0 < x < w 0 < y < h

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= 0,

= 0,

u(x,h) = 0,

u(w, y) = f(y).

(6.E.39)

f(y)

 Exercise 6.E. 4.9.9

R 0 < x < 1 0 < y < 1

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= sin(9πx),

= 0,

u(x, 1) = sin(2πx),

u(1, y) = 0.

(6.E.40)
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Let  be the region described by  and . Solve the problem

Hint: Use superposition.

Using only your intuition find , for the problem , where  for , and 
 for . Explain.

Let  be the region described by  and . Solve the problem

Answer

Let  be the region described by  and . Solve the problem

Answer

6.E.10: 4.10: Dirichlet problem in the circle and the Poisson kernel

Using series solve  for .

Using series solve  for the following data. Hint: trig identities.

a. 
b. 
c. 
d. 

Using the Poisson kernel, give the solution to , where  is zero for  outside the interval  and 
is  for  on the interval .

 Exercise 6.E. 4.9.10

R 0 < x < 1 0 < y < 1

+uxx uyy

u(x, 0)

u(0, y)

= 0,

= sin(πx),

= sin(πy),

u(x, 1) = sin(πx),

u(1, y) = sin(πy).

(6.E.41)

 Exercise : (challenging)6.E. 4.9.11

u(1/2, 1/2) Δu = 0 u(0, y) = u(1, y) = 100 0 < y < 1
u(x, 0) = u(x, 1) = 0 0 < x < 1

 Exercise 6.E. 4.9.12

R 0 < x < 1 0 < y < 1

Δu = 0,    u(x, 0) = sin(nπx),    u(x, 1) = 0,    u(0, y) = 0,    u(1, y) = 0.∑
n=1

∞

u(x, y) = sin(nπx)( )∑
n=1

∞
1
n2

sinh(nπ(1−y))

sinh(nπ)

 Exercise 6.E. 4.9.13

R 0 < x < 1 0 < y < 2

Δu = 0,    u(x, 0) = 0.1 sin(πx),    u(x, 2) = 0,    u(0, y) = 0,    u(1, y) = 0.

u(x, y) = 0.1 sin(πx)( )
sinh(π(2−y))

sinh(2π)

 Exercise 6.E. 4.10.1

Δu = 0, u(1, θ) = |θ| −π < θ ≤ π

 Exercise 6.E. 4.10.2

Δu = 0, u(1, θ) = g(θ)

g(θ) = 1/2 +3 sin(θ) +cos(3θ)
g(θ) = cos(3θ) +3 sin(3θ) +sin(9θ)
g(θ) = 2 cos(θ+1)
g(θ) = (θ)sin2

 Exercise 6.E. 4.10.3

Δu = 0 u(1, θ) θ [−π/4, π/4] u(1, θ)
1 θ [−π/4, π/4]
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a. Draw a graph for the Poisson kernel as a function of  when  and .
b. Describe what happens to the graph when you make  bigger (as it approaches 1).
c. Knowing that the solution  is the weighted average of  with Poisson kernel as the weight, explain what your

answer to part b means.

Take the function  to be the function  on the boundary. Use the series solution to find a solution to the
Dirichlet problem . Now convert the solution to Cartesian coordinates  and . Is this solution
surprising? Hint: use your trig identities.

Carry out the computation we needed in the separation of variables and solve , for .

Derive the series solution to the Dirichlet problem if the region is a circle of radius  rather than . That is, solve 
.

1. Find the solution for , . Write the answer in Cartesian coordinates.
2. Now solve , . Write the solution in Cartesian coordinates.
3. Suppose you have a polynomial , solve ,  (that is, write down

the formula for the answer). Write the answer in Cartesian coordinates.

Notice the answer is again a polynomial in  and . See also Exercise .

Using series solve .

Answer

Using the series solution find the solution to . Express the solution in Cartesian coordinates
(that is, using  and ).

Answer

a. Try and guess a solution to . Hint: try a solution that only depends on . Also first, don’t worry
about the boundary condition.

b. Now solve  using superposition.

Answer

 Exercise 6.E. 4.10.4

α r = 1/2 θ = 0
r

u(r, θ) g(θ)

 Exercise 6.E. 4.10.5

g(θ) xy = cos(θ) sin(θ)
Δu = 0, u(1, θ) = g(θ) x y

 Exercise 6.E. 4.10.6

+r − R = 0r2R′′ R′ n2 n = 0, 1, 2, 3, . . .

 Exercise : (challenging)6.E. 4.10.7

ρ 1
Δu = 0, u(ρ, θ) = g(θ)

 Exercise : (challenging)6.E. 4.10.8

Δu = 0 u(1, θ) = +5x2y3 x2

Δu = 0 u(1, θ) = xkyl

P (x, y) = ∑m
j=0 ∑

n
k=0 cj,kx

jyk Δu = 0 u(1, θ) = P (x, y)

x y 6.E. 5

 Exercise 6.E. 4.10.9

Δu = 0, u(1, θ) = 1 + sin(nθ)∑∞
n=1

1
n2

u = 1 sin(nθ)∑
n=1

∞
1
n2
rn

 Exercise 6.E. 4.10.10

Δu = 0, u(1, θ) = 1 −cos(θ)
x y

u = 1 −x

 Exercise 6.E. 4.10.11

Δu = −1, u(1, θ) = 0 r

Δu = −1, u(1, θ) = sin(2θ)
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a. 
b. 

Derive the Poisson kernel solution if the region is a circle of radius  rather than . That is, solve .

Answer

This page titled 6.E: Fourier Series and PDEs (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

4.E: Fourier series and PDEs (Exercises) has no license indicated.

u = +
−1
4
r2 1

4

u = + + sin(2θ)
−1
4
r2 1

4
r2

 Exercise : (challenging)6.E. 4.10.12

ρ 1 Δu = 0, u(ρ, θ) = g(θ)

u(r, θ) = g(α)dα1
2π

∫ π

−π

−ρ2 r2

ρ−2rρ cos(θ−α)+r2
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7.1: Sturm-Liouville problems

7.1.1: Boundary Value Problems

In Chapter 4 we have encountered several different eigenvalue problems such as:

with different boundary conditions

For example for the insulated wire, Dirichlet conditions correspond to applying a zero temperature at the ends, Neumann means
insulating the ends, etc…. Other types of endpoint conditions also arise naturally, such as the Robin boundary conditions

for some constant . These conditions come up when the ends are immersed in some medium.

Boundary problems came up in the study of the heat equation  when we were trying to solve the equation by the method
of separation of variables in Section 4.6. In the computation we encountered a certain eigenvalue problem and found the
eigenfunctions . We then found the eigenfunction decomposition of the initial temperature  in terms of the
eigenfunctions

Once we had this decomposition and found suitable  such that  and  were solutions, the solution to the
original problem including the initial condition could be written as

We will try to solve more general problems using this method. First, we will study second order linear equations of the form

Essentially any second order linear equation of the form  can be written as  after
multiplying by a proper factor.

Put the following equation into the form :

Multiply both sides by  to obtain

The Bessel equation turns up for example in the solution of the two-dimensional wave equation. If you want to see how one
solves the equation, you can look at subsection 7.3.3.

The so-called Sturm-Liouville problem  is to seek nontrivial solutions to

(x) +λX(x) = 0X ′′

X(0) = 0

(0) = 0X ′

(0) = 0X ′

X(0) = 0

  X(L) = 0

   (L) = 0X ′

  X(L) = 0

   (L) = 0X ′

  (Dirichlet), or

  (Neumann), or

  (Mixed), or

  (Mixed), …

hX(0) − (0) = 0 hX(L) + (L) = 0,X ′ X ′

h

= kut uxx

(x)Xn f(x) = u(x, 0)

f(x) = (x).∑
n=1

∞

cnXn

(t)Tn (0) = 1Tn (t)X(x)Tn

u(x, t) = (t) (x).∑
n=1

∞

cnTn Xn

(p(x) )−q(x)y+λr(x)y = 0.
d

dx

dy

dx
(7.1.1)

a(x) +b(x) +c(x)y+λd(x)y = 0y′′ y′ (7.1.1)

 Example : Sturm-Liouville Problem7.1.1

(7.1.1)

+x +(λ − )y = 0.x2y′′ y′ x2 n2

1
x

( +x +(λ − )y)
1

x
x2y′′ y′ x2 n2 = x + +(λx− ) yy′′ y′ n2

x
= (x )− y+λxy = 0.

d

dx

dy

dx

n2

x
(7.1.2)

1
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In particular, we seek s that allow for nontrivial solutions. The s that admit nontrivial solutions are called the eigenvalues
and the corresponding nontrivial solutions are called eigenfunctions. The constants  and  should not be both zero, same
for  and .

Suppose  and  are continuous on  and suppose  and  for all  in . Then the
Sturm-Liouville problem (5.1.8) has an increasing sequence of eigenvalues

such that

and such that to each  there is (up to a constant multiple) a single eigenfunction .

Moreover, if  and , then  for all .

Problems satisfying the hypothesis of the theorem (including the "Moreover") are called regular Sturm-Liouville problems, and we
will only consider such problems here. That is, a regular problem is one where  and  are continuous, 

, , , and . Note: Be careful about the signs. Also be careful about the inequalities for 
 and , they must be strict for all  in the interval , including the endpoints!

When zero is an eigenvalue, we usually start labeling the eigenvalues at  rather than at  for convenience. That is we label the
eigenvalues .

The problem , and  is a regular Sturm-Liouville problem: 
, and we have  and . We also have , , , 

. The eigenvalues are  and eigenfunctions are . All eigenvalues are nonnegative as
predicted by the theorem.

Find eigenvalues and eigenfunctions for

Identify the . Can you use the theorem to make the search for eigenvalues easier? (Hint: Consider the condition 
)

Find eigenvalues and eigenfunctions of the problem

These equations give a regular Sturm-Liouville problem.

(p(x) )−q(x)y+λr(x)y
d

dx

dy

dx

y(a) − (a)α1 α2y
′

y(b) + (b)β1 β2y
′

= 0,      a < x < b,

= 0,

= 0.

(7.1.3)

λ λ

α1 α2

β1 β2

 Theorem 7.1.1

p(x), (x), q(x)p′ r(x) [a, b] p(x) > 0 r(x) > 0 x [a, b]

< < < ⋯λ1 λ2 λ3

= +∞lim
n→∞

λn

λn (x)yn

q(x) ≥ 0 , , , ≥ 0α1 α2 β1 β2 ≥ 0λn n

p(x), (x), q(x)p′ r(x)
p(x) > 0 r(x) > 0 q(x) ≥ 0 , , , ≥ 0α1 α2 β1 β2

r p x [a, b]

0 1
< < < ⋯λ0 λ1 λ2

 Example 7.1.2

+λy, 0 < x < L, y(0) = 0y′′ y(L) = 0
p(x) = 1, q(x) = 0, r(x) = 1 p(x)1 > 0 r(x)1 > 0 a = 0 b = L = = 1α1 β1

= = 0α2 β2 =λn
n2π2

L2
(x) = sin( x)yn

nπ

L

 Exercise 7.1.1

+λy = 0,       (0) = 0,       (1) = 0.y′′ y′ y′

p, q, r, ,αj βj
− (0) = 0y′

 Example 7.1.3

+λyy′′

hy(0) − (0)y′
= 0,
= 0,

0 < x < 1,
(1) = 0,y′ h > 0.

(7.1.4)
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Identify  in the example above.

First note that  by Theorem . Therefore, the general solution (without boundary conditions) is

Let us see if  is an eigenvalue: We must satisfy  and , hence  (as ), therefore,  is not an
eigenvalue (no nonzero solution, so no eigenfunction).

Now let us try . We plug in the boundary conditions.

If , then  and vice-versa, hence both are nonzero. So , and . As 

 we get

or

Now use a computer to find . There are tables available, though using a computer or a graphing calculator is far more convenient
nowadays. Easiest method is to plot the functions  and  and see for which  they intersect. There is an infinite number of
intersections. Denote the first intersection by  the first intersection, by  the second intersection, etc…. For example, when 

, we get that . That is , …. A plot for  is given in Figure 
. The appropriate eigenfunction (let  for convenience, then ) is

When  we get (approximately)

Figure : Plot of  and .

7.1.2: Orthogonality

We have seen the notion of orthogonality before. For example, we have shown that  are orthogonal for distinct  on .
For general Sturm-Liouville problems we will need a more general setup. Let  be a weight function (any function, though
generally we will assume it is positive) on . Two functions ,  are said to be orthogonal with respect to the weight
function  when

 Exercise 7.1.2

p, q, r, ,αj βj

λ ≥ 0 7.1.1

y(x) = A cos( x) +B sin( x)λ
−−

√ λ
−−

√

y(x) = Ax+B

if  λ > 0,

if  λ = 0.
(7.1.5)

λ = 0 0 = hB−A A = 0 B = 0 h > 0 0

h > 0

0

0

= hA− B,λ
−−

√

= −A sin( ) +B cos( ).λ
−−

√ λ
−−

√ λ
−−

√ λ
−−

√
(7.1.6)

A = 0 B = 0 B = hA

λ√
0 = −A sin( ) + cos( )λ

−−
√ λ

−−
√ hA

λ√
λ
−−

√ λ
−−

√

A ≠ 0

0 = − sin( ) +h cos( ),λ
−−

√ λ
−−

√ λ
−−

√

= tan .
h

λ
−−

√
λ
−−

√

λn
h
x tan(x)

λ1
−−

√ λ2
−−

√

h = 1 ≈ 0.86, ≈ 3.43, . . .λ1
−−

√ λ2
−−

√ ≈ 0.74, ≈ 11.73, . . .λ1 λ2 h = 1

7.1.1 A = 1 B = h

λ√

(x) = cos( x) + sin( x).yn λn
−−

√
h

λn
−−

√
λn
−−

√

h = 1

(x) ≈ cos(0.86x) + sin(0.86x), (x) ≈ cos(3.43x) + sin(3.43x), . . . .y1
1

0.86
y2

1

3.43

7.1.1 1
x

tan x

sin(nx) n [0, π]
r(x)

[a, b] f(x) g(x)
r(x)
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In this setting, we define the inner product as

and then say  and  are orthogonal whenever . The results and concepts are again analogous to finite dimensional linear
algebra.

The idea of the given inner product is that those  where  is greater have more weight. Nontrivial (nonconstant)  arise
naturally, for example from a change of variables. Hence, you could think of a change of variables such that .

Eigenfunctions of a regular Sturm–Liouville problem satisfy an orthogonality property, just like the eigenfunctions in Section 4.1.
Its proof is very similar to the analogous Theorem 4.1.1.

Suppose we have a regular Sturm-Liouville problem

Let  and  be two distinct eigenfunctions for two distinct eigenvalues  and . Then

that is,  and  are orthogonal with respect to the weight function .

7.1.3: Fredholm Alternative
We also have the Fredholm alternative theorem we talked about before (Theorem 4.1.2) for all regular Sturm-Liouville problems.
We state it here for completeness.

Fredholm Alternative

Suppose that we have a regular Sturm-Liouville problem. Then either

has a nonzero solution, or

has a unique solution for any  continuous on .

This theorem is used in much the same way as we did before in Section 4.4. It is used when solving more general nonhomogeneous
boundary value problems. The theorem does not help us solve the problem, but it tells us when a unique solution exists, so that we

f(x)g(x)r(x)dx = 0.∫
b

a

⟨f , g⟩ f(x)g(x)r(x)dx,=
def ∫

b

a

f g ⟨f , g⟩ = 0

x r(x) r(x)
dξ = r(x)dx

 Theorem 7.1.2

(p(x) )−q(x)y+λr(x)y
d

dx

dy

dx

y(a) − (a)α1 α2y
′

y(b) + (b)β1 β2y
′

= 0,

= 0,

= 0.

(7.1.7)

yj yk λj λk

(x) (x)r(x)dx = 0,∫
b

a

yj yk

yj yk r

 Theorem 7.1.3

(p(x) )−q(x)y+λr(x)y
d

dx

dy

dx

y(a) − (a)α1 α2y
′

y(b) + (b)β1 β2y
′

= 0,

= 0,

= 0,

(7.1.8)

(p(x) )−q(x)y+λr(x)y
d

dx

dy

dx

y(a) − (a)α1 α2y
′

y(b) + (b)β1 β2y
′

= f(x),

= 0,

= 0,

(7.1.9)

f(x) [a, b]
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know when to spend time looking for it. To solve the problem we decompose  and  in terms of the eigenfunctions of the
homogeneous problem, and then solve for the coefficients of the series for .

7.1.4: Eigenfunction Series
What we want to do with the eigenfunctions once we have them is to compute the eigenfunction decomposition of an arbitrary
function . That is, we wish to write

where  the eigenfunctions. We wish to find out if we can represent any function  in this way, and if so, we wish to
calculate  (and of course we would want to know if the sum converges). OK, so imagine we could write  as . We will
assume convergence and the ability to integrate the series term by term. Because of orthogonality we have

Hence,

Note that  are known up to a constant multiple, so we could have picked a scalar multiple of an eigenfunction such that 
 (if we had an arbitrary eigenfunction , divide it by ). When  we have the simpler form 
 as we did for the Fourier series. The following theorem holds more generally, but the statement given is enough for

our purposes.

Suppose  is a piecewise smooth continuous function on . If  are the eigenfunctions of a regular Sturm-Liouville
problem, then there exist real constants  given by  such that  converges and holds for .

Take the simple Sturm-Liouville problem

The above is a regular problem and furthermore we know by Theorem  that .

Suppose , then the general solution is , we plug in the initial conditions to get , and 
, hence  is not an eigenvalue. The general solution, therefore, is

Plugging in the boundary conditions we get  and .  cannot be zero and hence 
. This means that  must be an odd integral multiple of , i.e. . Hence

We can take . Hence our eigenfunctions are

f(x) y(x)
y(x)

f(x)

f(x) = (x),∑
n=1

∞

cnyn (7.1.10)

(x)yn f(x)
f(x) (7.1.10)

⟨f , ⟩ym = f(x) (x)r(x)dx∫
b

a

ym

= (x) (x)r(x)dx∑
n=1

∞

cn ∫
b

a

yn ym

= (x) (x)r(x)dx = ⟨ , ⟩.cm ∫
b

a

ym ym cm ym ym

(7.1.11)

= = .cm
⟨f , ⟩ym

⟨ , ⟩ym ym

f(x) (x)r(x)dx∫
b

a ym

( (x) r(x)dx∫ b

a ym )2
(7.1.12)

ym
⟨ , ⟩ = 1ym ym y~m ⟨ , ⟩y~m y~m

− −−−−−−
√ ⟨ , ⟩ = 1ym ym

= ⟨f , ⟩cm ym

 Theorem 7.1.4

f , , …y1 y2

, , …c1 c2 (7.1.12) (7.1.10) a < x < b

 Example 7.1.4

+λy = 0, 0 < x < ,y′′ π

2

y(0) = 0, ( ) = 0.y′ π

2

(7.1.13)

7.1.1 λ ≥ 0

λ = 0 y(x)Ax+B 0 = y(0) = B

0 = (π/2) = Ay′ λ = 0

y(x) = A cos( x) +B sin( x).λ
−−

√ λ
−−

√

0 = y(0) = A 0 = (π/2) = B cos( )y′ λ
−−

√ λ
−−

√ π

2
B

cos( = 0)λ
−−

√ π

2
λ
−−

√ π

2
π

2
(2n−1) =π

2
λn
−−

√ π

2

= (2n−1 .λn )2

B = 1
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Finally we compute

So any piecewise smooth function on  can be written as

where

Note that the series converges to an odd -periodic (not -periodic!) extension of .

In the above example, the function is defined on , yet the series with respect to the eigenfunctions 
converges to an odd -periodic extension of . Find out how is the extension defined for .

Let us compute an example. Consider  for . Some calculus later we find

and so for  in ,

This is different from the -periodic regular sine series which can be computed to be

Both sums converge are equal to  for , but the eigenfunctions involved come from different eigenvalue problems.

7.1.5: Footnotes
[1] Named after the French mathematicians Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882).

This page titled 7.1: Sturm-Liouville problems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

5.1: Sturm-Liouville problems by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.

(x) = sin((2n−1)x).yn

(sin((2n−1)x) dx = .∫

π

2

0
)2 π

4

[0, π/2]

f(x) = sin((2n−1)x),∑
n=1

∞

cn

= = = ∫ f(x sin((2n−1)x)dx.cn
⟨f , ⟩yn

⟨ , ⟩yn yn

sin((2n−1)x)dx∫
π

2
0

(sin((2n−1)x) dx∫
π

2

0 )2

4

π
)

π

2

0

2π π f(x)

 Exercise 7.1.3

0 < x < π/2 sin((2n−1)x)
2π f(x) π/2 < x < π

f(x) = x 0 < x < π

2

= f(x) sin((2n−1)x) dx = ,cn
4

π
∫

π

2

0

4(−1)
n+1

π(2n−1)
2

x [0, ]π

2

f(x) = sin((2n−1)x).∑
n=1

∞ 4(−1)
n+1

π(2n−1)
2

π

f(x) = sin(2nx).∑
n=1

∞ (−1)n+1

n

f(x) 0 < x < π

2
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7.2: Application of Eigenfunction Series
The eigenfunction series can arise even from higher order equations. Consider an elastic beam (say made of steel). We will study
the transversal vibrations of the beam. That is, suppose the beam lies along the -axis and let  measure the displacement of
the point  on the beam at time . See Figure .

Figure : Transversal vibrations of a beam.

The equation that governs this setup is

for some constant , let us not worry about the physics .

Suppose the beam is of length  simply supported (hinged) at the ends. The beam is displaced by some function  at time 
and then let go (initial velocity is ). Then  satisfies:

Again we try  and plug in to get  or

The equations are

The boundary conditions  and  imply

The initial homogeneous condition  implies

As usual, we leave the nonhomogeneous  for later.

Considering the equation for , that is, , and physical intuition leads us to the fact that if  is an eigenvalue then 
: We expect vibration and not exponential growth nor decay in the  direction (there is no friction in our model for instance).

So there are no negative eigenvalues. Similarly  is not an eigenvalue.

Justify  just from the equation for  and the boundary conditions.

Write , so that we do not need to write the fourth root all the time. For  we get the equation . The
general solution is

Now . Hence,  and , or . So we have

x y(x, t)

x t 7.2.1

7.2.1

+ = 0,a4 y∂4

∂x4

y∂2

∂t2

a > 0 1

1 f(x) t = 0

0 y

+ = 0 (0 < x < 1, t > 0),a4yxxxx ytt

y(0, t) = (0, t) = 0,yxx

y(1, t) = (1, t) = 0,yxx

y(x, 0) = f(x), (x, 0) = 0.yt

(7.2.1)

(7.2.2)

y(x, t) = X(x)T (t) T +X = 0a4X(4) T ′′

= = λ.
X(4)

X

−T ′′

Ta4

+λ T = 0, −λX = 0.T ′′ a4 X(4)

y(0, t) = (0, t) = 0yxx y(1, t) = (1, t) = 0yxx

X(0) = (0) = 0, and X(1) = (1) = 0.X ′′ X ′′

(x, 0) = 0yt

(0) = 0.T ′

y(x, 0) = f(x)

T +λ T = 0T ′′ a4 λ

λ > 0 t

λ = 0

 Exercise 7.2.1

λ > 0 X

= λω4 X − X = 0X(4) ω4

X(x) = A +B +C sin(ωx) +D cos(ωx).eωx e−ωx

0 = X(0)A +B +D, 0 = (0) = (A +B −D)X ′′ ω2 D = 0 A +B = 0 B = −A
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Also , and . This means that  and 
. If , then  and so . This means that  otherwise  is not an eigenvalue.

Also  must be an integer multiple of . Hence  and  (as ). We can take . So the eigenvalues are 
 and the eigenfunctions are .

Now . The general solution is . But  and hence we must
have  and we can take  to make  for convenience. So our solutions are .

As the eigenfunctions are just sines again, we can decompose the function  on  using the sine series. We find
numbers  such that for  we have

Then the solution to  is

The point is that  is a solution that satisfies all the homogeneous conditions (that is, all conditions except the initial position).
And since and , we have

So  solves .

The natural (circular) frequencies of the system are . These frequencies are all integer multiples of the fundamental
frequency , so we get a nice musical note. The exact frequencies and their amplitude are what we call the timbre of the note.

The timbre of a beam is different than for a vibrating string where we get “more” of the lower frequencies since we get all integer
multiples, . For a steel beam we get only the square multiples . That is why when you hit a steel
beam you hear a very pure sound. The sound of a xylophone or vibraphone is, therefore, very different from a guitar or piano.

Let us assume that . On  we have (you know how to do this by now)

Hence, the solution to  with the given initial position  is

There are other boundary conditions than just hinged ends. There are three basic possibilities: hinged, free, or fixed. Let us consider
the end at . For the other end, it is the same idea. If the end is hinged, then

If the end is free, that is, it is just floating in air, then

And finally, if the end is clamped or fixed, for example it is welded to a wall, then

X(x) = A −A +C sin(ωx).eωx e−ωx

0 = X(1) = A( − ) +C sinωeω e−ω 0 = (1) = A ( − ) −C sinωX ′′ ω2 eω e−ω ω2 C sinω = 0

A( − ) = 2A sinhω = 0eω e−ω ω > 0 ω ≠ 0 A = 0 C ≠ 0 λ

ω π ω = nπ n ≥ 1 ω > 0 C = 1

=λn n4π4 sin(nπx)

+ T = 0T ′′ n4π4a4 T (t) = A sin( t) +B cos( t)n2π2a2 n2π2a2 (0) = 0T ′

A = 0 B = 1 T (0) = 1 (t) = cos( t)Tn n2π2a2

f(x) 0 < x < 1

bn 0 < x < 1

f(x) = sin(nπx).∑
n=1

∞

bn

(7.2.1)

y(x, t) = (x) (t) = sin(nπx) cos( t).∑
n=1

∞

bnXn Tn ∑
n=1

∞

bn n2π2a2

XnTn

(0) = 1Tn

y(x, 0) = (x) (0) = (x) = sin(nπx) = f(x).∑
n=1

∞

bnXn Tn ∑
n=1

∞

bnXn ∑
n=1

∞

bn

y(x, t) (7.2.1)

n2π2a2

π2a2

1, 2, 3, 4, 5, … 1, 4, 9, 16, 25, …

 Example 7.2.1

f(x) =
x(x−1)

10
0 < x < 1

f(x) = sin(nπx).∑
n=1
n odd

∞ 4

5π3n3

(7.2.1) f(x)

y(x, t) = sin(nπx) cos( t).∑
n=1
n odd

∞
4

5π3n3
n2π2a2

x = 0

u(0, t) = (0, t) = 0.uxx

(0, t) = (0, t) = 0.uxx uxxx

u(0, t) = (0, t) = 0.ux
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7.2.1: Footnotes

[1] If you are interested, , where  is the elastic modulus,  is the second moment of area of the cross section, and  is
linear density.

This page titled 7.2: Application of Eigenfunction Series is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

5.2: Application of Eigenfunction Series by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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7.3: Steady Periodic Solutions

7.3.1: Forced Vibrating String

Consider a guitar string of length . We studied this setup in Section 4.7. Let  be the position on the string,  the time, and  the
displacement of the string. See Figure .

Figure : Vibrating string.

The problem is governed by the equations

We saw previously that the solution is of the form

where  and  were determined by the initial conditions. The natural frequencies of the system are the (circular) frequencies 
 for integers .

But these are free vibrations. What if there is an external force acting on the string. Let us assume say air vibrations (noise), for
example a second string. Or perhaps a jet engine. For simplicity, assume nice pure sound and assume the force is uniform at every
position on the string. Let us say  as force per unit mass. Then our wave equation becomes (remember force is
mass times acceleration)

with the same boundary conditions of course.

We want to find the solution here that satisfies the above equation and

That is, the string is initially at rest. First we find a particular solution  of  that satisfies . We define
the functions  and  as

We then find solution  of . If we add the two solutions, we find that  solves  with the initial conditions.

Check that  solves  and the side conditions .

So the big issue here is to find the particular solution . We look at the equation and we make an educated guess

We plug in to get

L x t y

7.3.1

7.3.1

= ,ytt a2yxx

y(0, t) = 0,

y(x, 0) = f(x),

y(L, t) = 0,

(x, 0) = g(x).yt

(7.3.1)

y = ( cos( t)+ sin( t)) sin( x),∑
n=1

∞

An

nπa

L
Bn

nπa

L

nπ

L

An Bn
nπa

L
n ≥ 1

F (t) = cos(ωt)F0

= + cos(ωt),ytt a2yxx F0 (7.3.2)

y(0, t) = 0,      y(L, t) = 0,      y(x, 0) = 0,       (x, 0) = 0.yt (7.3.3)

yp (7.3.2) y(0, t) = y(L, t) = 0
f g

f(x) = − (x, 0),      g(x) = − (x, 0).yp

∂yp

∂t

yc (7.3.1) y = +yc yp (7.3.2)

 Exercise 7.3.1

y = +yc yp (7.3.2) (7.3.3)

yp

(x, t) = X(x) cos(ωt).yp

− X cos(ωt) = cos(ωt),ω2 a2X ′′
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or  after canceling the cosine. We know how to find a general solution to this equation (it is a
nonhomogeneous constant coefficient equation). The general solution is

The endpoint conditions imply . So

or , and also

Assuming that  is not zero we can solve for  to get

Therefore,

The particular solution  we are looking for is

Check that  works.

Now we get to the point that we skipped. Suppose that . What this means is that  is equal to one of the natural
frequencies of the system, i.e. a multiple of . We notice that if  is not equal to a multiple of the base frequency, but is very
close, then the coefficient  in  seems to become very large. But let us not jump to conclusions just yet. When  for 

 even, then  and hence we really get that . So resonance occurs only when both  and 
. That is when  for odd .

We could again solve for the resonance solution if we wanted to, but it is, in the right sense, the limit of the solutions as  gets
close to a resonance frequency. In real life, pure resonance never occurs anyway.

The above calculation explains why a string will begin to vibrate if the identical string is plucked close by. In the absence of
friction this vibration would get louder and louder as time goes on. On the other hand, you are unlikely to get large vibration if the
forcing frequency is not close to a resonance frequency even if you have a jet engine running close to the string. That is, the
amplitude will not keep increasing unless you tune to just the right frequency.

Similar resonance phenomena occur when you break a wine glass using human voice (yes this is possible, but not easy ) if you
happen to hit just the right frequency. Remember a glass has much purer sound, i.e. it is more like a vibraphone, so there are far
fewer resonance frequencies to hit.

When the forcing function is more complicated, you decompose it in terms of the Fourier series and apply the above result. You
may also need to solve the above problem if the forcing function is a sine rather than a cosine, but if you think about it, the solution
is almost the same.

−ωX = +a2X ′′ F0

X(x) = A cos( x)+B sin( x)− .
ω

a

ω

a

F0

ω2

X(0) = X(L) = 0

0 = X(0) = A − ,
F0

ω2

A =
F0

ω2

0 = X(L) = cos( )+B sin( )− .
F0

ω2

ωL

a

ωL

a

F0

ω2

sin( )ωL
a B

B = .
− (cos( )−1)F0

ωL
a

− sin( )ω2 ωL
a

(7.3.4)

X(x) = (cos( x)− sin( x)−1) .
F0

ω2

ω

a

cos( )−1ωL

a

sin( )ωL
a

ω

a

yp

(x, t) = (cos( x)− sin( x)−1) cos(ωt).yp

F0

ω2

ω

a

cos( )−1ωL
a

sin( )ωL

a

ω

a

 Exercise 7.3.2

yp

sin( ) = 0ωL
a ω

πa

L
ω

B (7.3.4) ω = nπa

L

n cos( ) = 1ωL
a B = 0 cos( ) = −1ωL

a

sin( ) = 0ωL

a
ω = nπa

L
n

ω

1
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Let us do the computation for specific values. Suppose  and  and  and . Then

Write  for simplicity.

Then plug in  to get

and after differentiating in  we see that .

Hence to find  we need to solve the problem

Note that the formula that we use to define  is not odd, hence it is not a simple matter of plugging in to apply the
D’Alembert formula directly! You must define  to be the odd, 2-periodic extension of . Then our solution would look
like

Figure : Plot of .

It is not hard to compute specific values for an odd extension of a function and hence  is a wonderful solution to the
problem. For example it is very easy to have a computer do it, unlike a series solution. A plot is given in Figure .

7.3.2: Underground Temperature Oscillations
Let  be the temperature at a certain location at depth  underground at time . See Figure .

The temperature  satisfies the heat equation , where  is the diffusivity of the soil. We know the temperature at the
surface  from weather records. Let us assume for simplicity that

 Example 7.3.1

= 1F0 ω = 1 L = 1 a = 1

(x, t) =(cos(x) − sin(x) −1) cos(t).yp

cos(1) −1

sin(1)

B =
cos(1)−1

sin(1)

t = 0

f(x) = − (x, 0) = −cos x +B sinx +1,yp

t g(x) = − (x, 0) = 0
∂yP

∂t

yc

= ,ytt yxx

y(0, t) = 0, y(1, t) = 0,

y(x, 0) = −cos x +B sinx +1,

(x, 0) = 0.yt

(7.3.5)

y(x, 0)
F y(x, 0)

y(x, t) = +(cos(x) − sin(x) −1) cos(t).
F (x + t) +F (x − t)

2

cos(1) −1

sin(1)
(7.3.6)

7.3.2 y(x, t) = + (cos(x) − sin(x) − 1) cos(t)
F(x+t)+F(x−t)

2

cos(1)−1

sin(1)

(7.3.6)
7.3.2

u(x, t) x t 7.3.3

u = kut uxx k

u(0, t)
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Figure : Underground temperature.

where  is the yearly mean temperature, and  is midsummer (you can put negative sign above to make it midwinter if you
wish).  gives the typical variation for the year. That is, the hottest temperature is  and the coldest is . For
simplicity, we will assume that . The frequency  is picked depending on the units of , such that when , then 

. For example if  is in years, then .

It seems reasonable that the temperature at depth  will also oscillate with the same frequency. This, in fact, will be the steady
periodic solution, independent of the initial conditions. So we are looking for a solution of the form

for the problem

We will employ the complex exponential here to make calculations simpler. Suppose we have a complex valued function

We will look for an  such that . To find an , whose real part satisfies , we look for an  such that

Suppose  satisfies . Use Euler’s formula for the complex exponential to check that  satisfies .

Substitute  into .

Hence,

or

where . Note that  so you could simplify to . Hence the general solution is

We assume that an  that solves the problem must be bounded as  since  should be bounded (we are not
worrying about the earth core!). If you use Euler’s formula to expand the complex exponentials, you will note that the second term
will be unbounded (if ), while the first term is always bounded. Hence .

7.3.3

u(0, t) = + cos(ωt),T0 A0

T0 t = 0
A0 +T0 A0 −T0 A0

= 0T0 ω t t = 1
ωt = 2π t ω = 2π

x

u(x, t) = V (x) cos(ωt) +W (x) sin(ωt).

= k       u(0, t) = cos(ωt).ut uxx, A0 (7.3.7)

h(x, t) = X(x) .eiωt

h Reh = u h (7.3.7) h

= k       h(0, t) = .ht hxx, A0eiωt (7.3.8)

 Exercise 7.3.3

h (7.3.8) u = Re h (7.3.7)

h (7.3.8)

iωX = k .eiωt X ′′eiωt

k − iωX = 0,X ′′

− X = 0,X ′′ α2

α = ± iω
k

−−
√ ± = ±i√ 1=i

2√
α = ±(1 + i) ω

2k

−−
√

X(x) = A +B .e
−(1+i) xω

2k
√

e
(1+i) xω

2k
√

X(x) x → ∞ u(x, t)

B ≠ 0 B = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98082?pdf
http://www.jirka.org/diffyqs/htmlver/diffyqsse13.html#x18-42005r2
http://www.jirka.org/diffyqs/htmlver/diffyqsse13.html#x18-42005r2


7.3.5 https://math.libretexts.org/@go/page/98082

Use Euler’s formula to show that  is unbounded as , while  is bounded as .

Furthermore,  since . Thus . This means that

We will need to get the real part of , so we apply Euler’s formula to get

Then finally

Yay!

Notice the phase is different at different depths. At depth  the phase is delayed by . For example in cgs units (centimeters-

grams-seconds) we have  (typical value for soil), . Then if we compute

where the phase shift  we find the depth in centimeters where the seasons are reversed. That is, we get the depth at

which summer is the coldest and winter is the warmest. We get approximately  centimeters, which is approximately  feet
below ground.

Be careful not to jump to conclusions. The temperature swings decay rapidly as you dig deeper. The amplitude of the temperature

swings is . This function decays very quickly as  (the depth) grows. Let us again take typical parameters as above. We
will also assume that our surface temperature swing is  Celsius, that is, . Then the maximum temperature variation at

 centimeters is only  Celsius.

You need not dig very deep to get an effective “refrigerator,” with nearly constant temperature. That is why wines are kept in a
cellar; you need consistent temperature. The temperature differential could also be used for energy. A home could be heated or
cooled by taking advantage of the above fact. Even without the earth core you could heat a home in the winter and cool it in the
summer. The earth core makes the temperature higher the deeper you dig, although you need to dig somewhat deep to feel a
difference. We did not take that into account above.

7.3.3: Footnotes
[1] Mythbusters, episode 31, Discovery Channel, originally aired may 18th 2005.

This page titled 7.3: Steady Periodic Solutions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

5.3: Steady Periodic Solutions by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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7.E: Eigenvalue Problems (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted
for a one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic
calculus sequence.

7.E.1: 5.1: Sturm-Liouville problems

Find eigenvalues and eigenfunctions of

Expand the function  on  using the eigenfunctions of the system

Suppose that you had a Sturm-Liouville problem on the interval  and came up with , where  is
some constant. Decompose , in terms of these eigenfunctions.

Find eigenvalues and eigenfunctions of

This problem is not a Sturm-Liouville problem, but the idea is the same.

Find eigenvalues and eigenfunctions for

Hint: First write the system as a constant coefficient system to find general solutions. Do note that Theorem 5.1.1 guarantees 
.

Find eigenvalues and eigenfunctions of

Answer

 

 Exercise 7.E. 5.1.1

+λy = 0,    y(0) − (0) = 0,    y(1) = 0.y′′ y′ (7.E.1)

 Exercise 7.E. 5.1.2

f(x) = x 0 ≤ x ≤ 1

+λy = 0,     (0) = 0,    y(1) = 0.y′′ y′ (7.E.2)

 Exercise 7.E. 5.1.3

[0, 1] (x) = sin(γnx)yn γ > 0

f(x) = x, 0 < x < 1

 Exercise 7.E. 5.1.4

+λy = 0,    y(0) = 0,     (0) = 0,    y(1) = 0    (1) = 0.y′(4) y′ y′ (7.E.3)

 Exercise : (more challenging)7.E. 5.1.5

( ) +λ y = 0,    y(0) = 0,    y(1) = 0.
d

dx
exy′ ex (7.E.4)

λ ≥ 0

 Exercise 7.E. 5.1.6

+λy = 0,    y(−1) = 0,    y(1) = 0.y′′ (7.E.5)

= , n = 1, 2, 3, ⋯ ,λn
(2n−1)π

2
= cos( x)yn

(2n−1)π

2
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Put the following problems into the standard form for Sturm-Liouville problems, that is, find ,
and decide if the problems are regular or not.

a.  for 
b.  for 

Answer
a. . The problem is not regular.
b. . The problem is regular.

7.E.2: 5.2: Application of eigenfunction series

Suppose you have a beam of length  with free ends. Let  be the transverse deviation of the beam at position  on the beam 
. You know that the constants are such that this satisfies the equation . Suppose you know that

the initial shape of the beam is the graph of , and the initial velocity is uniformly equal to  (same for each ) in the
positive  direction. Set up the equation together with the boundary and initial conditions. Just set up, do not solve.

Suppose you have a beam of length  with one end free and one end fixed (the fixed end is at ). Let  be the longitudinal
deviation of the beam at position  on the beam . You know that the constants are such that this satisfies the

equation . Suppose you know that the initial displacement of the beam is , and the initial velocity is  in
the positive  direction. Set up the equation together with the boundary and initial conditions. Just set up, do not solve.

Suppose the beam is  units long, everything else kept the same as in (5.2.2). What is the equation and the series solution?

Suppose you have

That is, you have also an initial velocity. Find a series solution. Hint: Use the same idea as we did for the wave equation.

Suppose you have a beam of length  with hinged ends. Let  be the transverse deviation of the beam at position  on the
beam ( ). You know that the constants are such that this satisfies the equation . Suppose you know
that the initial shape of the beam is the graph of , and the initial velocity is . Solve for .

Answer

 Exercise 7.E. 5.1.7

p(x), q(x), r(x), , , ,α1 α,β1 β1

x +λy = 0y′′ 0 < x < 1, y(0) = 0, y(1) = 0,

(1 + ) +2x +(λ− )y = 0x2 y′′ y′ x2 −1 < x < 1, y(−1) = 0, y(1) + (1) = 0y′

p(x) = 1, q(x) = 0, r(x) = , = 1, = 0, = 1, = 01
x

α1 α2 β1 β2

p(x) = 1 + , q(x) = , r(x) = 1, = 1, = 0, = 1, = 1x2 x2 α1 α2 β1 β2

 Exercise 7.E. 5.2.1

5 y x

(0 < x < 5) +4 = 0ytt yxxxx
x(5 −x) 2 x

y

 Exercise 7.E. 5.2.2

5 x = 5 u

x (0 < x < 5)

= 4utt uxx
x−5
50

−(x−5)

100

u

 Exercise 7.E. 5.2.3

L

 Exercise 7.E. 5.2.4

+ = 0 (0 < x < 1, t > 0),a4yxxxx ytt

y(0, t) = (0, t) = 0,yxx

y(1, t) = (1, t) = 0,yxx

y(x, 0) = f(x), (x, 0) = g(x).yt

(7.E.6)

 Exercise 7.E. 5.2.5

1 y x

0 < x < 1 +4 = 0ytt yxxxx
sin(πx) 0 y

y(x, t) = sin(πx) cos(2 t)π2
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Suppose you have a beam of length  with two fixed ends. Let  be the transverse deviation of the beam at position  on the
beam ( ). You know that the constants are such that this satisfies the equation . Suppose you know
that the initial shape of the beam is the graph of , and the initial velocity is uniformly equal to . Set up the
equation together with the boundary and initial conditions. Just set up, do not solve.

Answer

 , , , , 
.

7.E.3: 5.3: Steady periodic solutions

Suppose that the forcing function for the vibrating string is . Derive the particular solution .

Take the forced vibrating string. Suppose that . Suppose that the forcing function is the square wave that is  on
the interval  and on the interval . Find the particular solution. Hint: You may want to use result of
Exercise .

The units are cgs (centimeters-grams-seconds). For . Find the depth at which the
temperature variation is half (  degrees) of what it is on the surface.

Derive the solution for underground temperature oscillation without assuming that .

Take the forced vibrating string. Suppose that . Suppose that the forcing function is a sawtooth, that is  on 
 extended periodically. Find the particular solution.

Answer

The units are cgs (centimeters-grams-seconds). For . Find the depth at which the
summer is again the hottest point.

Answer

Approximately 1991 centimeters

This page titled 7.E: Eigenvalue Problems (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

 Exercise 7.E. 5.2.6

10 y x

0 < x < 10 +9 = 0ytt yxxxx
sin(πx) x(10 −x)

9 + = 0yxxxx ytt (0 < x < 10, t > 0) y(0, t) = (0, t) = 0yx y(10, t) = (10, t) = 0yx y(x, 0) = sin(πx)

(x, 0) = x(10 −x)yt

 Exercise 7.E. 5.3.1

sin(ωt)F0 yp

 Exercise 7.E. 5.3.2

L = 1, a = 1 1

0 < x < 1 −1 −1 < x < 0

7.E. 5.3.1

 Exercise 7.E. 5.3.3

k = 0.005,ω = 1.991 × , = 2010−7 A0

±10

 Exercise 7.E. 5.3.4

= 0T0

 Exercise 7.E. 5.3.5

L = 1, a = 1 |x| − 1
2

−1 < x < 1

(x, t) = (cos(nπx) − sin(nπx) −1) cos(nπt).yp ∑

n odd
n=1

∞
−4

n4π4

cos(nπ)−1

sin(nπ)

 Exercise 7.E. 5.3.6

k = 0.01,ω = 1.991 × , = 2510−7 A0
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CHAPTER OVERVIEW

8: The Laplace Transform
The Laplace transform can also be used to solve differential equations and reduces a linear differential equation to an algebraic
equation, which can then be solved by the formal rules of algebra.

8.1: The Laplace Transform
8.2: Transforms of derivatives and ODEs
8.3: Convolution
8.4: Dirac Delta and Impulse Response
8.5: Solving PDEs with the Laplace Transform
8.E: The Laplace Transform (Exercises)
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8.1: The Laplace Transform
 

8.1.1: Transform
In this chapter we will discuss the Laplace transform . The Laplace transform turns out to be a very efficient method to solve
certain ODE problems. In particular, the transform can take a differential equation and turn it into an algebraic equation. If the
algebraic equation can be solved, applying the inverse transform gives us our desired solution. The Laplace transform also has
applications in the analysis of electrical circuits, NMR spectroscopy, signal processing, and elsewhere. Finally, understanding the
Laplace transform will also help with understanding the related Fourier transform, which, however, requires more understanding of
complex numbers.

The Laplace transform also gives a lot of insight into the nature of the equations we are dealing with. It can be seen as converting
between the time and the frequency domain. For example, take the standard equation

We can think of  as time and  as incoming signal. The Laplace transform will convert the equation from a differential equation
in time to an algebraic (no derivatives) equation, where the new independent variable  is the frequency.

We can think of the Laplace transform as a black box that eats functions and spits out functions in a new variable. We write 
 for the Laplace transform of . It is common to write lower case letters for functions in the time domain and

upper case letters for functions in the frequency domain. We use the same letter to denote that one function is the Laplace transform
of the other. For example  is the Laplace transform of . Let us define the transform.

We note that we are only considering  in the transform. Of course, if we think of  as time there is no problem, we are
generally interested in finding out what will happen in the future (Laplace transform is one place where it is safe to ignore the past).

Below is a video that introduces Laplace Transforms.

Let us compute some simple transforms.

Suppose , then

The limit (the improper integral) only exists if . So  is only defined for .

1

m (t) = c (t) +kx(t) = f(t).x′′ x′

t f(t)

s

L{f(t)} = F (s) f(t)

F (s) f(t)

L{f(t)} = F (s) f(t)dt.=
def

∫
∞

0

e−st

t ≥ 0 t

Introduction to Laplace TransformsIntroduction to Laplace Transforms

 Example 8.1.1

f(t) = 1

L{1} = dt = = = ( − ) = .∫
∞

0

e−st [ ]
e−st

−s

∞

t=0

lim
h→∞

[ ]
e−st

−s

h

t=0

lim
h→∞

e−sh

−s

1

−s

1

s

s > 0 L{1} s > 0
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Below is a video on finding the Laplace Transform of a constant using the definition.

 

Suppose , then

The limit only exists if . So  is only defined for .

Below is a video on finding the Laplace Transform of an exponential.

Below is a video on finding the Laplace Transform of a cubic.

Ex: Find the LaPlace Transform of f(t)=3Ex: Find the LaPlace Transform of f(t)=3……

 Example 8.1.2

f(t) = )e−at

L{ } = dt = dt = = .e−at ∫
∞

0

e−ste−at ∫
∞

0

e−(s+a)t [ ]
e−(s+a)t

−s(s+a)

∞

t=0

1

s+a

s+a > 0 L{ }e−at s+a > 0

Ex: Find the LaPlace Transform of f(t)=eEx: Find the LaPlace Transform of f(t)=e……
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Below is a video on finding the Laplace Transform of a sin function.

Suppose , then using integration by parts

Again, the limit only exists if .

Below is a video on finding the Laplace Transform of a basic step function.

Ex: Find the LaPlace Transform of f(t)=tEx: Find the LaPlace Transform of f(t)=t……

Ex: Find the Laplace Transform of f(t)=siEx: Find the Laplace Transform of f(t)=si……

 Example 8.1.3

f(t) = t

L{t} = tdt∫
∞

0

e−st

= + dt[ ]
−te−st

s

∞

t=0

1

s
∫

∞

0

e−st

= 0 +
1

s
[ ]
e−st

−s

∞

t=0

= .
1

s2

(8.1.1)

s > 0
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Below is a video on writing as step fuction in terms of the unit step function.

Below is a video on writing a ramp function in terms of the unit step function.

Below is a video on finding the Laplace Transform of a step function.

Ex 1: Write a Basic Step Function Using tEx 1: Write a Basic Step Function Using t……

Ex 2: Write a Step Function Using the UnEx 2: Write a Step Function Using the Un……

Ex: Write a Ramp Function Using the UniEx: Write a Ramp Function Using the Uni……
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Below is another video on finding the Laplace Transform of a step function.

Below is a video on finding the Laplace Transform of a piecewise defined function.

Below is a video on finding the Laplace Transform of a function times the unit step function.

Ex: Find the Laplace Transform of a SteEx: Find the Laplace Transform of a Ste……

Ex: Find the Laplace Transform of a SteEx: Find the Laplace Transform of a Ste……

Ex: Find the Laplace Transform of a PiecEx: Find the Laplace Transform of a Piec……
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A common function is the unit step function, which is sometimes called the Heaviside function . This function is generally
given as

Let us find the Laplace transform of , where  is some constant. That is, the function that is 0 for  and 1 for 
.

where of course  (and  as we said before).

By applying similar procedures we can compute the transforms of many elementary functions. Many basic transforms are listed in
Table .

Table : Some Laplace transforms ( , and  are constants).

Ex: Find the Laplace Tranform of a f(t) TiEx: Find the Laplace Tranform of a f(t) Ti……

 Example 8.1.4

2

u(t) ={
0

1

if t < 0,

if t ≥ 0.

u(t−a) a ≥ 0 t < a

t ≥ a

L{u(t−a)} = u(t−a)dt = dt = ,∫
∞

0

e−st ∫
∞

a

e−st [ ]
e−st

−s

e−as

t=a

s > 0 a ≥ 0

8.1.1

8.1.1 C,ω a

f(t) {f(t)}

C
C

s

t
1

s2

t2 2

s3

t3 6

s4

tn
n!

ss+1

e−at
1

s+ a

sin(ωt)
ω

+s2 ω2

cos(ωt)
s

+s2 ω2

sinh(ωt)
ω

−s2 ω2

cosh(ωt)
s

−s2 ω2

u(t− a)
e−as

s
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Verify all the entries in Table .

Since the transform is defined by an integral. We can use the linearity properties of the integral. For example, suppose  is a
constant, then

So we can “pull out” a constant out of the transform. Similarly we have linearity. Since linearity is very important we state it as a
theorem.

Linearity of the Laplace Transform

Suppose that , , and  are constants, then

and in particular

 

Verify theorem . That is, show that .

These rules together with Table  make it easy to find the Laplace transform of a whole lot of functions already. But be careful.
It is a common mistake to think that the Laplace transform of a product is the product of the transforms. In general

It must also be noted that not all functions have a Laplace transform. For example, the function  does not have a Laplace
transform as the integral diverges for all . Similarly,  or do not have Laplace transforms.

8.1.2: Existence and Uniqueness

Let us consider when does the Laplace transform exist in more detail. First let us consider functions of exponential order. The
function  is of exponential order as  goes to infinity if

for some constants  and , for sufficiently large  (say for all  for some ). The simplest way to check this condition is to
try and compute

If the limit exists and is finite (usually zero), then  is of exponential order.

 Exercise 8.1.1

8.1.1

C

L{f(t)} = Cf(t)dt = C f(t)dt = CL{f(t)}.∫
∞

o

e−st ∫
∞

0

e−st

 Theorem 8.1.1

A B C

L{Af(t) +Bg(t)} = AL{f(t)} +BL{g(t)}

L{Cf(t)} = CL{f(t)}.

 Exercise 8.1.2

8.1.1 L{Af(t) +Bg(t)} = AL{f(t)} +BL{g(t)}

8.1.1

L{f(t)g(t)} ≠ L{f(t)}L{g(t)}.

1/t

s tan t et
2

f(t) t

|f(t)| ≤ M ,ect

M c t t > to to

lim
t→∞

f(t)

ect

f(t)
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Use L'Hopital's rule from calculus to show that a polynomial is of exponential order. Hint: Note that a sum of two exponential
order functions is also of exponential order. Then show that  is of exponential order for any .

For an exponential order function we have existence and uniqueness of the Laplace transform.

Existence

Let  be continuous and of exponential order for a certain constant . Then  is defined for all .

The existence is not difficult to see. Let  be of exponential order, that is  for all  (for simplicity ).
Let , or in other words . By the comparison theorem from calculus, the improper integral defining  exists
if the following integral exists

The transform also exists for some other functions that are not of exponential order, but that will not be relevant to us. Before
dealing with uniqueness, let us note that for exponential order functions we obtain that their Laplace transform decays at infinity:

Uniqueness

Let  and  be continuous and of exponential order. Suppose that there exists a constant , such that  for
all . Then  for all .

Both theorems hold for piecewise continuous functions as well. Recall that piecewise continuous means that the function is
continuous except perhaps at a discrete set of points where it has jump discontinuities like the Heaviside function. Uniqueness
however does not “see” values at the discontinuities. So we can only conclude that  outside of discontinuities. For
example, the unit step function is sometimes defined using . This new step function, however, has the exact same
Laplace transform as the one we defined earlier where .

8.1.3: 6.1.3Inverse Transform

As we said, the Laplace transform will allow us to convert a differential equation into an algebraic equation. Once we solve the
algebraic equation in the frequency domain we will want to get back to the time domain, as that is what we are interested in. If we
have a function , to be able to find  such that , we need to first know if such a function is unique. It turns
out we are in luck by Theorem . So we can without fear make the following definition.

If  for some function . We define the inverse Laplace transform as

There is an integral formula for the inverse, but it is not as simple as the transform itself—it requires complex numbers and path
integrals. For us it will suffice to compute the inverse using Table .

Below is a video on finding the inverse Laplace Transform.

 Exercise 8.1.3

tn n

 Theorem 8.1.2

f(t) c F (s) = L{f(t)} s > c

f(t) |f(t)| ≤ Mect t > 0 = 0t0

s > c (c−s) < 0 L{f(t)}

(M )dt = M dt = M = .∫
∞

0

e−st ect ∫
∞

0

e(c−s)t [ ]
e(c−s)t

c−s

∞

t=0

M

c−s

F (s) = 0lim
s→∞

 Theorem 8.1.3

f(t) g(t) C F (s) = G(s)

s > C f(t) = g(t) t ≥ 0

F (s) = G(s)

u(0) = 1/2

u(0) = 1

F (s) f(t) L{f(t)} = F (s)

8.1.3

F (s) = L{f(t)} f(t)

{F (s)} f(t)L
−1 =

def

8.1.1
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Find the inverse Laplace transform of 

Solution

We look at the table to find

As the Laplace transform is linear, the inverse Laplace transform is also linear. That is,

Of course, we also have  Let us demonstrate how linearity can be used.

Below is a video on finding the inverse Laplace Transform.

Below is another video on finding the inverse Laplace Transform.

Find Basic Inverse Laplace TransformsFind Basic Inverse Laplace Transforms

 Example 8.1.5

F (s) =
1

s+1

{ } =L
−1 1

s+1
e−t

{AF (s) +BG(s)} = A {F (s)} +B {G(s)}L
−1

L
−1

L
−1

{AF (s) = A {F (s)}.L
−1

L
−1

Find Inverse Laplace Transforms: Find Inverse Laplace Transforms: e^(at)e^(at)……
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Below is a video on finding the inverse Laplace Transform that gives sinh and an exponential.

Find the inverse Laplace transform of

Solution

First we use the method of partial fractions to write  in a form where we can use Table . We factor the denominator as 
 and write

Putting the right hand side over a common denominator and equating the numerators we get 
. Expanding and equating coefficients we obtain , ,  and thus 

. In other words,

By linearity of the inverse Laplace transform we get

Find Inverse Laplace Transforms: Find Inverse Laplace Transforms: sin(atsin(at……

Find Inverse Laplace Transforms: Find Inverse Laplace Transforms: sinh(asinh(a……

 Example 8.1.6

F (s) = .
+s+1s2

+ss3

F 8.1.1

s( +1)s2

= +
+s+1s2

+ss3

A

s

Bs+C

+1s2

A( +1) +s(Bs+C) = +s+1s2 s2 A+B = 1 C = 1 A = 1

B = 0

F (s) = = +
+s+1s2

+ss3

1

s

1

+1s2

{ } = { }+ { } = 1 +sin t.L
−1 +s+1s2

+ss3
L

−1 1

s
L

−1 1

+1s2
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8.1.4: Shifting Property of Laplace Transforms
Another useful property is the so-called shifting property or the first shifting property

where  is the Laplace transform of  and  is a constant.

Derive the first shifting property from the definition of the Laplace transform.

The shifting property can be used, for example, when the denominator is a more complicated quadratic that may come up in the
method of partial fractions. We complete the square and write such quadratics as  and then use the shifting property.

Find

Solution

First we complete the square to make the denominator . Next we find

Putting it all together with the shifting property, we find

In general, we want to be able to apply the Laplace transform to rational functions, that is functions of the form

where  and  are polynomials. Since normally, for the functions that we are considering, the Laplace transform goes to
zero as , it is not hard to see that the degree of  must be smaller than that of . Such rational functions are called
proper rational functions and we can always apply the method of partial fractions. Of course this means we need to be able to
factor the denominator into linear and quadratic terms, which involves finding the roots of the denominator,

8.1.5: Footnotes

[1] Just like the Laplace equation and the Laplacian, the Laplace transform is also named after Pierre-Simon, marquis de Laplace
(1749 – 1827).

[2] The function is named after the English mathematician, engineer, and physicist Oliver Heaviside (1850–1925). Only by
coincidence is the function “heavy” on “one side.”

This page titled 8.1: The Laplace Transform is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

6.1: The Laplace Transform by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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+4s+8s2
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1
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1

2
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1

+4s+8s2

1
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2
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8.2: Transforms of derivatives and ODEs

8.2.1: Transforms of derivatives

Let us see how the Laplace transform is used for differential equations. First let us try to find the Laplace transform of a function
that is a derivative. Suppose  is a differentiable function of exponential order, that is,  for some  and . So 

 exists, and what is more,  when . Then

We repeat this procedure for higher derivatives. The results are listed in Table . The procedure also works for piecewise
smooth functions, that is functions that are piecewise continuous with a piecewise continuous derivative. The fact that the function
is of exponential order is used to show that the limits appearing above exist. We will not worry much about this fact.

Table : Laplace transforms of derivatives (  as usual).

8.2.1.1: Solving ODEs with the Laplace Transform

Notice that the Laplace transform turns differentiation into multiplication by . Let us see how to apply this fact to differential
equations.

Below is a video on finding the Laplace Transform of a homogeneous differential equation.

Take the equation

We will take the Laplace transform of both sides. By  we will, as usual, denote the Laplace transform of .

We plug in the initial conditions now—this makes the computations more streamlined—to obtain

g(t) |g(t)| ≤ Mect M c

L{g(t)} g(t) = 0limt→∞ e−st s > c

L{ (t)} = (t)dt = − (−s) g(t)dt = −g(0) +sL{g(t)}.g′ ∫
∞

0

e−stg′ [ g(t)]e−st ∞

t=0
∫

∞

0

e−st

8.2.1

8.2.1 G(s) = L{g(t)}

f(t) L{f(t)} = F (s)

(t)g′ sG(s) − g(0)

(t)g′′ G(s) − sg(0) − (0)s2 g′

(t)g′′′ G(s) − g(0) − s (0) − (0)s3 s2 g′ g′′

s

Laplace Transform: Laplace Transform: Find Y(s)=L(y) GiveFind Y(s)=L(y) Give……

 Example 8.2.1

(t) +x(t) = cos(2t),        x(0) = 0,         (0) = 1.x′′ x′

X(s) x(t)

L{ (t) +x(t)}x′′

X(x) −sx(0) + (0) +X(s)s2 x′

= L{cos(2t)},

= .
s

+4s2

(8.2.1)

X(s) −1 +X(s) = .s2 s

+4s2
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We solve for ,

We use partial fractions (exercise) to write

Now take the inverse Laplace transform to obtain

Below is a video on finding the Laplace Transform of a nonhomogeneous differential equation.

The procedure for linear constant coefficient equations is as follows. We take an ordinary differential equation in the time variable 
. We apply the Laplace transform to transform the equation into an algebraic (non differential) equation in the frequency domain.

All the , , , and so on, will be converted to , , , and so on. We solve the
equation for . Then taking the inverse transform, if possible, we find .

It should be noted that since not every function has a Laplace transform, not every equation can be solved in this manner. Also if
the equation is not a linear constant coefficient ODE, then by applying the Laplace transform we may not obtain an algebraic
equation.

Below is a video on finding the inverse Laplace Transform.

Below is a video on finding the inverse Laplace Transform using partial fractions.

X(s)

X(s) = + .
s

( +1)( +4)s2 s2

1

+1s2

X(s) = − + .
1

3

s

+1s2

1

3

s

+4s2

1

+1s2

x(t) = cos(t) − cos(2t) +sin(t).
1

3

1

3

Laplace Transform: Laplace Transform: Find Y(s)=L(y) GiveFind Y(s)=L(y) Give……

t

x(t) (t)x′ (t)x′′ X(s) sX(s) −x(0) X(s) −sx(0) − (0)s2 x′

X(s) x(t)

Ex 1: Find the Inverse Laplace TransforEx 1: Find the Inverse Laplace Transfor……
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Below is a video on using the Laplace Transform to solve a homogeneous differential equation.

Below is another video on using the Laplace Transform to solve a homogeneous differential equation.

8.2.1.2: Using the Heaviside Function

Before we move on to more general equations than those we could solve before, we want to consider the Heaviside function. See
Figure  for the graph.

Ex 2: Find the Inverse Laplace TransforEx 2: Find the Inverse Laplace Transfor……

Ex 1: Ex 1: Solve a Homogeneous DE IVP UsinSolve a Homogeneous DE IVP Usin……

Ex 2: Ex 2: Solve a Homogeneous DE IVP UsinSolve a Homogeneous DE IVP Usin……

8.2.1

u(t) ={
0

1

if t < 0,

if t ≥ 0.
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Figure : Plot of the Heaviside (unit step) function .

This function is useful for putting together functions, or cutting functions off. Most commonly it is used as  for some
constant . This just shifts the graph to the right by . That is, it is a function that is 0 when  and 1 when . Suppose for
example that  is a “signal” and you started receiving the signal  at time . The function  should then be defined as

Using the Heaviside function,  can be written as

Similarly the step function that is  on the interval  and zero everywhere else can be written as

The Heaviside function is useful to define functions defined piecewise. If you want to define  such that  when  is in 
,  when  is in  and  otherwise, you can use the expression

Hence it is useful to know how the Heaviside function interacts with the Laplace transform. We have already seen that

8.2.1.2.1: Shifting Property

This can be generalized into a shifting property or second shifting property.

Suppose that the forcing function is not periodic. For example, suppose that we had a mass-spring system

where  if  and zero otherwise. We could imagine a mass-spring system, where a rocket is fired for 4 seconds
starting at . Or perhaps an RLC circuit, where the voltage is raised at a constant rate for 4 seconds starting at , and
then held steady again starting at .

We can write . We transform the equation and we plug in the initial conditions as before to obtain

We solve for  to obtain

We leave it as an exercise to the reader to show that

8.2.1 u(t)

u(t−a)

a a < a t ≥ a

f(t) sin t t = π f(t)

f(t) ={
0

sin t

if t < π,

if t ≥ π.

f(t)

f(t) = u(t−π) sin t

1 [1, 2)

u(t−1) −u(t−2).

f(t) f(t) = t t

[0, 1] f(t) = −t+2 t [1, 2) f(t) = 0

f(t) = t (u(t) −u(t−1)) +(−t+2) (u(t−1) −u(t−2)) .

L{u(t−a)} = .
e−as

2

L{f(t−a)u(t−a)} = L{f(t)}.e−as (8.2.2)

 Example 8.2.2

(t) +x(t) = f(t),       x(0) = 0,        (0) = 0,x′′ x′

f(t) = 1 1 ≤ t < 5

t = 1 t = 1

t = 5

f(t) = u(t−1) −u(t−5)

X(s) +X(s) = − .s2 e−s

s

e−5s

s

X(s)

X(s) = − .
e−s

s( +1)s2

e−5s

s( +1)s2
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In other words . So using  we find

Similarly

Hence, the solution is

The plot of this solution is given in Figure .

Figure : Plot of .

8.2.1.3: Transfer Functions

Laplace transform leads to the following useful concept for studying the steady state behavior of a linear system. Suppose we have
an equation of the form

where  is a linear constant coefficient differential operator. Then  is usually thought of as input of the system and  is
thought of as the output of the system. For example, for a mass-spring system the input is the forcing function and output is the
behavior of the mass. We would like to have an convenient way to study the behavior of the system for different inputs.

Let us suppose that all the initial conditions are zero and take the Laplace transform of the equation, we obtain the equation

Solving for the ratio  we obtain the so-called transfer function .

In other words, . We obtain an algebraic dependence of the output of the system based on the input. We can
now easily study the steady state behavior of the system given different inputs by simply multiplying by the transfer function.

Given , let us find the transfer function (assuming the initial conditions are zero).

First, we take the Laplace transform of the equation.

{ } = 1 −cos t.L
−1 1

s( +1)s2

L{1 −cos t} = 1
s( +1)s2

(8.2.2)

{ } = { L{1 −cos t}} = (1 −cos(t−1))u(t−1).L
−1 e−s

s( +1)s2
L

−1 e−s

{ } = { L{1 −cos t}} = (1 −cos(t−5))u(t−5).L
−1 e−5s

s( +1)s2
L

−1 e−5s

x(t) = (1 −cos(t−1))u(t−1) −(1 −cos(t−5))u(t−5).

8.2.2

8.2.2 x(t)

Lx = f(t),

L f(t) x(t)

A(s)X(s) = F (s).

X(s)

F(s)
H(s) = 1

A(s)

H(s) =
X(s)

F (s)

X(s) = H(s)F (s)

 Example 8.2.3

+ x = f(t)x′′ ω2
0

X(s) + X(s) = F (s).s2 ω2
0
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Now we solve for the transfer function .

Let us see how to use the transfer function. Suppose we have the constant input . Hence , and

Taking the inverse Laplace transform of  we obtain

8.2.1.4: Transforms of Integrals

A feature of Laplace transforms is that it is also able to easily deal with integral equations. That is, equations in which integrals
rather than derivatives of functions appear. The basic property, which can be proved by applying the definition and doing
integration by parts, is

It is sometimes useful (e.g. for computing the inverse transform) to write this as

To compute  we could proceed by applying this integration rule.

An equation containing an integral of the unknown function is called an integral equation. For example, take

where we wish to solve for . We apply the Laplace transform and the shifting property to get

where . Thus

We use the shifting property again to get

This page titled 8.2: Transforms of derivatives and ODEs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

X(s)

F(s)

H(s) = = .
X(s)

F (s)

1

+s2 ω2
0

f(t) = 1 F (s) = 1
s
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 Example 8.2.4
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8.3: Convolution

8.3.1: Convolution

We said that the Laplace transformation of a product is not the product of the transforms. All hope is not lost however. We simply
have to use a different type of a “product.” Take two functions  and  defined for , and define the convolution  of 
and  as

As you can see, the convolution of two functions of  is another function of .

Below is a video on finding the convolution of two exponential functions.

Take  and  for . Then

To solve the integral we did one integration by parts.

Take  and  for . Then

We apply the identity

Hence,

f(t) g(t) t ≥ 0 1 f(t)
g(t)

(f ∗ g)(t) f(τ)g(t−τ)dτ .=
def

∫
t

0
(8.3.1)

t t

Ex: Ex: Find the Convolution of Two ExponeFind the Convolution of Two Expone……

 Example 8.3.1

f(t) = et g(t) = t t ≥ 0

(f ∗ g)(t) = (t−τ)dτ = − t−1.∫
t

0
eτ et

 Example 8.3.2

f(t) = sin(ωt) g(t) = cos(ωt) t ≥ 0

(f ∗ g)(t) = sin(ωτ) cos(ω(t−τ))dτ .∫
t

0

cos(θ) sin(ψ) = (sin(θ+ψ) −sin(θ−ψ))
1

2

(f ∗ g)(t) = (sin(ωt) −sin(ωt−2ωτ))dτ∫
t

0

1

2

= [ τ sin(ωt) + cos(2ωτ −ωt)]
1

2

1

4ω

t

τ=0

= t sin(ωt).
1

2

(8.3.2)
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The formula holds only for . We assumed that  and  are zero (or simply not defined) for negative .

The convolution has many properties that make it behave like a product. Let  be a constant and , , and  be functions then

The most interesting property for us, and the main result of this section is the following theorem.

Let  and  be of exponential type, then

In other words, the Laplace transform of a convolution is the product of the Laplace transforms. The simplest way to use this result
is in reverse.

Suppose we have the function of  defined by

We recognize the two entries of Table 6.1.2. That is

Therefore,

The calculation of the integral involved an integration by parts.

Below is a video on finding the Laplace Transform of the convolution integral.

8.3.2: Solving ODEs

The next example demonstrates the full power of the convolution and the Laplace transform. We can give the solution to the forced
oscillation problem for any forcing function as a definite integral.

t ≥ 0 f g t

c f g h

f ∗ g
(c f) ∗ g

(f ∗ g) ∗ h

= g∗ f
= f ∗ (c g) = c (f ∗ g)

= f ∗ (g∗ h)

(8.3.3)

 Theorem 8.3.1

f(t) g(t)

{(f ∗ g)(t)} = L{ f(τ)g(t−τ)dτ} = L{f(t)}L{g(t)}.∫
t

0

 Example 8.3.3

s

= .
1

(s+1)s2

1

s+1

1

s2

{ } =       and       { } = t.L
−1 1

s+1
e−t

L
−1 1

s2

{ } = τ dτ = + t−1.L
−1 1

s+1

1

s2
∫

t

0
e−(t−τ) e−t

Ex: Find the Laplace Transform of Ex: Find the Laplace Transform of the Cthe C……

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98087?pdf
https://www.youtube.com/watch?v=XSk0ptwcpyU
https://www.youtube.com/watch?v=XSk0ptwcpyU


8.3.3 https://math.libretexts.org/@go/page/98087

Find the solution to

for an arbitrary function .

We first apply the Laplace transform to the equation. Denote the transform of  by  and the transform of  by 
as usual.

or in other words

We know

Therefore,

or if we reverse the order

Let us notice one more feature of this example. We can now see how Laplace transform handles resonance. Suppose that 
. Then

We have computed the convolution of sine and cosine in Example 6.3.2. Hence

Note the  in front of the sine. The solution, therefore, grows without bound as  gets large, meaning we get resonance.

Similarly, we can solve any constant coefficient equation with an arbitrary forcing function  as a definite integral using
convolution. A definite integral, rather than a closed form solution, is usually enough for most practical purposes. It is not hard
to numerically evaluate a definite integral.

Below is a video on using the inverse Laplace Transform of a convolution.

 Example 8.3.4

+ x = f(t),      x(0) = 0,       (0) = 0,x′′ ω2
0 x′

f(t)

x(t) X(s) f(t) F (s)

X(s) + X(s) = F (s),s2 ω2
0

X(s) = F (s) .
1

+s2 ω2
0

{ } = .L
−1 1

+s2 ω2
0

sin( t)ω0

ω0

x(t) = f(τ) dτ ,∫
t

0

sin( (t−τ))ω0

ω0

x(t) = f(t−τ)dτ .∫
t

0

sin( τ)ω0

ω0

f(t) = cos( t)ω0

x(t) = cos( (t−τ))dτ = sin( τ) cos( (t−τ))dτ .∫
t

0

sin( τ)ω0

ω0
ω0

1

ω0
∫

t

0
ω0 ω0

x(t) =( )( t sin( t)) = sin( t).
1

ω0

1

2
ω0

1

2ω0
ω0

t t

f(t)
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8.3.3: Volterra Integral Equation
A common integral equation is the Volterra integral equation

where  and  are known functions and  is an unknown we wish to solve for. To find , we apply the Laplace
transform to the equation to obtain

where , , and  are the Laplace transforms of , , and , respectively. We find

To find  we now need to find the inverse Laplace transform of .

Solve

We apply Laplace transform to obtain

or

It is not hard to apply Table 6.1.1 to find

Ex: Find the Inverse Laplace Transform Ex: Find the Inverse Laplace Transform ……

2

x(t) = f(t) + g(t−τ)x(τ)dτ∫
t

0

f(t) g(t) x(t) x(t)

X(s) = F (s) +G(s)X(s),

X(s) F (s) G(s) x(t) f(t) g(t)

X(s) = .
F (s)

1 −G(s)

x(t) X(s)

 Example 8.3.5

x(t) = + sinh(t−τ)x(τ)dτe−t ∫
t

0

X(s) = + X(s),
1

s+1

1

−1s2

X(s) = = = − .

1

s+1

1 −
1

−1s2

s−1

−2s2

s

−2s2

1

−2s2

x(t) = cosh( t)− sinh( t).2
–

√
1

2
–

√
2
–

√

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98087?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/6%3A_The_Laplace_Transform/6.3%3A_Convolution#2eqn
https://www.youtube.com/watch?v=6HIJQBSECGE
https://www.youtube.com/watch?v=6HIJQBSECGE


8.3.5 https://math.libretexts.org/@go/page/98087

8.3.4: Footnotes
[1] For those that have seen convolution defined before, you may have seen it defined as . This
definition agrees with  if you define  and  to be zero for . When discussing the Laplace transform the
definition we gave is sufficient. Convolution does occur in many other applications, however, where you may have to use the more
general definition with infinities.

[2] Named for the Italian mathematician Vito Volterra (1860–1940).

This page titled 8.3: Convolution is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří Lebl.

6.3: Convolution by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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8.4: Dirac Delta and Impulse Response

8.4.1: Rectangular Pulse

Often in applications we study a physical system by putting in a short pulse and then seeing what the system does. The resulting
behavior is often called impulse response. Let us see what we mean by a pulse. The simplest kind of a pulse is a simple rectangular
pulse defined by

Notice that

where  is the unit step function (see Figure  for a graph).

Figure : Sample square pulse with , , and .

Let us take the Laplace transform of a square pulse,

For simplicity we let  and it is convenient to set  to have

That is, to have the pulse have “unit mass.” For such a pulse we compute

We generally want  to be very small. That is, we wish to have the pulse be very short and very tall. By letting  go to zero we
arrive at the concept of the Dirac delta function.

8.4.2: 6.4.2Delta Function
The Dirac delta function  is not exactly a function; it is sometimes called a generalized function. We avoid unnecessary details and
simply say that it is an object that does not really make sense unless we integrate it. The motivation is that we would like a
“function”  such that for any continuous function  we have

The formula should hold if we integrate over any interval that contains 0, not just . So  is a “function” with all its
“mass” at the single point . In other words, for any interval 

φ(t) =

⎧

⎩
⎨
⎪

⎪

0

M

0

if     t < a,

if a ≤ t < b,

if b ≤ t.

φ(t) = M (u(t−a) −u(t−b)) ,

u(t) 8.4.1

8.4.1 a = 0.5 b = 1 M = 2

L{φ(t)} = L{M(u(t−a) −u(t−b))} = M .
−e−as e−bs

s
(8.4.1)

a = 0 M =
1

b

φ(t) dt = 1∫
∞

0

L{φ(t)} = L{ } = .
u(t) −u(t−b)

b

1 −e−bs

bs

b b

1

δ(t) f(t)

δ(t)f(t)dt = f(0)∫
∞

−∞

(−∞, ∞) δ(t)

t = 0 [c, d]

δ(t) ={∫
d

c

1

0

if the interval [c, d] contains 0,  i. e.  c ≤ 0 ≤ d,

otherwise.
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Unfortunately there is no such function in the classical sense. You could informally think that  is zero for  and somehow
infinite at .

A good way to think about  is as a limit of short pulses whose integral is 1. For example, suppose that we have a square pulse 

 as above with , , that is .

Compute

If  is continuous at , then for very small , the function  is approximately equal to  on the interval . We
approximate the integral

Therefore,

Let us therefore accept  as an object that is possible to integrate. We often want to shift  to another point, for example 
. In that case we have

Note that  is the same object as . In other words, the convolution of  with  is again ,

As we can integrate , let us compute its Laplace transform.

In particular,

Notice that the Laplace transform of  looks like the Laplace transform of the derivative of the Heaviside function 
, if we could differentiate the Heaviside function. First notice

To obtain what the Laplace transform of the derivative would be we multiply by , to obtain , which is the Laplace
transform of . We see the same thing using integration,

So in a certain sense

This line of reasoning allows us to talk about derivatives of functions with jump discontinuities. We can think of the derivative
of the Heaviside function  as being somehow infinite at , which is precisely our intuitive understanding of the delta

δ(t) t ≠ 0

t = 0

δ(t)

φ(t) a = 0 M =
1

b
φ(t) =

u(t) −u(t−b)

b

φ(t)f(t)dt = f(t)dt = f(t)dt.∫
∞

−∞

∫
∞

−∞

u(t) −u(t−b)

b

1

b
∫

b

0

f(t) t = 0 b f(t) f(0) [0, b)

f(t)dt ≈ f(t)dt = f(0).
1

b
∫

b

0

1

b
∫

b

0

φ(t)f(t)dt = f(t)dt = f(0)lim
b→0

∫
∞

−∞

lim
b→0

1

b
∫

b

0

δ(t) δ

δ(t−a)

δ(t−a)f(t)dt = f(a).∫
∞

−∞

δ(a− t) δ(t−a) δ(t) f(t) f(t)

(f ∗ δ)(t) = δ(t−s)f(s)ds = f(t)∫
t

0

δ(t)

L{δ(t−a)} = δ(t−a)dt = .∫
∞

0

e−st e−as

L{δ(t)} = 1.

 Note

δ(t−a)

u(t−a)

L{δ(t−a)} = .
e−as

s

s e−as

δ(t−a)

δ(s−a)ds = u(t−a)∫
t

0

[u(t−a)] = δ(t−a)
d

dt

u(t−a) a
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function.

Compute

So far we have always looked at proper rational functions in the  variable. That is, the numerator was always of lower degree

than the denominator. Not so with . We write,

The resulting object is a generalized function and only makes sense when put underneath an integral.

8.4.3: Impulse Response
As we said before, in the differential equation , we think of  as input, and  as the output. Often it is important to
find the response to an impulse, and then we use the delta function in place of . The solution to

is called the impulse response.

Solve (find the impulse response)

We first apply the Laplace transform to the equation. Denote the transform of  by .

Taking the inverse Laplace transform we obtain

Let us notice something about the above example. In Example 6.3.4, we found that when the input was , then the solution
to  was given by

Notice that the solution for an arbitrary input is given as convolution with the impulse response. Let us see why. The key is to
notice that for functions  and ,

We simply differentiate twice under the integral,  the details are left as an exercise. And so if we convolve the entire equation 
, the left hand side becomes

The right hand side becomes

 Example 8.4.1

{ } .L
−1 s+1

s

s
s+1

s

{ } = {1 + } = {1} + { } = δ(t) +1.L
−1 s+1

s
L

−1 1

s
L

−1
L

−1 1

s

Lx = f(t) f(t) x(t)

f(t)

Lx = δ(t)

 Example 8.4.2

+ x = δ(t), x(0) = 0, (0) = 0.x′′ ω2
0 x′ (8.4.2)

x(t) X(s)

X(s) + X(s) = 1, and so X(s) = .s2 ω2
0

1

+s2 ω2
0

x(t) = .
sin( t)ω0

ω0

f(t)

Lx = f(t)

x(t) = f(τ) dτ .∫
t

0

sin( (t−τ))ω0

ω0

x(t) f(t)

(x ∗ f (t) = [ f(τ)x(t−τ)dτ] = f(τ) (t−τ)dτ = ( ∗ f)(t).)′′ d2

dt2
∫

t

0

∫
t

0

x′′ x′′

2

(8.4.2)

( + x) ∗ f = ( ∗ f) + (x ∗ f) = (x ∗ f + (x ∗ f).x′′ ω2
0 x′′ ω2

0 )′′ ω2
0

(δ ∗ f)(t) = f(t).
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Therefore  is the solution to

This procedure works in general for other linear equations . If you determine the impulse response, you also know
how to obtain the output  for any input  by simply convolving the impulse response and the input .

Below is a video on the Laplace Transform and the Dirac delta function.

8.4.4: Three-Point Beam Bending
Let us give another quite different example where the delta function turns up: Representing point loads on a steel beam. Consider a
beam of length , resting on two simple supports at the ends. Let  denote the position on the beam, and let  denote the
deflection of the beam in the vertical direction. The deflection  satisfies the Euler-Bernoulli equation,

where  and  are constants  and  is the force applied per unit length at position . The situation we are interested in is when
the force is applied at a single point as in Figure .

Figure : Three-point bending.

In this case the equation becomes

where  is the point where the mass is applied.  is the force applied and the minus sign indicates that the force is downward,
that is, in the negative  direction. The end points of the beam satisfy the conditions,

See Section 5.2, for further information about endpoint conditions applied to beams.

Suppose that length of the beam is , and suppose that  for simplicity. Further suppose that the force  is applied
at . That is, we have the equation

y(t) = (x ∗ f)(t)

+ y = f(t).y′′ ω2
0

Lx = f(t)

x(t) f(t) f(t)

Dirac delta function | Laplace transform Dirac delta function | Laplace transform ……

L x y(x)

y(x) 3

EI = F (x),
yd4

dx4

E I 4 F (x) x

8.4.2

8.4.2

EI = −Fδ(x−a)
yd4

dx4

x = a F

y

y(0) = 0, (0) = 0,y′′

y(L) = 0, (L) = 0.y′′ (8.4.3)

 Example 8.4.3

2 EI = 1 F = 1

x = 1

= −δ(x−1)
yd4

dx4
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and the endpoint conditions are

We could integrate, but using the Laplace transform is even easier. We apply the transform in the  variable rather than the 
variable. Let us again denote the transform of  as .

We notice that  and . Let us call  and . We solve for ,

We take the inverse Laplace transform utilizing the second shifting property Equation (6.2.14) to take the inverse of the first
term.

We still need to apply two of the endpoint conditions. As the conditions are at  we can simply replace 
when taking the derivatives. Therefore,

and

Hence  and solving for  using the first equation we obtain . Our solution for the beam deflection is

8.4.5: Footnotes
[1] Named after the English physicist and mathematician Paul Adrien Maurice Dirac (1902–1984).

[2] You should really think of the integral going over  rather than over  and simply assume that  and  are
continuous and zero for negative .

[3] Named for the Swiss mathematicians Jacob Bernoulli (1654–1705), Daniel Bernoulli —nephew of Jacob— (1700–1782), and
Leonhard Paul Euler (1707–1783).

[4]  is the elastic modulus and  is the second moment of area. Let us not worry about the details and simply think of these as
some given constants.

This page titled 8.4: Dirac Delta and Impulse Response is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

6.4: Dirac Delta and Impulse Response by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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8.5: Solving PDEs with the Laplace Transform
The Laplace transform comes from the same family of transforms as does the Fourier series , which we used in Chapter 4 to solve
partial differential equations (PDEs). It is therefore not surprising that we can also solve PDEs with the Laplace transform.

Given a PDE in two independent variables  and , we use the Laplace transform on one of the variables (taking the transform of
everything in sight), and derivatives in that variable become multiplications by the transformed variable . The PDE becomes an
ODE, which we solve. Afterwards we invert the transform to find a solution to the original problem. It is best to see the procedure
on an example.

Consider the first order PDE

with side conditions

This equation is called the convection equation or sometimes the transport equation, and it already made an appearance in
Section 1.9, with different conditions. See Figure  for a diagram of the setup.

Figure : Transport equation on a half line.

A physical setup of this equation is a river of solid goo, as we do not want anything to
diffuse. The function  is the concentration of some toxic substance.  The variable 
denotes position where  is the location of a factory spewing the toxic substance into
the river. The toxic substance flows into the river so that at  the concentration is
always . We wish to see what happens past the factory, that is at . Let  be the time,
and assume the factory started operations at , so that at  the river is just pure goo.

Consider a function of two variables . Let us fix  and transform the  variable. For
convenience, we treat the transformed  variable as a parameter, since there are no
derivatives in . That is, we write  for the transformed function, and treat it as a
function of , leaving  as a parameter.

The transform of a derivative with respect to  is just differentiating the transformed
function:

1

x t

s

 Example 8.5.1

= −α , for x > 0, t > 0,yt yx

y(0, t) = C, y(x, 0) = 0.

8.5.1

8.5.1

y 2 x

x = 0
x = 0

C x > 0 t

t = 0 t = 0

y(x, t) x t

s

s Y (x)
x s

Y (x) = L{y(x, t)} = y(x, t) ds.∫
∞

0
e−st

x

L{ (x, t)} = (x, t) ds = [ y(x, t) ds] = (x).yx ∫
∞

0
yx e−st d

dx
∫

∞

0
e−st Y ′
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To transform the derivative in  (the variable being transformed), we use the rules from
Section 6.2:

In our specific case, , and so . We transform the equation
to find

This ODE needs an initial condition. The initial condition is the other side condition of the
PDE, the one that depends on . Everything is transformed, so we must also transform this
condition

We solve the ODE problem , , to find

We are not done, we have , but we really want . We transform the  variable
back to . Let

be the Heaviside function. As

then

In other words,

See Figure  for a diagram of this solution. The line of slope  indicates the wavefront
of the toxic substance in the picture as it is leaving the factory. What the equation does is
simply move the initial condition to the right at speed .

t

L{ (x, t)} = sY (x) − y(x, 0).yt

y(x, 0) = 0 L{ (x, t)} = sY (x)yt

sY (x) = −α (x).Y ′

x

Y (0) = L{y(0, t)} = L{C} = .
C

s

sY (x) = −α (x)Y ′ Y (0) = C
s

Y (x) = .
C

s
e− x

s

α

Y (x) y(x, t) s

t

u(t) = { 0
1

if t < 0,
otherwise

L{u(t − a)} = u(t − a) dt = dt = ,∫
∞

0

e−st ∫
∞

a

e−st e−as

s

y(x, t) = { } = Cu(t − ).L
−1 C

s
e− x

s

α
x

α

y(x, t) = {
0

C

if t < ,x
α

otherwise.

8.5.2 1
α

α
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Figure : Wavefront of toxic substance is a line of slope .

Shhh…  is not differentiable, it is not even continuous (nobody ever seems to notice). How could we plug something that’s not
differentiable into the equation? Well, just think of a differentiable function very very close to . Or, if you recognize the
derivative of the Heaviside function as the delta function, then all is well too:

and

So .

Laplace equation is very good with constant coefficient equations. One advantage of Laplace is that it easily handles
nonhomogeneous side conditions. Let us try a more complicated example.

Consider

Again, we transform , and we write  for the transformed function. As , we find

The solution of the transformed equation is

Using the second shifting property (6.2.14) and linearity of the transform, we obtain the solution

We can also detect when the problem is in the sense that it has no solution. Let us change the equation to

Then the problem has no solution. First, let us see this in the language of Section 1.9. The characteristic curves are . If 
 is the the characteristic coordinate, then we find the equation  along the curve, meaning a solution is constant along

characteristic curves. But these curves intersect both the -axis and the -axis. For example, the curve  intersects at 
 and . The solution is constant along the curve so  should equal . But  and 

. See Figure .

8.5.2 1
a

y

y

(x, t) = [Cu(t− )] = C (t− ) = Cδ(t− )yt
∂

∂t

x

α
u′ x

α

x

α

(x, t) = [Cu(t− )] = − (t− ) = − δ(t− ).yx
∂

∂x

x

α

C

α
u′ x

α

C

α

x

α

= −αyt yx

 Example 8.5.2

+ +y = 0, for x > 0, t > 0,yt yx

y(0, t) = sin(t), y(x, 0) = 0.
(8.5.1)

t Y (x) y(x, 0) = 0

sY (x) + (x) +Y (x) = 0, Y (0) = .Y ′ 1

+1s2

Y (x) = = .
1

+1s2
e−(s+1)x 1

+1s2
e−xse−x

y(x, t) = sin(t−x)u(t−x).e−x

− + = 0, for x > 0, t > 0,yt yx
y(0, t) = sin(t), y(x, 0) = 0.

(8.5.2)

t = −x+C

τ = 0yτ
x t t = −x+1

(1, 0) (0, 1) y(1, 0) y(0, 1) y(1, 0) = 0
y(0, 1) = sin(1) ≠ 0 8.5.3
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Figure : Ill-posed problem.

Now consider the transform. The transformed problem is

and the solution ought to be

Importantly, this Laplace transform does not decay to zero at infinity! That is, since  in the region of interest, then

It almost looks as if we could use the shifting property, but notice that the shift is in the wrong direction. Of course, we need not
restrict ourselves to first order equations, although the computations become more involved for higher order equations.

Let us use Laplace for the following problem:

Really we also impose other conditions on the solution so that for example the Laplace transform exists. For example, we
might impose that  is bounded for each fixed time . Transform the equation in the  variable to find

The general solution to this ODE is

First , since otherwise  does not decay to zero as . Now consider the boundary condition. Transform 
 and so . In other words,

If we look up the inverse transform in a table such as the one in Appendix B (or we spend the afternoon doing calculus), we
find

or

So

8.5.3

−sY (x) + (x) = 0, Y (0) = ,Y ′ 1

+1s2

Y (x) = .
1

+1s2
esx

x > 0

= ∞ ≠ 0.lim
s→∞

1

+1s2
esx

 Example 8.5.3

= , 0 < x < ∞, t > 0,yt yxx
(0, t) = f(t),yx

y(x, 0) = 0.

y t t

sY (x) = (x).Y ′′

Y (x) = A +B .e xs√ e− xs√

A = 0 Y s → ∞
(0) = F (s)Y ′ − B = F (s)s√

Y (x) = −F (s) .
1

s√
e− xs√

[ ] = ,L
−1 e− xs√ x

4πt3− −−−
√

e
−x2

4t

[ ] = .L
−1 1

s√
e− xs√

1

πt
−−

√
e

−x2

4t
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Laplace can solve problems where separation of variables fails. Laplace does not mind nonhomogeneity, but it is essentially only
useful for constant coefficient equations.

8.5.1: Footnotes
[1] There is a corresponding Fourier transform on the real line as well that looks sort of like the Laplace transform.

[2] It’s a river of goo already, we’re not hurting the environment much more.

8.5: Solving PDEs with the Laplace Transform is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

y(x, t) = [F (s) ] = f(τ) dτ .L
−1 e− xs√ ∫

t

0

1

π(t−τ)
− −−−−−−
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−x2

4(t−τ)
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8.E: The Laplace Transform (Exercises)
These are homework exercises to accompany Libl's "Differential Equations for Engineering" Textmap. This is a textbook targeted
for a one semester first course on differential equations, aimed at engineering students. Prerequisite for the course is the basic
calculus sequence.

8.E.1: 6.1: The Laplace transform

Find the Laplace transform of .

Find the Laplace transform of  for some constants , , and .

Find the Laplace transform of .

Find the Laplace transform of .

Find the inverse Laplace transform of .

Find the inverse Laplace transform of .

Find the inverse Laplace transform of .

Find the Laplace transform of .

Find the inverse Laplace transform of .

Find the Laplace transform of .

 Exercise 8.E. 6.1.1

3 + +sin(πt)t5

 Exercise 8.E. 6.1.2

a+bt+ct2 a b c

 Exercise 8.E. 6.1.3

A cos(ωt) +B sin(ωt)

 Exercise 8.E. 6.1.4

(ωt)cos2

 Exercise 8.E. 6.1.5

4

−9s2

 Exercise 8.E. 6.1.6

2s

−1s2

 Exercise 8.E. 6.1.7

1

(s−1 (s+1))2

 Exercise 8.E. 6.1.8

f(t) ={
t

0

if t ≥ 1,

if t < 1.

 Exercise 8.E. 6.1.9

s

( +s+2)(s+4)s2

 Exercise 8.E. 6.1.10

sin(ω(t−a))
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Find the Laplace transform of . Hint: Several integrations by parts.

Find the Laplace transform of .

Answer

Find the inverse Laplace transform of .

Answer

Find the Laplace transform of  (Hint: integrate by parts).

Answer

Find the Laplace transform of  (Hint: integrate by parts).

Answer

8.E.2: 6.2: Transforms of Derivatives and ODEs

Verify Table 6.2.1.

Using the Heaviside function write down the piecewise function that is  for  for  in  and  for .

Using the Laplace transform solve

where , and  (system is overdamped).

 Exercise 8.E. 6.1.11

t sin(ωt)

 Exercise 8.E. 6.1.12

4(t+1)2

+ +8

s3

8

s2

4
s

 Exercise 8.E. 6.1.13

8

(s+2)s3

2 −2t+1 −t2 e−2t

 Exercise 8.E. 6.1.14

te−t

1

(s+1)2

 Exercise 8.E. 6.1.15

sin(t)e−t

1

+2s+2s2

 Exercise 8.E. 6.2.1

 Exercise 8.E. 6.2.2

0 t < 0, t2 t [0, 1] t t > 1

 Exercise 8.E. 6.2.3

m +c +kx = 0, x(0) = a, (0) = b.x′′ x′ x′ (8.E.1)

m > 0, c > 0, k > 0 −4km > 0c2
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Using the Laplace transform solve

where , and  (system is underdamped).

Using the Laplace transform solve

where , and  (system is critically damped).

Solve  for initial conditions  and .

Show the differentiation of the transform property. Suppose , then show

Hint: Differentiate under the integral sign.

Solve  for initial conditions  and , .

Show the second shifting property: .

Let us think of the mass-spring system with a rocket from Example 6.2.2. We noticed that the solution kept oscillating after the
rocket stopped running. The amplitude of the oscillation depends on the time that the rocket was fired (for 4 seconds in the
example).

a. Find a formula for the amplitude of the resulting oscillation in terms of the amount of time the rocket is fired.
b. Is there a nonzero time (if so what is it?) for which the rocket fires and the resulting oscillation has amplitude 0 (the mass is

not moving)?

Define

a. Sketch the graph of .
b. Write down  using the Heaviside function.
c. Solve  using Laplace transform.

 Exercise 8.E. 6.2.4

m +c +kx = 0, x(0) = a, (0) = b.x′′ x′ x′ (8.E.2)

m > 0, c > 0, k > 0 −4km < 0c2

 Exercise 8.E. 6.2.5

m +c +kx = 0, x(0) = a, (0) = b.x′′ x′ x′ (8.E.3)

m > 0, c > 0, k > 0 = 4kmc2

 Exercise 8.E. 6.2.6

+x = u(t−1)x′′ x(0) = 0 (0) = 0x′

 Exercise 8.E. 6.2.7

L{f(t)} = F (s)

L{−tf(t)} = (s).F ′ (8.E.4)

 Exercise 8.E. 6.2.8

+x = u(t−1)x′′′ t3 x(0) = 1 (0) = 0x′ (0) = 0x′′

 Exercise 8.E. 6.2.9

L{f(t−a)u(t−a)} = L{f(t)}e−as

 Exercise 8.E. 6.2.10

 Exercise 8.E. 6.2.11

f(t) =

⎧

⎩
⎨
⎪

⎪

(t−1)2

3 − t

0

if  1 ≤ t < 2,

if  2 ≤ t < 3,

otherwise.

(8.E.5)

f(t)

f(t)

+x = f(t), x(0) = 0, (0) = 0x′′ x′
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Find the transfer function for  (assuming the initial conditions are zero).

Using the Heaviside function , write down the function

Answer

Solve  for initial conditions  using the Laplace transform.

Answer

Find the transfer function for  (assuming the initial conditions are zero).

Answer

8.E.3: 6.3: Convolution

Let  for , and . Compute .

Let  for , and  for . Compute .

Find the solution to

for an arbitrary function , where , and  (system is overdamped). Write the solution as a
definite integral.

Find the solution to

 Exercise 8.E. 6.2.12

m +c +kx = f(t)x′′ x′

 Exercise 8.E. 6.2.13

u(t)

f(t) =

⎧

⎩
⎨
⎪

⎪

0

t−1

if      2 ≤ t.

if      t < 1,

if  1 ≤ t < 2, (8.E.6)

f(t) = (t−1)(u(t−1) −u(t−2)) +u(t−2)

 Exercise 8.E. 6.2.14

−x = ( −1)u(t−1)x′′ t2 x(0) = 1, (0) = 2x′

x(t) = (2 − −1)u(t−1) − +et−1 t2 1

2
e−t 3

2
et

 Exercise 8.E. 6.2.15

+x = f(t)x′

H(s) = 1

s+1

 Exercise 8.E. 6.3.1

f(t) = t2 t ≥ 0 g(t) = u(t−1) f ∗ g

 Exercise 8.E. 6.3.2

f(t) = t t ≥ 0 g(t) = sin t t ≥ 0 f ∗ g

 Exercise 8.E. 6.3.3

m +c +kx = f(t), x(0) = 0, (0) = 0,x′′ x′ x′

f(t) m > 0, c > 0, k > 0 −4km > 0c2

 Exercise 8.E. 6.3.4

m +c +kx = f(t), x(0) = 0, (0) = 0,x′′ x′ x′
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for an arbitrary function , where , and  (system is underdamped). Write the solution as
a definite integral.

Find the solution to

for an arbitrary function , where , and  (system is critically damped). Write the solution as
a definite integral.

Solve

Solve

Compute  using convolution.

Write down the solution to  as a definite integral. Hint: Do not try to compute the
Laplace transform of .

Let  for , and . Compute .

Answer

Compute  using convolution.

Answer

Solve  using convolution.

Answer

f(t) m > 0, c > 0, k > 0 −4km < 0c2

 Exercise 8.E. 6.3.5

m +c +kx = f(t), x(0) = 0, (0) = 0,x′′ x′ x′

f(t) m > 0, c > 0, k > 0 = 4kmc2

 Exercise 8.E. 6.3.6

x(t) = + cos(t−τ)x(τ) dτ .e−t ∫ t

0

 Exercise 8.E. 6.3.7

x(t) = cos t+ cos(t−τ)x(τ) dτ .∫
t

0

 Exercise 8.E. 6.3.8

{ }L
−1 s

( +4s2 )
2

 Exercise 8.E. 6.3.9

−2x = , x(0) = 0, (0) = 0x′′ e−t2
x′

e−t2

 Exercise 8.E. 6.3.10

f(t) = cos t t ≥ 0 g(t) = e−t f ∗ g

(cos t+sin t− )1
2

e−t

 Exercise 8.E. 6.3.11

{ }L
−1 5

+s4 s2

5t−5 sin t

 Exercise 8.E. 6.3.12

+x = sin t, x(0) = 0, (0) = 0x′′ x′

(sin t− t cos t)1

2
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Solve  using convolution. Write the result as a definite integral.

Answer

8.E.4: 6.4: Dirac delta and impulse response

Solve (find the impulse response) 

Solve (find the impulse response) 

A pulse can come later and can be bigger. Solve 

Suppose that  and  are differentiable functions and suppose that  for all . Show that

Suppose that , has the solution  for . Find the solution to 
 for .

Compute .

Solve Example 6.4.3 via integrating 4 times in the  variable.

Suppose we have a beam of length  simply supported at the ends and suppose that force  is applied at  in the
downward direction. Suppose that  for simplicity. Find the beam deection .

Solve (find the impulse response) .

Answer

 Exercise 8.E. 6.3.13

+ = f(t), x(0) = 0, (0) = 0, (0) = 0x′′′ x′ x′ x′′

f(τ)(1 −cos(t−τ))dτ∫ t

0

 Exercise 8.E. 6.4.1

+ +x = δ(t), x(0) = 0, (0) = 0.x′′ x′ x′

 Exercise 8.E. 6.4.2

+2 +x = δ(t), x(0) = 0, (0) = 0.x′′ x′ x′

 Exercise 8.E. 6.4.3

+4x = 4δ(t−1), x(0) = 0, (0) = 0.x′′ x′

 Exercise 8.E. 6.4.4

f(t) g(t) f(t) = g(t) = 0 t ≤ 0

(f ∗ g (t) = ( ∗ g)(t) = (f ∗ )(t).)′ f ′ g′ (8.E.7)

 Exercise 8.E. 6.4.5

Lx = δ(t), x(0) = 0, (0) = 0x′ x = e−t t > 0

Lx = , x(0) = 0, (0) = 0t2 x′ t > 0

 Exercise 8.E. 6.4.6

{ }L
−1 +s+1s2

s2

 Exercise : (challenging)8.E. 6.4.7

x

 Exercise 8.E. 6.4.8

1 F = 1 x = 3
4

EI = 1 y(x)

 Exercise 8.E. 6.4.9

= δ(t), x(0) = 0, (0) = 0x′′ x′

x(t) = t
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Solve (find the impulse response) .

Answer

Suppose that , has the solution  for . Find (in closed form) the solution to 
.

Answer

Compute .

Answer

Compute .

Answer

8.E.5: 6.5: Solving PDEs with the Laplace Transform

Solve

Solve

Solve

 Exercise 8.E. 6.4.10

+ax = δ(t), x(0) = 0, (0) = 0x′ x′

x(t) = e−at

 Exercise 8.E. 6.4.11

Lx = δ(t), x(0) = 0, (0) = 0x′ x(t) = cos(t) t > 0

Lx = sin(t), x(0) = 0, (0) = 0fort > 0x′

x(t) = (cos ∗ sin)(t) = t sin(t)1

2

 Exercise 8.E. 6.4.12

{ }L
−1 s2

+1s2

δ(t) −sin(t)

 Exercise 8.E. 6.4.13

{ }L
−1 3 +2s2e−s

s2

3δ(t−1) +2t

 Exercise 8.E. 6.5.1

+ = 1, 0 < x < ∞, t > 0,yt yx

y(0, t) = 1, y(x, 0) = 0.

 Exercise 8.E. 6.5.2

+α = 0, 0 < x < ∞, t > 0,yt yx
y(0, t) = t, y(x, 0) = 0.

 Exercise 8.E. 6.5.3

+2 = x+ t, 0 < x < ∞, t > 0,yt yx
y(0, t) = 0, y(x, 0) = 0.
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For an , solve

Find the corresponding ODE problem for , after transforming the  variable

Do not solve the problem.

Write down a solution to

as an definite integral (convolution).

Use the Laplace transform in  to solve

Hint: Note that  does not go to zero as  for positive , and  does not go to zero as  for negative .

Solve

Answer

For a , solve

Answer

 Exercise 8.E. 6.5.4

α > 0

+α +y = 0, 0 < x < ∞, t > 0,yt yx
y(0, t) = sin(t), y(x, 0) = 0.

 Exercise 8.E. 6.5.5

Y (x) t

+3 + +3 +y = sin(x) + t, 0 < x < 1, t > 0,ytt yxx yxt yx

y(0, t) = 1, y(1, t) = t, y(x, 0) = 1 −x, (x, 0) = 1.yt

 Exercise 8.E. 6.5.6

= , 0 < x < ∞, t > 0,yt yxx

(0, t) = , y(x, 0) = 0,yx e−t

 Exercise 8.E. 6.5.7

t

= , −∞ < x < ∞, t > 0,ytt yxx
(x, 0) = sin(x), y(x, 0) = 0.yt

esx s → ∞ x e−sx s → ∞ x

 Exercise 8.E. 6.5.8

+ = 1, 0 < x < ∞, t > 0,yt yx
y(0, t) = 0, y(x, 0) = 0.

y = (x− t)u(t−x) + t

 Exercise 8.E. 6.5.9

c > 0

+ +cy = 0, 0 < x < ∞, t > 0,yt yx
y(0, t) = sin(t), y(x, 0) = 0.

y = sin(t−x)u(t−x)e−cx
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Find the corresponding ODE problem for , after transforming the  variable

Do not solve the problem.

Answer

Use the Laplace transform in  to solve

Hint: Note that  does not go to zero as  for positive , and  does not go to zero as  for negative .

Answer

This page titled 8.E: The Laplace Transform (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

6.E: The Laplace Transform (Exercises) has no license indicated.

 Exercise 8.E. 6.5.10

Y (x) t

+3 +y = x+ t, −1 < x < 1, t > 0,ytt yxx

y(−1, t) = 0, y(1, t) = 0, y(x, 0) = (1 − ), (x, 0) = 0.x2 yt

Y (x) −s(1 + ) +3 (x) +Y (x) = + , Y (−1) = 0, Y (1) = 0.s2 x2 Y ′′ x

s
1

s2

 Exercise 8.E. 6.5.11

t

= , −∞ < x < ∞, t > 0,ytt yxx

(x, 0) = , y(x, 0) = 0.yt x2

esx s → ∞ x e−sx s → ∞ x

y = t +x2 t3

3
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9.1: Power Series
Many functions can be written in terms of a power series

If we assume that a solution of a differential equation is written as a power series, then perhaps we can use a method reminiscent of
undetermined coefficients. That is, we will try to solve for the numbers . Before we can carry out this process, let us review some
results and concepts about power series.

9.1.1: Definition
As we said, a power series is an expression such as

where  and  are constants. Let

denote the so-called partial sum. If for some , the limit

exists, then we say that the series  converges at . Note that for , the series always converges to . When 
converges at any other point , we say that  is a convergent power series. In this case we write

If the series does not converge for any point , we say that the series is divergent.

The series

is convergent for any . Recall that  is the factorial. By convention we define . In fact, you may recall
that this series converges to .

We say that  converges absolutely at  whenever the limit

exists. That is, the series  is convergent. If  converges absolutely at , then it converges at .
However, the opposite implication is not true.

The series

(x−∑
k=0

∞

ak x0)k

ak

= + (x− ) + + +⋯ ,∑
k=0

∞

ak (x− )x0
k a0 a1 x0 a2 (x− )x0

2 a3 (x− )x0
3 (9.1.1)

, , , … , , …a0 a1 a2 ak x0

(x) = = + (x− ) + + +⋯ + ,Sn ∑
k=0

n

ak (x− )x0
k

a0 a1 x0 a2 (x− )x0
2

a3 (x− )x0
3

an (x− )x0
n

x

(x) =lim
n→∞

Sn lim
n→∞

∑
k=0

n

ak (x− )x0
k

(9.1.1) x x = x0 a0 (9.1.1)

x ≠ x0 (9.1.1)

= .∑
k=0

∞

ak (x− )x0
k

lim
n→∞

∑
k=0

n

ak (x− )x0
k

x ≠ x0

 Example 9.1.1

= 1 +x+ + +⋯∑
k=0

∞
1

k!
xk

x2

2

x3

6

x k! = 1 ⋅ 2 ⋅ 3 ⋯ k 0! = 1

ex

(9.1.1) x

| |lim
n→∞

∑
k=0

n

ak |x− |x0
k

| |∑∞
k=0 ak |x− |x0

k (9.1.1) x x
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converges absolutely for all  in the interval .

It converges at , as

 converges (conditionally)

by the alternating series test.

But the power series does not converge absolutely at , because  does not converge. The series diverges at 
.

9.1.2: Radius of Convergence
If a power series converges absolutely at some , then for all  such that  (that is,  is closer than  to )
we have  for all . As the numbers  sum to some finite limit, summing smaller
positive numbers  must also have a finite limit. Hence, the series must converge absolutely at .

For a power series , there exists a number  (we allow ) called the radius of convergence such that the series
converges absolutely on the interval  and diverges for  and . We write  if the
series converges for all .

Figure : Convergence of a power series.

See Figure . In Example  the radius of convergence is  as the series converges everywhere. In Example  the
radius of convergence is . We note that  is another way of saying that the series is divergent. A useful test for
convergence of a series is the ratio test. Suppose that

is a series such that the limit

exists. Then the series converges absolutely if  and diverges if .

Let us apply this test to the series . That is we let  in the test. Compute

Define  by

Then if  the series  converges absolutely. If , then the series always converges. If , then the
series converges absolutely if , and diverges if . That is, the radius of convergence is .

A similar test is the root test. Suppose

∑
k=1

∞
1

k

x (−1, 1)

x = −1

∑∞
k=1

(−1)k

k

x = −1 ∑∞
k=1

1
k

x = 1

x1 x |x− | ≤ | − |x0 x1 x0 x x1 x0

≤∣∣ak(x− )x0
k∣∣ ∣∣ak( − )x1 x0

k∣∣ k ∣∣ak( − )x1 x0
k∣∣

∣∣ak(x− )x0
k∣∣ x

 Theorem 9.1.1

(9.1.1) ρ ρ = ∞

( −ρ, +ρ)x0 x0 x < −ρx0 x > +ρx0 ρ = ∞

x

9.1.1

9.1.1 9.1.1 ρ = ∞ 9.1.2

ρ = 1 ρ = 0

∑
k=0

∞

ck

L = lim
n→∞

∣
∣
∣
ck+1

ck

∣
∣
∣

L < 1 L > 1

(9.1.1) =ck ak(x− )x0
k

L = = = |x− |.lim
n→∞

∣
∣
∣
ck+1
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∣
∣
∣ lim

n→∞

∣

∣
∣
ak+1 (x− )x0

k+1

ak (x− )x0
k

∣

∣
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∣
∣
∣
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∣
∣
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∣
∣
∣
ak+1
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∣
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∣

1 > L = A|x− |x0 (9.1.1) A = 0 A > 0

|x− | <x0
1
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1
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exists. Then  converges absolutely if  and diverges if . We can use the same calculation as above to find .
Let us summarize.

Let

be a power series such that

exists. If , then the radius of convergence of the series is . Otherwise the radius of convergence is .

Below is a video on finding the interval of convergence of a power series.

Below is another video on finding the interval of convergence of a power series.

Suppose we have the series

L = lim
k→∞

| |ck
−−−

√3

∑∞
k=0 ck L < 1 L > 1 A

 Theorem : Ratio and Root Tests for Power Series9.1.2

∑
k=0

∞

ak (x− )x0
k

A = or A =lim
n→∞

∣
∣
∣
ak+1

ak

∣
∣
∣ lim

k→∞
| |ak
−−−

√3

A = 0 ∞ 1
A

Ex 1: Interval of Convergence for Power Ex 1: Interval of Convergence for Power ……

Ex 2: Interval of Convergence for Power Ex 2: Interval of Convergence for Power ……

 Example 9.1.3
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First we compute,

Therefore the radius of convergence is , and the series converges absolutely on the interval . And we could just as well
have used the root test:

Below is a video on the interval of convergence of a power series not centered at the origin.

 

Consider

Compute the limit for the root test,

So the radius of convergence is : the series converges everywhere. The ratio test would also work here.

The root or the ratio test does not always apply. That is the limit of  or  might not exist. There exist more sophisticated
ways of finding the radius of convergence, but those would be beyond the scope of this chapter. The two methods above cover
many of the series that arise in practice. Often if the root test applies, so does the ratio test, and vice versa, though the limit might
be easier to compute in one way than the other.

9.1.3: Analytic Functions
Functions represented by power series are called analytic functions. Not every function is analytic, although the majority of the
functions you have seen in calculus are. An analytic function  is equal to its Taylor series  near a point . That is, for  near 

 we have

.∑
k=0

∞

2−k (x−1)
k

A = = = = .lim
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∣
∣
∣
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∣
∣
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√k lim
k→∞

| |2−k
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√k lim
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2−1 1

2

Ex 5: Interval of Convergence for Power Ex 5: Interval of Convergence for Power ……

 Example 9.1.4
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where  denotes the  derivative of  at the point .

Figure : The sine function and its Taylor approximations around  of  and  degree.

For example, sine is an analytic function and its Taylor series around  is given by

In Figure  we plot  and the truncations of the series up to degree 5 and 9. You can see that the approximation is very
good for  near 0, but gets worse for  further away from 0. This is what happens in general. To get a good approximation far away
from  you need to take more and more terms of the Taylor series.

9.1.4: Manipulating Power Series
One of the main properties of power series that we will use is that we can differentiate them term by term. That is, suppose that 

 is a convergent power series. Then for  in the radius of convergence we have

Notice that the term corresponding to  disappeared as it was constant. The radius of convergence of the differentiated series is
the same as that of the original.

Let us show that the exponential  solves . First write

Now differentiate

We reindex the series by simply replacing  with . The series does not change, what changes is simply how we write it.
After reindexing the series starts at  again.

That was precisely the power series for  that we started with, so we showed that .

Convergent power series can be added and multiplied together, and multiplied by constants using the following rules. First, we can
add series by adding term by term,

f(x) = ,∑
k=0

∞ ( )f (k) x0

k!
(x− )x0

k (9.1.2)

( )f (k) x0 kth f(x) x0

9.1.2 = 0xo

= 0x0
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∞ (−1)n

(2n+1)!
x2n+1

9.1.2 sin(x)

x x
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∑
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k−1

k = 0

 Example 9.1.5
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We can multiply by constants,

We can also multiply series together,

where . The radius of convergence of the sum or the product is at least the minimum of the radii
of convergence of the two series involved.

Below is a video on differentiation and integration using power series.

9.1.5: Power Series for Rational Functions
Polynomials are simply finite power series. That is, a polynomial is a power series where the  are zero for all  large enough. We
can always expand a polynomial as a power series about any point  by writing the polynomial as a polynomial in . For
example, let us write  as a power series around :

In other words , , , and all other . To do this, we know that  for all  as the polynomial is of
degree 2.

We write , we expand, and we solve for , , and . We could have also differentiated at 
and used the Taylor series formula .

Let us look at rational functions, that is, ratios of polynomials. An important fact is that a series for a function only defines the
function on an interval even if the function is defined elsewhere. For example, for  we have

This series is called the geometric series. The ratio test tells us that the radius of convergence is . The series diverges for 
and , even though  is defined for all .

We can use the geometric series together with rules for addition and multiplication of power series to expand rational functions
around a point, as long as the denominator is not zero at . Note that as for polynomials, we could equivalently use the Taylor
series expansion .
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Below is a video on finding a power series to represent a rational function.

Expand  as a power series around the origin ( ) and find the radius of convergence. First, write 

. Now we compute

where using the formula for the product of series we obtain, , , , etc .

Therefore

The radius of convergence is at least 1. We use the ratio test

So the radius of convergence is actually equal to 1.

When the rational function is more complicated, it is also possible to use method of partial fractions. For example, to find the
Taylor series for , we write

9.1.6: Footnotes
[1] Named after the English mathematician Sir Brook Taylor (1685–1731).

Ex 1: Ex 1: Find a Power Series to Represent Find a Power Series to Represent ……
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= k = x−2 +3 −4 +⋯
x

1 +2x+x2
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∞

(−1)k+1 xk x2 x3 x4

= = = 1.lim
k→∞

∣
∣
∣
ak+1

ak

∣
∣
∣ lim

k→∞

∣

∣
∣

(k+1)(−1)
k+2

k(−1)
k+1

∣

∣
∣ lim

k→∞

k+1

k

+xx3

−1x2

= x+ − = x+ − = −x+ (−2) .
+xx3

−1x2

1

1 +x

1

1 −x
∑
k=0

∞

(−1)kxk ∑
k=0

∞

xk ∑
k=3
k odd

∞

xk
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9.2: Series Solutions of Linear Second Order ODEs
Suppose we have a linear second order homogeneous ODE of the form

Suppose that , , and  are polynomials. We will try a solution of the form

and solve for the  to try to obtain a solution defined in some interval around .

The point  is called an ordinary point if  in linear second order homogeneous ODE of the form in Equation .
That is, the functions

are defined for  near .

If , then we say  is a singular point.

Handling singular points is harder than ordinary points and so we now focus only on ordinary points.

Let us start with a very simple example

Let us try a power series solution near , which is an ordinary point.

Solution

Every point is an ordinary point in fact, as the equation is constant coefficient. We already know we should obtain exponentials
or the hyperbolic sine and cosine, but let us pretend we do not know this.

We try

If we differentiate, the  term is a constant and hence disappears. We therefore get

We differentiate yet again to obtain (now the  term disappears)

We reindex the series (replace  with  ) to obtain

Now we plug  and  into the differential equation.

p(x) +q(x) +r(x)y = 0y′′ y′ (9.2.1)

p(x) q(x) r(x)

y =∑
k=0

∞

ak (x − )xo
2

ak xo

 Definition: Ordinary and Singular Points

xo p( ) ≠ 0xo 9.2.1

and
q(x)

p(x)

r(x)

p(x)

x xo

p( ) = 0x0 xo

 Example : Expansion around an Ordinary Point9.2.1

−y = 0y′′

= 0xo

y =∑
k=0

∞

akx
k

k = 0

= ky′ ∑
k=1

∞

ak xk−1

k = 1

= k (k −1)y
′′ ∑

k=2

∞

ak x
k−2

k k +2

= (k +2) (k +1)y
′′ ∑

k=0

∞

ak+2 x
k

y y′′
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As  is supposed to be equal to 0, we know that the coefficients of the resulting series must be equal to 0. Therefore,

The above equation is called a recurrence relation for the coefficients of the power series. It did not matter what  or  was.
They can be arbitrary. But once we pick  and , then all other coefficients are determined by the recurrence relation.

Let us see what the coefficients must be. First,  and  are arbitrary

So we note that for even , that is  we get

and for odd  that is  we have

Let us write down the series

We recognize the two series as the hyperbolic sine and cosine. Therefore,

Of course, in general we will not be able to recognize the series that appears, since usually there will not be any elementary
function that matches it. In that case we will be content with the series.

Let us do a more complex example. Suppose we wish to solve Airy’s equation , that is

near the point , which is an ordinary point.

We try

We differentiate twice (as above) to obtain

We plug  into the equation

0 = −yy′′ =( (k +2)(k +1) )−( )∑
k=0

∞

ak+2xk ∑
k=0

∞

akxk

= ((k +2)(k +1) − )∑
k=0

∞

ak+2xk akxk

= ((k +2)(k +1) − ) .∑
k=0

∞

ak+2 ak x
k

(9.2.2)

−yy′′

(k +2)(k +1) − = 0, or = .ak+2 ak ak+2
ak

(k +2)(k +1)

a0 a1

a0 a1

a0 a1

= , = , = = , = = , …a2
a0

2
a3

a1

(3)(2)
a4

a2

(4)(3)

a0

(4)(3)(2)
a5

a3

(5)(4)

a1

(5)(4)(3)(2)

k k = 2n

= =ak a2n

ao

(2n)!

k k = 2n +1

= =ak a2n+1
a1

(2n +1)!

y = = ( + ) = + .∑
k=0

∞

akxk ∑
n=0

∞
a0

(2n)!
x2n a1

(2n +1)!
x2n+1 a0 ∑

n=0

∞ 1

(2n)!
x2n a1 ∑

n=0

∞ 1

(2n +1)!
x2n+1

y = cosh x + sinh xao a1

 Example 9.2.2

1

−xy = 0y′′

= 0x0

y =∑
k=0

∞

akxk

= k(k −1)y
′′ ∑

k=2

∞

akx
k−2
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We reindex to make things easier to sum

Again  is supposed to be 0 so first we notice that  and also

Now we jump in steps of three. First we notice that since  we must have that, , , , etc . In
general . The constants  and  are arbitrary and we obtain

For  where  is a multiple of , that is  we notice that

For  where , we notice

In other words, if we write down the series for  we notice that it has two parts

We define

and write the general solution to the equation as . Notice from the power series that  and 
. Also,  and . Therefore  is a solution that satisfies the initial conditions  and 
.

0 = −xyy′′ =( k (k −1) )−x( )∑
k=2

∞

akxk−2 ∑
k=0

∞

akxk

=( k (k −1) )−( ).∑
k=2

∞

akx
k−2 ∑

k=0

∞

akx
k+1

(9.2.3)

0 = −xyy′′ =(2 + (k +2) (k +1) )−( ).a2 ∑
k=1

∞

ak+2xk ∑
k=1

∞

ak−1xk

= 2 + ((k +2) (k +1) − ) .a2 ∑
k=1

∞

ak+2 ak−1 x
k

(9.2.4)

−xyy′′ = 0a2

(k +2) (k +1) − = 0, or = .ak+2 ak−1 ak+2
ak−1

(k +2)(k +1)

= 0a2 = 0a5 = 0a8 = 0a11 …

= 0a3n+2 a0 a1

= , = , = = , = = , …a3
a0

(3)(2)
a4

a1

(4)(3)
a6

a3

(6)(5)

a0

(6)(5)(3)(2)
a7

a4

(7)(6)

a1

(7)(6)(4)(3)

ak k 3 k = 3n

= .a3n

a0

(2)(3)(5)(6) ⋯ (3n −1)(3n)

ak k = 3n +1

= .a3n+1
a1

(3)(4)(6)(7) ⋯ (3n)(3n +1)

y

y =( + + +⋯ + +⋯)a0
a0

6
x3 a0

180
x6 a0

(2)(3)(5)(6) ⋯ (3n −1)(3n)
x3n

+( x + + +⋯ + +⋯)a1
a1

12
x4 a1

504
x7 a1

(3)(4)(6)(7) ⋯ (3n)(3n +1)
x3n+1

= (1 + + +⋯ + +⋯)a0
1

6
x

3 1

180
x

6 1

(2)(3)(5)(6) ⋯ (3n −1)(3n)
x

3n

+ (x + + +⋯ + +⋯) .a1
1

12
x4 1

504
x7 1

(3)(4)(6)(7) ⋯ (3n)(3n +1)
x3n+1

(9.2.5)

(x)y1

(x)y2

= 1 + + +⋯ + +⋯ ,
1

6
x

3 1

180
x

6 1

(2)(3)(5)(6) ⋯ (3n −1)(3n)
x

3n

= x + + +⋯ + +⋯ ,
1

12
x

4 1

504
x

7 1

(3)(4)(6)(7) ⋯ (3n)(3n +1)
x

3n+1
(9.2.6)
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Figure : The two solutions  and  to Airy's equation.

The functions  and  cannot be written in terms of the elementary functions that you
know. See Figure  for the plot of the solutions  and . These functions have many
interesting properties. For example, they are oscillatory for negative  (like solutions to 

) and for positive  they grow without bound (like solutions to ).

Sometimes a solution may turn out to be a polynomial.

Let us find a solution to the so-called Hermite’s equation of order  is the equation

Find a solution around the point .

Solution

We try

We differentiate (as above) to obtain

Now we plug into the equation

As  we have

9.2.1 y1 y2

y1 y2

9.2.1 y1 y2

x

+ y = 0y′′ x − y = 0y′′

 Example : Hermite Equation9.2.3

n2

−2x +2ny = 0.y
′′

y
′

= 0x0

y = .∑
k=0

∞

akx
k

=y′

y′′

k ,∑
k=1

∞

akxk−1

= k (k −1) .∑
k=2

∞

akxk−2

(9.2.7)

0 = −2x +2nyy′′ y′

=( k (k −1) )−2x( k )+2n( )∑
k=2

∞

akxk−2 ∑
k=1

∞

akxk−1 ∑
k=0

∞

akxk

=( k (k −1) )−( 2k )+( 2n )∑
k=2

∞

akxk−2 ∑
k=1

∞

akxk ∑
k=0

∞

akxk

=(2 + (k +2) (k +1) )−( 2k )+(2n + 2n )a2 ∑
k=1

∞

ak+2x
k ∑

k=1

∞

akx
k

a0 ∑
k=1

∞

akx
k

= 2 +2n + ((k +2) (k +1) −2k +2n ) .a2 a0 ∑
k=1

∞

ak+2 ak ak xk

(9.2.8)
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This recurrence relation actually includes  (which comes about from ). Again  and  are
arbitrary.

Let us separate the even and odd coefficients. We find that

Let us write down the two series, one with the even powers and one with the odd.

We then write

We also notice that if  is a positive even integer, then  is a polynomial as all the coefficients in the series beyond a
certain degree are zero. If  is a positive odd integer, then  is a polynomial. For example, if , then

9.2.1: Footnotes
[1] Named after the English mathematician Sir George Biddell Airy (1801 – 1892).

[2] Named after the French mathematician Charles Hermite (1822–1901).
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9.3: Singular Points and the Method of Frobenius

9.3.1: Examples

While behavior of ODEs at singular points is more complicated, certain singular points are not especially difficult to solve. Let us look at
some examples before giving a general method. We may be lucky and obtain a power series solution using the method of the previous
section, but in general we may have to try other things.

Let us first look at a simple first order equation

Note that  is a singular point. If we only try to plug in

we obtain

First, . Next, the only way to solve  for  is for  for all . Therefore we
only get the trivial solution . We need a nonzero solution to get the general solution.

Let us try  for some real number . Consequently our solution---if we can find one---may only make sense for positive . Then 
. So

Therefore , or in other words . Multiplying by a constant, the general solution for positive  is

If  then the derivative of the solution "blows up" at  (the singular point). There is only one solution that is differentiable at
 and that's the trivial solution .

Not every problem with a singular point has a solution of the form , of course. But perhaps we can combine the methods. What we
will do is to try a solution of the form

where  is an analytic function.

Suppose that we have the equation

and again note that  is a singular point. Let us try

where  is a real number, not necessarily an integer. Again if such a solution exists, it may only exist for positive . First let us find the
derivatives

 Example 9.3.1

2x −y = 0.y′ (9.3.1)

x = 0

y = ,∑
k=0

∞

akx
k (9.3.2)

0 = 2x −yy′ = 2x ( k )−( )∑
k=1

∞

akx
k−1 ∑

k=0

∞

akx
k

= + (2k − ) .a0 ∑
k=1

∞

ak ak xk

(9.3.3)

= 0a0 0 = 2k − = (2k−1)ak ak ak k = 1, 2, 3, … = 0ak k

y = 0

y = xr r x

= ry′ xr−1

0 = 2x −y = 2xr − = (2r−1) .y′ xr−1 xr xr

r =
1

2
y = x1/2 x

y = C .x1/2

C ≠ 0 x = 0

x = 0 y = 0

y = xr

y = f(x)xr

f(x)

 Example 9.3.2

4 −4 +(1 −2x)y = 0,x2y′′ x2y′ (9.3.4)

x = 0

y = = ,xr∑
k=0

∞

akx
k ∑

k=0

∞

akx
k+r (9.3.5)
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Plugging Equations  -  into our original differential equation (Equation ) we obtain

To have a solution we must first have . Supposing that  we obtain

This equation is called the indicial equation. This particular indicial equation has a double root at .

OK, so we know what  has to be. That knowledge we obtained simply by looking at the coefficient of . All other coefficients of 
 also have to be zero so

If we plug in  and solve for  we get

Let us set . Then

Extrapolating, we notice that

In other words,

That was lucky! In general, we will not be able to write the series in terms of elementary functions. We have one solution, let us call it 
. But what about a second solution? If we want a general solution, we need two linearly independent solutions. Picking 

to be a different constant only gets us a constant multiple of , and we do not have any other  to try; we only have one solution to
the indicial equation. Well, there are powers of  floating around and we are taking derivatives, perhaps the logarithm (the
antiderivative of ) is around as well. It turns out we want to try for another solution of the form

y′

y′′

= (k+r) ,∑
k=0

∞

akx
k+r−1

= (k+r) (k+r−1) .∑
k=0

∞

akx
k+r−2 (9.3.6)

9.3.5 9.3.6 9.3.4

0 = 4 −4 +(1 −2x)yx2y′′ x2y′

= 4 ( (k+r) (k+r−1) )−4 ( (k+r) )+(1 −2x)( )x2 ∑
k=0

∞

akx
k+r−2 x2 ∑

k=0

∞

akx
k+r−1 ∑

k=0

∞

akx
k+r

=( 4(k+r) (k+r−1) )−( 4(k+r) )+( )−( 2 )∑
k=0

∞

akx
k+r ∑

k=0

∞

akx
k+r+1 ∑

k=0

∞

akx
k+r ∑

k=0

∞

akx
k+r+1

=( 4(k+r) (k+r−1) )−( 4(k+r−1) )+( )−( 2 )∑
k=0

∞

akx
k+r ∑

k=1

∞

ak−1x
k+r ∑

k=0

∞

akx
k+r ∑

k=1

∞

ak−1x
k+r

= 4r(r−1) + + (4(k+r) (k+r−1) −4(k+r−1) + −2 )a0x
r a0x

r ∑
k=1

∞

ak ak−1 ak ak−1 xk+r

= (4r(r−1) +1) + ((4(k+r) (k+r−1) +1) −(4(k+r−1) +2) ) .a0x
r ∑

k=1

∞

ak ak−1 xk+r

(9.3.7)

(4r(r−1) +1) = 0a0 ≠ 0a0

4r(r−1) +1 = 0.

r =
1

2

r xr

xk+r
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1

2
ak

= = .ak
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1

2
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1

2

1
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1
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1

1
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1

2
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1

2
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1
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1
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1
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1

4 ⋅ 3 ⋅ 2

= = .ak
1
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1

k!
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k=0

∞

akx
k+r ∑

k=0

∞ 1
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∞ 1
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xk x1/2ex

=y1 x1/2ex a0

y1 r

x

x−1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98094?pdf


9.3.3 https://math.libretexts.org/@go/page/98094

which in our case is

We now differentiate this equation, substitute into the differential equation and solve for . A long computation ensues and we obtain
some recursion relation for . The reader can (and should) try this to obtain for example the first three terms

We then fix  and obtain a solution . Then we write the general solution as .

9.3.2: Method of Frobenius

Before giving the general method, let us clarify when the method applies. Let

be an ODE. As before, if , then  is a singular point. If, furthermore, the limits

both exist and are finite, then we say that  is a regular singular point.

Often, and for the rest of this section, . Consider

Write

So  is a regular singular point.

On the other hand if we make the slight change

then

Here DNE stands for does not exist. The point  is a singular point, but not a regular singular point.

Below is part 1 of a video on the method of Frobenius.

= +(lnx) ,y2 ∑
k=0

∞

bkx
k+r y1

= +(lnx) .y2 ∑
k=0

∞

bkx
k+1/2 x1/2ex

bk
bk

= −1, = , = , …b1 b0 b2
2 −1b1

4
b3

6 −1b2

18

b0 y2 y = A +By1 y2

p(x) +q(x) +r(x)y = 0y′′ y′

p( ) = 0x0 x0

 (x− ) and  (x−lim
x→x0

x0

q(x)

p(x)
lim
x→x0

x0)2 r(x)

p(x)

x0

 Example : Expansion around a regular singular point9.3.3

= 0x0

+x(1 +x) +(π+ )y = 0.x2y′′ y′ x2

.

 xlim
x→0

q(x)

p(x)

 lim
x→0

x2 r(x)

p(x)

=  x =  (1 +x) = 1,lim
x→0

x(1 +x)

x2
lim
x→0

=   frac(π+ ) =  (π+ ) = πlim
x→0

x2 x2 x2 lim
x→0

x2

(9.3.8)

x = 0

+(1 +x) +(π+ )y = 0,x2y′′ y′ x2

 x =  x =   = DNE.lim
x→0

q(x)

p(x)
lim
x→0

(1 +x)

x2
lim
x→0

1 +x

x

0
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Below is part 2 of a video on the method of Frobenius.

Let us now discuss the general Method of Frobenius . Let us only consider the method at the point  for simplicity. The main idea is
the following theorem.

Method of Frobenius

Suppose that

has a regular singular point at , then there exists at least one solution of the form

A solution of this form is called a Frobenius-type solution.

The method usually breaks down like this.

i. We seek a Frobenius-type solution of the form

We plug this  into equation . We collect terms and write everything as a single series.
ii. The obtained series must be zero. Setting the first coefficient (usually the coefficient of ) in the series to zero we obtain the indicial

equation, which is a quadratic polynomial in .

Introduction to Frobenius Method Part 1Introduction to Frobenius Method Part 1

Introduction to Frobenius Method Part 2Introduction to Frobenius Method Part 2

1 x = 0

 Theorem 9.3.1

p(x) +q(x) +r(x)y = 0y′′ y′ (9.3.9)

x = 0

y = .xr∑
k=0

∞

akx
k

y = .∑
k=0

∞

akx
k+r

y (9.3.9)

xr

r
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iii. If the indicial equation has two real roots  and  such that  is not an integer, then we have two linearly independent
Frobenius-type solutions. Using the first root, we plug in

and we solve for all  to obtain the first solution. Then using the second root, we plug in

and solve for all  to obtain the second solution.
iv. If the indicial equation has a doubled root , then there we find one solution

and then we obtain a new solution by plugging

into Equation  and solving for the constants .
v. If the indicial equation has two real roots such that  is an integer, then one solution is

and the second linearly independent solution is of the form

where we plug  into  and solve for the constants  and .
vi. Finally, if the indicial equation has complex roots, then solving for  in the solution

results in a complex-valued function---all the  are complex numbers. We obtain our two linearly independent solutions  by taking
the real and imaginary parts of .

The main idea is to find at least one Frobenius-type solution. If we are lucky and find two, we are done. If we only get one, we either use
the ideas above or even a different method such as reduction of order (Exercise 2.1.8) to obtain a second solution.

Below is a video on using the method of Frobenious to solve a differential equation.

r1 r2 −r1 r2

= ,y1 xr1 ∑
k=0

∞

akx
k

ak

= ,y2 xr2 ∑
k=0

∞

bkx
k

bk
r

= ,y1 xr∑
k=0

∞

akx
k

= +(lnx) ,y2 xr∑
k=0

∞

bkx
k y1

(9.3.9) bk
−r1 r2

= ,y1 xr1 ∑
k=0

∞

akx
k

= +C(lnx) ,y2 xr2 ∑
k=0

∞

bkx
k y1

y2 (9.3.9) bk C

ak

y = xr1 ∑
k=0

∞

akx
k

ak
2

y
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Below is another video on using the method of Frobenious to solve a differential equation.

9.3.3: Bessel Functions
An important class of functions that arises commonly in physics are the Bessel functions . For example, these functions appear when
solving the wave equation in two and three dimensions. First we have Bessel's equation of order :

We allow  to be any number, not just an integer, although integers and multiples of  are most important in applications. When we plug

into Bessel's equation of order  we obtain the indicial equation

Therefore we obtain two roots  and . If  is not an integer following the method of Frobenius and setting , we obtain
linearly independent solutions of the form

a. Verify that the indicial equation of Bessel's equation of order  is .
b. Suppose that  is not an integer. Carry out the computation to obtain the solutions  and  above.

Bessel functions will be convenient constant multiples of  and . First we must define the gamma function

Notice that . The gamma function also has a wonderful property

From this property, one can show that  when  is an integer, so the gamma function is a continuous version of the
factorial. We compute:

Frobenius Method Example 2Frobenius Method Example 2

3

p

+x +( − )y = 0.x2y′′ y′ x2 p2

p
1

2

y =∑
k=0

∞

akx
k+r

p

r(r−1) +r− = (r−p)(r+p) = 0.p2

= pr1 = −pr2 p = 1a0

y1

y2

= ,xp∑
k=0

∞ (−1)kx2k

k!(k+p)(k−1 +p) ⋯ (2 +p)(1 +p)22k

= .x−p∑
k=0

∞ (−1)kx2k

k!(k−p)(k−1 −p) ⋯ (2 −p)(1 −p)22k

(9.3.10)

 Exercise 9.3.1

p (r−p)(r+p) = 0

p y1 y2

y1 y2

Γ(x) = dt.∫
∞

0
tx−1e−t

Γ(1) = 1

Γ(x+1) = xΓ(x).

Γ(n) = (n−1)! n

Γ(k+p+1) = (k+p)(k−1 +p) ⋯ (2 +p)(1 +p)Γ(1 +p),

Γ(k−p+1) = (k−p)(k−1 −p) ⋯ (2 −p)(1 −p)Γ(1 −p).
(9.3.11)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98094?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/7%3A_Power_series_methods/7.3%3A_Singular_Points_and_the_Method_of_Frobenius#3
https://www.youtube.com/watch?v=d6MdheIqWUs
https://www.youtube.com/watch?v=d6MdheIqWUs


9.3.7 https://math.libretexts.org/@go/page/98094

Verify the above identities using .

We define the Bessel functions of the first kind of order  and  as

As these are constant multiples of the solutions we found above, these are both solutions to Bessel's equation of order . The constants are
picked for convenience.

When  is not an integer,  and  are linearly independent. When  is an integer we obtain

In this case it turns out that

and so we do not obtain a second linearly independent solution. The other solution is the so-called Bessel function of second kind. These
make sense only for integer orders  and are defined as limits of linear combinations of  and  as  approaches  in the
following way:

As each linear combination of  and  is a solution to Bessel's equation of order , then as we take the limit as  goes to , 
 is a solution to Bessel's equation of order . It also turns out that  and  are linearly independent. Therefore when  is an

integer, we have the general solution to Bessel's equation of order 

for arbitrary constants  and . Note that  goes to negative infinity at . Many mathematical software packages have these
functions  and  defined, so they can be used just like say  and . In fact, they have some similar properties. For
example,  is a derivative of , and in general the derivative of  can be written as a linear combination of  and 

. Furthermore, these functions oscillate, although they are not periodic. See Figure  for graphs of Bessel functions.

Figure : Plot of the  and  in the first graph and  and  in the second graph.

Other equations can sometimes be solved in terms of the Bessel functions. For example, given a positive constant ,

can be changed to . Then changing variables  we obtain via chain rule the equation in  and :

which can be recognized as Bessel's equation of order 0. Therefore the general solution is , or in terms of :

 Exercise 9.3.2

Γ(x+1) = xΓ(x)

p −p

(x)Jp

(x)J−p

= = ,
1

Γ(1 +p)2p
y1 ∑

k=0

∞ (−1)
k

k!Γ(k+p+1)
( )
x

2

2k+p

= = .
1

Γ(1 −p)2−
y2 ∑

k=0

∞ (−1)k

k!Γ(k−p+1)
( )
x

2

2k−p
(9.3.12)

p

p Jp J−p n

(x) = .Jn ∑
k=0

∞ (−1)k

k!(k+n)!
( )
x

2

2k+n

(x) = (x),Jn (−1)nJ−n

n (x)Jp (x)J−p p n

(x) = .Yn lim
p→n

cos(pπ) (x) − (x)Jp J−p

sin(pπ)

(x)Jp (x)J−p p p n

(x)Yn n (x)Yn (x)Jn n

n

y = A (x) +B (x),Jn Yn

A B (x)Yn x = 0

(x)Jn (x)Yn sin(x) cos(x)

− (x)J1 (x)J0 (x)Jn (x)Jn−1

(x)Jn+1 9.3.1

9.3.1 (x)J0 (x)J1 (x)Y0 (x)Y1

 Example : Using Bessel functions to Solve a ODE9.3.4

λ

x + + xy = 0,y′′ y′ λ2

+x + y = 0x2y′′ y′ λ2x2 t = λx y t

+ t + y = 0,t2y′′ y′ t2

y(t) = A (t) +B (t)J0 Y0 x
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This equation comes up for example when finding fundamental modes of vibration of a circular drum, but we digress.

9.3.4: Footnotes

[1] Named after the German mathematician Ferdinand Georg Frobenius (1849 – 1917).

[2] See Joseph L. Neuringera, The Frobenius method for complex roots of the indicial equation, International Journal of Mathematical
Education in Science and Technology, Volume 9, Issue 1, 1978, 71–77.

[3] Named after the German astronomer and mathematician Friedrich Wilhelm Bessel (1784 – 1846).

This page titled 9.3: Singular Points and the Method of Frobenius is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Jiří Lebl.

7.3: Singular Points and the Method of Frobenius by Jiří Lebl is licensed CC BY-SA 4.0. Original source: https://www.jirka.org/diffyqs.
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9.E: Power series methods (Exercises)

9.E.1: 7.1: Power Series

Is the power series  convergent? If so, what is the radius of convergence?

Is the power series  convergent? If so, what is the radius of convergence?

Is the power series  convergent? If so, what is the radius of convergence?

Is the power series  convergent? If so, what is the radius of convergence?

Determine the Taylor series for  around the point .

Determine the Taylor series for  around the point , and find the radius of convergence.

Determine the Taylor series and its radius of convergence of  around .

Determine the Taylor series and its radius of convergence of  around . Hint: You will not be able to use the ratio

test.

Expand  as a power series around .

Suppose that the ratio test applies to a series . Show, using the ratio test, that the radius of convergence of the
differentiated series is the same as that of the original series.

Suppose that  is an analytic function such that . Find .

 Exercise 9.E. 7.1.1

∑∞
k=0 ekxk

 Exercise 9.E. 7.1.2

k∑∞
k=0 xk

 Exercise 9.E. 7.1.3

k!∑∞
k=0 xk

 Exercise 9.E. 7.1.4

∑
∞
k=0

1
(2k)!

(x −10)
k

 Exercise 9.E. 7.1.5

sinx = πx0

 Exercise 9.E. 7.1.6

lnx = 1x0

 Exercise 9.E. 7.1.7

1

1 +x
= 0x0

 Exercise 9.E. 7.1.8

x

4 −x2
= 0x0

 Exercise 9.E. 7.1.9

+5x +1x5 = 5x0

 Exercise 9.E. 7.1.10

∑
∞
k=0 akxk

 Exercise 9.E. 7.1.11

f (0) = nf (n) f(1)
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Is the power series  convergent? If so, what is the radius of convergence?

Answer

Yes. Radius of convergence is .

Is the power series  convergent? If so, what is the radius of convergence?

Answer

Yes. Radius of convergence is .

Using the geometric series, expand  around . For what  does the series converge?

Answer

 so , which converges for .

Find the Taylor series for  around .

Answer

Imagine  and  are analytic functions such that  for all large enough . What can you say about 
?

Answer

 is a polynomial. Hint: Use Taylor series.

9.E.2: 7.2: Series solutions of linear second order ODEs
In the following exercises, when asked to solve an equation using power series methods, you should find the first few terms of the
series, and if possible find a general formula for the  coefficient.

Use power series methods to solve  at the point .

Use power series methods to solve  at the point .

 Exercise 9.E. 7.1.12

∑∞
n=1 (0.1)nxn

10

 Exercise : (challenging)9.E. 7.1.13

∑∞
n=1

n!
nn xn

e

 Exercise 9.E. 7.1.14

1
1−x

= 2x0 x

= −1
1−x

1
1−(2−x)

= (−1 (x −21
1−x

∑
n=0

∞
)n+1 )n 1 < x < 3

 Exercise : (challenging)9.E. 7.1.15

x7ex = 0x0

∑
n=7

∞
1

(n−7)!
xn

 Exercise : (challenging)9.E. 7.1.16

f g (0) = (0)f (k) g(k) k

f(x) −g(x)

f(x) −g(x)

kth

 Exercise 9.E. 7.2.1

+y = 0y′′ = 1x0

 Exercise 9.E. 7.2.2

+4xy = 0y′′ = 0x0
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Use power series methods to solve  at the point .

Use power series methods to solve  at the point .

The methods work for other orders than second order. Try the methods of this section to solve the first order system 
 at the point .

Chebyshev’s equation of order :

a. Solve  using power series methods at .
b. For what  is there a polynomial solution?

Find a polynomial solution to  using power series methods.

a. Use power series methods to solve  at the point .
b. Use the solution to part a) to find a solution for  around the point .

Use power series methods to solve  at the point .

Answer

, , , recurrence relation (for ): , so 

We can also use power series methods in nonhomogeneous equations.

a. Use power series methods to solve  at the point . Hint: Recall the geometric series.
b. Now solve for the initial condition , .

Answer

a. , and for  we have , so 

b. 

 Exercise 9.E. 7.2.3

−xy = 0y′′ = 1x0

 Exercise 9.E. 7.2.4

+ y = 0y′′ x2 = 0x0

 Exercise 9.E. 7.2.5

−xy = 0y′ = 0x0

 Exercise 9.E. 7.2.6

p

(1 − ) −x + y = 0x2 y′′ y′ p2 = 0x0

p

 Exercise 9.E. 7.2.7

( +1) −2x +2y = 0x2 y′′ y′

 Exercise 9.E. 7.2.8

(1 −x) +y = 0y′′ = 0x0

x +y = 0y′′ = 1x0

 Exercise 9.E. 7.2.9

+2 y = 0y′′ x3 = 0x0

= 0a2 = 0a3 = 0a4 k ≥ 5 =ak
−2ak−5

k(k−1)

y(x) = + x − − + + − − +⋯a0 a1
a0

10
x5 a1

15
x6 a0

450
x10 a1

825
x11 a0

47250
x15 a1

99000
x16

 Exercise : (challenging)9.E. 7.2.10

−xy =y′′ 1
1−x

= 0x0

y(0) = 0 (0) = 0y′

=a2
1
2

k ≥ 1 =ak
+1ak−3

k(k−1)

y(x) = + x + + + + + + + + + +⋯a0 a1
1
2

x2 +1a0

6
x3 +1a1

12
x4 3

40
x5 +2a0

30
x6 +2a1

42
x7 5

112
x8 +3a0

72
x9 +3a1

90
x10

y(x) = + + + + + + + + +⋯1
2

x2 1
6

x3 1
12

x4 3
40

x5 1
15

x6 1
21

x7 5
112

x8 1
24

x9 1
30

x10
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Attempt to solve  at  using the power series method of this section (  is a singular point). Can you find
at least one solution? Can you find more than one solution?

Answer

Applying the method of this section directly we obtain  for all  and so  is the only solution we find.

9.E.3: 7.3: Singular points and the method of Frobenius

Find a particular (Frobenius-type) solution of .

Find a particular (Frobenius-type) solution of .

Find a particular (Frobenius-type) solution of .

Find the general solution of .

Find the general solution of .

In the following equations classify the point  as ordinary, regular singular, or singular but not regular singular.

a. 
b. 
c. 
d. 
e. 

In the following equations classify the point  as ordinary, regular singular, or singular but not regular singular.

a. 
b. 
c. 
d. 
e. 

Answer
a. ordinary,
b. singular but not regular singular,
c. regular singular,

 Exercise 9.E. 7.2.11

−y = 0x2y′′ = 0x0 x0

= 0ak k y(x) = 0

 Exercise 9.E. 7.3.1

+x +(1 +x)y = 0x2y′′ y′

 Exercise 9.E. 7.3.2

x −y = 0y′′

 Exercise 9.E. 7.3.3

+ −xy = 0y′′ 1
x y′

 Exercise 9.E. 7.3.4

2x + − y = 0y′′ y′ x2

 Exercise 9.E. 7.3.5

−x −y = 0x2y′′ y′

 Exercise 9.E. 7.3.6

x = 0

(1 + ) +xy = 0x2 x2 y′′

+ +y = 0x2y′′ y′

x + +y = 0y′′ x3y′

x +x − y = 0y′′ y′ ex

+ + y = 0x2y′′ x2y′ x2

 Exercise 9.E. 7.3.7

x = 0

+y = 0y′′

+(1 +x)y = 0x3y′′

x + +y = 0y′′ x5y′

sin(x) −y = 0y′′

cos(x) −sin(x)y = 0y′′
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d. regular singular,
e. ordinary.

Find the general solution of .

Answer

Find a particular solution of .

Answer

 (Note that for convenience we did not pick .)

Find the general solution of .

Answer

This page titled 9.E: Power series methods (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

7.E: Power series methods (Exercises) has no license indicated.

 Exercise 9.E. 7.3.8

−y = 0x2y′′

y = A +Bx
1+ 5√

2 x
1− 5√

2

 Exercise 9.E. 7.3.9

+(x − )y = 0x2y′′ 3
4

y = x3/2 ∑
k=0

∞
(−1)−1

k!(k+2)!
xk = 1a0

 Exercise : (tricky)9.E. 7.3.10

−x +y = 0x2y′′ y′

y = Ax +Bx ln(x)
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CHAPTER OVERVIEW

10: Nonlinear Systems
Linear equations suffice in many applications, but in reality most phenomena require nonlinear equations. Nonlinear equations,
however, are notoriously more difficult to understand than linear ones, and many strange new phenomena appear when we allow
our equations to be nonlinear.

10.1: Linearization, Critical Points, and Equilibria
10.2: Stability and Classication of Isolated Critical Points
10.3: Applications of Nonlinear Systems
10.4: Limit cycles
10.5: Chaos
10.E: Nonlinear Equations (Exercises)

Thumbnail: A double rod pendulum animation showing chaotic behavior. Starting the pendulum from a slightly different initial
condition would result in a completely different trajectory. The double rod pendulum is one of the simplest dynamical systems that
has chaotic solutions. (Public Domain; Catslash).
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10.1: Linearization, Critical Points, and Equilibria
Except for a few brief detours in Chapter 1, we considered mostly linear equations. Linear equations suffice in many applications,
but in reality most phenomena require nonlinear equations. Nonlinear equations, however, are notoriously more difficult to
understand than linear ones, and many strange new phenomena appear when we allow our equations to be nonlinear.

Not to worry, we did not waste all this time studying linear equations. Nonlinear equations can often be approximated by linear
ones if we only need a solution "locally," for example, only for a short period of time, or only for certain parameters.
Understanding linear equations can also give us qualitative understanding about a more general nonlinear problem. The idea is
similar to what you did in calculus in trying to approximate a function by a line with the right slope.

In Section 2.4 we looked at the pendulum of mass  and length . The goal was to solve for the angle  as a function of the
time . The equation for the setup is the nonlinear equation

Figure 

Instead of solving this equation, we solved the rather easier linear equation

While the solution to the linear equation is not exactly what we were looking for, it is rather close to the original, as long as the
angle  is small and the time period involved is short.

You might ask: Why don't we just solve the nonlinear problem? Well, it might be very difficult, impractical, or impossible to solve
analytically,depending on the equation in question. We may not even be interested in the actual solution, we might only be
interested in some qualitative idea of what the solution is doing. For example, what happens as time goes to infinity?

10.1.1: Autonomous Systems and Phase Plane Analysis
We restrict our attention to a two dimensional autonomous system

where  and  are functions of two variables, and the derivatives are taken with respect to time . Solutions are
functions  and  such that

The way we will analyze the system is very similar to Section 1.6, where we studied a single autonomous equation. The ideas in
two dimensions are the same, but the behavior can be far more complicated.

It may be best to think of the system of equations as the single vector equation

As in Section 3.1 we draw the phase portrait (or phase diagram), where each point  corresponds to a specific state of the

system. We draw the vector field given at each point  by the vector . And as before if we find solutions, we draw the

trajectories by plotting all points  for a certain range of .
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Consider the second order equation . Write this equation as a first order nonlinear system

The phase portrait with some trajectories is drawn in Figure .

Figure : Phase portrait with some trajectories of , .

From the phase portrait it should be clear that even this simple system has fairly complicated
behavior. Some trajectories keep oscillating around the origin, and some go off towards
infinity. We will return to this example often, and analyze it completely in this (and the next)
section.

If we zoom into the diagram near a point where  is not zero, then nearby the arrows point generally in essentially that same

direction and have essentially the same magnitude. In other words the behavior is not that interesting near such a point. We are of
course assuming that  and  are continuous.

Let us concentrate on those points in the phase diagram above where the trajectories seem to start, end, or go around. We see two
such points:  and . The trajectories seem to go around the point , and they seem to either go in or out of the point 

. These points are precisely those points where the derivatives of both  and  are zero. Let us define the critical points as the
points  such that

In other words, the points where both  and .

The critical points are where the behavior of the system is in some sense the most complicated. If  is zero, then nearby, the

vector can point in any direction whatsoever. Also, the trajectories are either going towards, away from, or around these points, so
if we are looking for long term behavior of the system, we should look at what happens there.

Critical points are also sometimes called equilibria, since we have so-called equilibrium solutions at critical points. If  is a
critical point, then we have the solutions

In Example , there are two equilibrium solutions:

Compare this discussion on equilibria to the discussion in Section 1.6. The underlying concept is exactly the same.

10.1.2: Linearization
In Section 3.5 we studied the behavior of a homogeneous linear system of two equations near a critical point. For a linear system of
two variables the only critical point is generally the origin . Let us put the understanding we gained in that section to good use
understanding what happens near critical points of nonlinear systems.
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In calculus we learned to estimate a function by taking its derivative and linearizing. We work similarly with nonlinear systems of
ODE. Suppose  is a critical point. First change variables to , so that  corresponds to . That is,

Next we need to find the derivative. In multivariable calculus you may have seen that the several variables version of the derivative

is the Jacobian matrix . The Jacobian matrix of the vector-valued function  at  is

This matrix gives the best linear approximation as  and  (and therefore  and ) vary. We define the linearization of the equation
 as the linear system

Let us keep with the same equations as Example : , . There are two critical points, and .
The Jacobian matrix at any point is

Therefore at , we have  and , and the linearization is

where  and .

At the point , we have  and , and the linearization is

The phase diagrams of the two linearizations at the point  and  are given in
Figure . Note that the variables are now  and . Compare Figure  with Figure 

, and look especially at the behavior near the critical points.

Figure : Phase diagram with some trajectories of linearizations at the critical points  (left) and  (right) of 
, .
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10.1.3: Footnotes
[1] Named for the German mathematician Carl Gustav Jacob Jacobi (1804–1851).
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10.2: Stability and Classication of Isolated Critical Points

10.2.1: Isolated Critical Points and Almost Linear Systems

A critical point is isolated if it is the only critical point in some small "neighborhood" of the point. That is, if we zoom in far
enough it is the only critical point we see. In the above example, the critical point was isolated. If on the other hand there would be
a whole curve of critical points, then it would not be isolated.

A system is called almost linear (at a critical point ) if the critical point is isolated and the Jacobian at the point is
invertible, or equivalently if the linearized system has an isolated critical point. In such a case, the nonlinear terms will be very
small and the system will behave like its linearization, at least if we are close to the critical point.

In particular the system we have just seen in Examples 8.1.1 and 8.1.2 has two isolated critical points  and , and is

almost linear at both critical points as both of the Jacobian matrices  and  are invertible.

On the other hand a system such as ,  has an isolated critical point at , however the Jacobian matrix

is zero when . Therefore the system is not almost linear. Even a worse example is the system , ,which
does not have an isolated critical point, as  and  are both zero whenever , that is, the entire  axis.

Fortunately, most often critical points are isolated, and the system is almost linear at the critical points. So if we learn what happens
here, we have figured out the majority of situations that arise in applications.

10.2.2: Stability and Classification of Isolated Critical Points
Once we have an isolated critical point, the system is almost linear at that critical point, and we computed the associated linearized
system, we can classify what happens to the solutions. We more or less use the classification for linear two-variable systems from
Section 3.5, with one minor caveat. Let us list the behaviors depending on the eigenvalues of the Jacobian matrix at the critical
point in Table . This table is very similar to Table 3.5.1, with the exception of missing “center” points. We will discuss
centers later, as they are more complicated.

Table : Behavior of an almost linear system near an isolated critical point.
Eigenvalues of the Jacobian matrix Behavior Stability

real and both positive source / unstable node unstable

real and both negative sink / stable node asymptotically stable

real and opposite signs saddle unstable

complex with positive real part spiral source unstable

complex with negative real part spiral sink asymptotically stable

In the new third column, we have marked points as asymptotically stable or unstable. Formally, a stable critical point  is
one where given any small distance  to ,and any initial condition within a perhaps smaller radius around ,the
trajectory of the system will never go further away from  than . An unstable critical point is one that is not stable.
Informally, a point is stable if we start close to a critical point and follow a trajectory we will either go towards, or at least not get
away from, this critical point.

A stable critical point  is called asymptotically stable if given any initial condition sufficiently close to  and any
solution  given that condition, then

That is, the critical point is asymptotically stable if any trajectory for a sufficiently close initial condition goes towards the critical
point .
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Consider , . See Figure  for the phase diagram. Let us find the critical points. These are the
points where  and . The first equation means , and so . Plugging into the second
equation we obtain . Factoring we obtain . Since we are looking only for real solutions we get
either  or . Solving for the corresponding  using ,we get two critical points, one being  and the
other being . Clearly the critical points are isolated. Let us compute the Jacobian matrix:

At the point  we get the matrix  and so the two eigenvalues are  and . As the matrix is invertible, the system

is almost linear at . As the eigenvalues are real and of opposite signs, we get a saddle point, which is an unstable
equilibrium point.

Figure : The phase portrait with few sample trajectories of , .

At the point  we get the matrix  and computing the eigenvalues we get ,
.The matrix is invertible, and so the system is almost linear at . As we have real

eigenvalues both negative, the critical point is a sink, and therefore an asymptotically stable
equilibrium point. That is, if we start with any point  close to  as an initial
condition and plot a trajectory, it will approach . In other words,

As you can see from the diagram, this behavior is true even for some initial points quite far from ,but it is definitely not
true for all initial points.

Let us look at , . First let us find the critical points. These are the points where  and .
Simplifying we get . So the critical points are  and ,and hence are isolated. Let us
compute the Jacobian matrix:

At the point  we get the matrix  and so the two eigenvalues are  and . As the matrix is invertible, the system is
almost linear at . And, as the eigenvalues are real and of opposite signs, we get a saddle point, which is an unstable
equilibrium point.

At the point  we get the matrix  whose eigenvalues are . The matrix is invertible, and so the system is

almost linear at . As we have complex eigenvalues with positive real part, the critical point is a spiral source, and
therefore an unstable equilibrium point.
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Figure : The phase portrait with few sample trajectories of , .

See Figure  for the phase diagram. Notice the two critical points, and the behavior of
the arrows in the vector field around these points.

10.2.3: Trouble with Centers

Recall, a linear system with a center meant that trajectories traveled in closed elliptical orbits in some direction around the critical
point. Such a critical point we would call a center or a stable center. It would not be an asymptotically stable critical point, as the
trajectories would never approach the critical point, but at least if you start sufficiently close to the critical point, you will stay close
to the critical point. The simplest example of such behavior is the linear system with a center. Another example is the critical point 

 in Example 8.1.1.

The trouble with a center in a nonlinear system is that whether the trajectory goes towards or away from the critical point is
governed by the sign of the real part of the eigenvalues of the Jacobian. Since this real part is zero at the critical point itself, it can
have either sign nearby, meaning the trajectory could be pulled towards or away from the critical point.

An easy example where such a problematic behavior is exhibited is the system . The only critical point
is the origin . The Jacobian matrix is

At  the Jacobian matrix is ,which has eigenvalues . Therefore, the linearization has a center.

Using the quadratic equation, the eigenvalues of the Jacobian matrix at any point  are

At any point where  (so at most points near the origin), the eigenvalues have a positive real part (  can never be
negative). This positive real part will pull the trajectory away from the origin. A sample trajectory for an initial condition near
the origin is given in Figure .

Figure : An unstable critical point (spiral source) at the origin for , , even if the linearization has a
center.
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The moral of the example is that further analysis is needed when the linearization has a center. The analysis will in general be more
complicated than in the above example, and is more likely to involve case-by-case consideration. Such a complication should not
be surprising to you. By now in your mathematical career, you have seen many places where a simple test is inconclusive, perhaps
starting with the second derivative test for maxima or minima, and requires more careful, and perhaps ad hoc analysis of the
situation.

10.2.4: Conservative Equations
An equation of the form

for an arbitrary function  is called a conservative equation. For example the pendulum equation is a conservative equation. The
equations are conservative as there is no friction in the system so the energy in the system is "conserved." Let us write this equation
as a system of nonlinear ODE.

These types of equations have the advantage that we can solve for their trajectories easily. The trick is to first think of  as a
function of  for a moment. Then use the chain rule

where the prime indicates a derivative with respect to . We obtain . We integrate with respect to  to get 

. In other words

We obtained an implicit equation for the trajectories, with different  giving different trajectories. The value of  is conserved on
any trajectory. This expression is sometimes called the Hamiltonian or the energy of the system. If you look back to Section 1.8,
you will notice that  is an exact equation, and we just found a potential function.

Let us find the trajectories for the equation , which is the equation from Example 8.1.1. The corresponding
first order system is

Trajectories satisfy

We solve for 

Plotting these graphs we get exactly the trajectories in Figure 8.1.2. In particular we notice that near the origin the trajectories
are closed curves: they keep going around the origin, never spiraling in or out. Therefore we discovered a way to verify that the
critical point at  is a stable center. The critical point at  is a saddle as we already noticed. This example is typical for
conservative equations.

Consider an arbitrary conservative equation. The trajectories are given by
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So all trajectories are mirrored across the -axis. In particular, there can be no spiral sources nor sinks. All critical points occur
when  (the -axis), that is when . The critical points are simply those points on the -axis where . The
Jacobian matrix is

So the critical point is almost linear if  at the critical point. Let  denote the Jacobian matrix, then the eigenvalues of 
are solutions to

Therefore . In other words, either we get real eigenvalues of opposite signs, or we get purely imaginary
eigenvalues. There are only two possibilities for critical points, either an unstable saddle point, or a stable center. There are never
any asymptotically stable points, sinks, or sources.

This page titled 10.2: Stability and Classication of Isolated Critical Points is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Jiří Lebl.

8.2: Stability and Classication of Isolated Critical Points by Jiří Lebl is licensed CC BY-SA 4.0. Original source:
https://www.jirka.org/diffyqs.
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10.3: Applications of Nonlinear Systems
In this section we study two very standard examples of nonlinear systems. First, we look at the nonlinear pendulum equation. We
saw the pendulum equation’s linearization before, but we noted it was only valid for small angles and short times. Now we find out
what happens for large angles. Next, we look at the predator-prey equation, which finds various applications in modeling problems
in biology, chemistry, economics, and elsewhere.

10.3.1: Pendulum
The first example we study is the pendulum equation . Here,  is the angular displacement,  is the gravitational
acceleration, and  is the length of the pendulum. In this equation we disregard friction, so we are talking about an idealized
pendulum.

Figure 

This equation is a conservative equation, so we can use our analysis of conservative equations from the previous section. Let us
change the equation to a two-dimensional system in variables  by introducing the new variable :

The critical points of this system are when  and , or in other words if . So the critical points are when 
 and  is a multiple of . That is, the points are . While there are infinitely

many critical points, they are all isolated. Let us compute the Jacobian matrix:

For conservative equations, there are two types of critical points. Either stable centers, or saddle points. The eigenvalues of the

Jacobian matrix are .

The eigenvalues are going to be real when . This happens at the odd multiples of . The eigenvalues are going to be
purely imaginary when . This happens at the even multiples of . Therefore the system has a stable center at the points 

, and it has an unstable saddle at the points . Look at the
phase diagram in Figure , where for simplicity we let .

Figure : Phase plane diagram and some trajectories of the nonlinear pendulum equation.

In the linearized equation we have only a single critical point, the center at . Now we see more clearly what we meant when
we said the linearization is good for small angles. The horizontal axis is the deflection angle. The vertical axis is the angular
velocity of the pendulum. Suppose we start at  (no deflection), and we start with a small angular velocity . Then the
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trajectory keeps going around the critical point  in an approximate circle. This corresponds to short swings of the pendulum
back and forth. When  stays small, the trajectories really look like circles and hence are very close to our linearization.

When we give the pendulum a big enough push, it goes across the top and keeps spinning about its axis. This behavior corresponds
to the wavy curves that do not cross the horizontal axis in the phase diagram. Let us suppose we look at the top curves, when the
angular velocity  is large and positive. Then the pendulum is going around and around its axis. The velocity is going to be large
when the pendulum is near the bottom, and the velocity is the smallest when the pendulum is close to the top of its loop.

At each critical point, there is an equilibrium solution. Consider the solution ; the pendulum is not moving and is hanging
straight down. This is a stable place for the pendulum to be, hence this is a stable equilibrium.

The other type of equilibrium solution is at the unstable point, for example . Here the pendulum is upside down. Sure you can
balance the pendulum this way and it will stay, but this is an unstable equilibrium. Even the tiniest push will make the pendulum
start swinging wildly.

See Figure  for a diagram. The first picture is the stable equilibrium . The second picture corresponds to those in the
phase diagram around  when the angular velocity is small. The next picture is the unstable equilibrium . The last
picture corresponds to the wavy lines for large angular velocities.

Figure : Various possibilities for the motion of the pendulum.

The quantity

is conserved by any solution. This is the energy or the Hamiltonian of the system.

We have a conservative equation and so (exercise) the trajectories are given by

for various values of . Let us look at the initial condition of , that is, we take the pendulum to angle , and just let it go
(initial angular velocity 0). We plug the initial conditions into the above and solve for  to obtain

Thus the expression for the trajectory is

Let us figure out the period. That is, the time it takes for the pendulum to swing back and forth. We notice that the oscillation about
the origin in the phase plane is symmetric about both the  and the  axis. That is, in terms of , the time it takes from  to  is
the same as it takes from  back to . Furthermore, the time it takes from  to  is the same as to go from  to . Therefore,
let us find how long it takes for the pendulum to go from angle 0 to angle , which is a quarter of the full oscillation and then
multiply by 4.

We figure out this time by finding  and integrating from  to . The period is four times this integral. Let us stay in the region
where  is positive. Since , inverting we get
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Therefore the period  is given by

The integral is an improper integral, and we cannot in general evaluate it symbolically. We must resort to numerical approximation
if we want to compute a particular .

Recall from Section 2.4, the linearized equation  has period

We plot , , and the relative error  in Figure . The relative error says how far is our approximation from the
real period percentage-wise. Note that  is simply a constant, it does not change with the initial angle . The actual period 
gets larger and larger as  gets larger. Notice how the relative error is small when  is small. It is still only  when ,
that is, a 90 degree angle. The error is  when starting at , a 45 degree angle. At a 5 degree initial angle, the error is only 

.

Figure : The plot of  and  with  (left), and the plot of the relative error  (right), for  between  and 
.

While it is not immediately obvious from the formula, it is true that

That is, the period goes to infinity as the initial angle approaches the unstable equilibrium point. So if we put the pendulum almost
upside down it may take a very long time before it gets down. This is consistent with the limiting behavior, where the exactly
upside down pendulum never makes an oscillation, so we could think of that as infinite period.

10.3.2: Predator-Prey or Lotka-Volterra Systems
One of the most common simple applications of nonlinear systems are the so-called predator-prey orLotka-Volterra  systems. For
example, these systems arise when two species interact, one as the prey and one as the predator. It is then no surprise that the
equations also see applications in economics. The system also arises in chemical reactions. In biology, this system of equations
explains the natural periodic variations of populations of different species in nature. Before the application of differential equations,
these periodic variations in the population baffled biologists.

We keep with the classical example of hares and foxes in a forest, it is the easiest to understand.

When there are a lot of hares, there is plenty of food for the foxes, so the fox population grows. However, when the fox population
grows, the foxes eat more hares, so when there are lots of foxes, the hare population should go down, and vice versa. The Lotka–
Volterra model proposes that this behavior is described by the system of equations
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where  are some parameters that describe the interaction of the foxes and hares . In this model, these are all positive
numbers.

Let us analyze the idea behind this model. The model is a slightly more complicated idea based on the exponential population
model. First expand,

The hares are expected to simply grow exponentially in the absence of foxes, that is where the  term comes in, the growth in
population is proportional to the population itself. We are assuming the hares always find enough food and have enough space to
reproduce. However, there is another component , that is, the population also is decreasing proportionally to the number of
foxes. Together we can write the equation as , so it is like exponential growth or decay but the constant depends on the
number of foxes.

The equation for foxes is very similar, expand again

The foxes need food (hares) to reproduce: the more food, the bigger the rate of growth, hence the  term. On the other hand,
there are natural deaths in the fox population, and hence the  term.

Without further delay, let us start with an explicit example. Suppose the equations are

See Figure  for the phase portrait. In this example it makes sense to also plot  and  as graphs with respect to time.
Therefore the second graph in Figure  is the graph of  and  on the vertical axis (the prey  is the thinner line with taller
peaks), against time on the horizontal axis. The particular solution graphed was with initial conditions of  foxes and  hares.

Figure : The phase portrait (left) and graphs of  and  for a sample solution (right).

Let us analyze what we see on the graphs. We work in the general setting rather than putting in specific numbers. We start with
finding the critical points. Set , and . The first equation is satisfied if either  or . If 

, the second equation implies . If , the second equation implies . There are two equilibria: at  when
there are no animals at all, and at . In our specific example , and . This is the point where there are
100 hares and 40 foxes.

We compute the Jacobian matrix:

At the origin  we get the matrix , so the eigenvalues are  and , hence real and of opposite signs. So the critical

point at the origin is a saddle. This makes sense. If you started with some foxes but no hares, then the foxes would go extinct, that
is, you would approach the origin. If you started with no foxes and a few hares, then the hares would keep multiplying without
check, and so you would go away from the origin.

OK, how about the other critical point at . Here the Jacobian matrix becomes
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The eigenvalues satisfy . In other words, . The eigenvalues being purely imaginary, we are in the case
where we cannot quite decide using only linearization. We could have a stable center, spiral sink, or a spiral source. That is, the
equilibrium could be asymptotically stable, stable, or unstable. Of course I gave you a picture above that seems to imply it is a
stable center. But never trust a picture only. Perhaps the oscillations are getting larger and larger, but only very slowly. Of course
this would be bad as it would imply something will go wrong with our population sooner or later. And I only graphed a very
specific example with very specific trajectories.

How can we be sure we are in the stable situation? As we said before, in the case of purely imaginary eigenvalues, we have to do a
bit more work. Previously we found that for conservative systems, there was a certain quantity that was conserved on the
trajectories, and hence the trajectories had to go in closed loops. We can use a similar technique here. We just have to figure out
what is the conserved quantity. After some trial and error we find the constant

is conserved. Such a quantity is called the constant of motion. Let us check  really is a constant of motion. How do we check, you
say? Well, a constant is something that does not change with time, so let us compute the derivative with respect to time:

Our equations give us what  and  are so let us plug those in:

So along the trajectories  is constant. In fact, the expression  gives us an implicit equation for the trajectories. In any
case, once we have found this constant of motion, it must be true that the trajectories are simple curves, that is, the level curves of 

. It turns out, the critical point at  is a maximum for  (left as an exercise). So  is a stable equilibrium point, and
we do not have to worry about the foxes and hares going extinct or their populations exploding.

One blemish on this wonderful model is that the number of foxes and hares are discrete quantities and we are modeling with
continuous variables. Our model has no problem with there being  fox in the forest for example, while in reality that makes no
sense. The approximation is a reasonable one as long as the number of foxes and hares are large, but it does not make much sense
for small numbers. One must be careful in interpreting any results from such a model.

An interesting consequence (perhaps counterintuitive) of this model is that adding animals to the forest might lead to extinction,
because the variations will get too big, and one of the populations will get close to zero. For example, suppose there are  foxes
and  hares as before, but now we bring in more foxes, bringing their number to . If we run the computation, we find the
number of hares will plummet to just slightly more than  hare in the whole forest. In reality that most likely means the hares die
out, and then the foxes will die out as well as they will have nothing to eat.

Showing that a system of equations has a stable solution can be a very difficult problem. When Isaac Newton put forth his laws of
planetary motions, he proved that a single planet orbiting a single sun is a stable system. But any solar system with more than 
planet proved very difficult indeed. In fact, such a system behaves chaotically (see Section 8.5), meaning small changes in initial
conditions lead to very different long-term outcomes. From numerical experimentation and measurements, we know the earth will
not fly out into the empty space or crash into the sun, for at least some millions of years or so. But we do not know what happens
beyond that.

10.3.3: Footnotes
[1] Named for the American mathematician, chemist, and statistician Alfred James Lotka (1880–1949) and the Italian
mathematician and physicist Vito Volterra (1860–1940).
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[2] This interaction does not end well for the hare.
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10.4: Limit cycles
For nonlinear systems, trajectories do not simply need to approach or leave a single point. They may in fact approach a larger set,
such as a circle or another closed curve.

The Van der Pol oscillator  is the following equation

where  is some positive constant. The Van der Pol oscillator originated with electrical circuits, but finds applications in
diverse fields such as biology, seismology, and other physical sciences.

For simplicity, let us use . A phase diagram is given in the left hand plot in Figure . Notice how the trajectories
seem to very quickly settle on a closed curve. On the right hand plot we have the plot of a single solution for  to 
with initial conditions  and . Notice how the solution quickly tends to a periodic solution.

Figure : The phase portrait (left) and a graph of a sample solution of the Van der Pol oscillator.

The Van der Pol oscillator is an example of so-called relaxation oscillation. The word relaxation
comes from the sudden jump (the very steep part of the solution). For larger  the steep part
becomes even more pronounced, for small  the limit cycle looks more like a circle. In fact
setting , we get , which is a linear system with a center and all trajectories
become circles.

The closed curve in the phase portrait above is called a limit cycle. A limit cycle is a closed trajectory such that at least one other
trajectory spirals into it (or spirals out of it). If all trajectories that start near the limit cycle spiral into it, the limit cycle is called
asymptotically stable. The limit cycle in the Van der Pol oscillator is asymptotically stable.

Given a limit cycle on an autonomous system, any solution that starts on it is periodic. In fact, this is true for any trajectory that is a
closed curve (a so-called closed trajectory). Such a curve is called a periodic orbit. More precisely, if  is a solution
such that for some  the point  lies on a periodic orbit, then both  and  are periodic functions (with the same
period). That is, there is some number  such that  and .

Consider the system

where the functions  and  have continuous derivatives in some region  in the plane.

Suppose  is a closed bounded region (a region in the plane that includes its boundary and does not have points arbitrarily far
from the origin). Suppose  is a solution of  in  that exists for all . Then either the solution is a
periodic function, or the solution spirals towards a periodic solution in .
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The main point of the theorem is that if you find one solution that exists for all  large enough (that is, as  goes to infinity) and
stays within a bounded region, then you have found either a periodic orbit, or a solution that spirals towards a limit cycle or tends to
a critical point. That is, in the long term, the behavior is very close to a periodic function. Note that a constant solution at a critical
point is periodic (with any period). The theorem is more a qualitative statement rather than something to help us in computations.
In practice it is hard to find analytic solutions and so hard to show rigorously that they exist for all time. But if we think the
solution exists we numerically solve for a large time to approximate the limit cycle. Another caveat is that the theorem only works
in two dimensions. In three dimensions and higher, there is simply too much room.

The theorem applies to all solutions in the Van der Pol oscillator. Solutions that start at any point except the origin  will tend
to the periodic solution around the limit cycle, and if the initial condition of  will lead to the constant solution , .

Consider

A vector field along with solutions with initial conditions , , and  are drawn in Figure .

Figure : Unstable limit cycle example.

Notice that points on the unit circle (distance one from the origin) satisfy . And ,  is a
solution of the system. Therefore we have a closed trajectory. For points off the unit circle, the second term in  pushes the
solution further away from the -axis than the system , , and  pushes the solution further away from the -
axis than the linear system , . In other words for all other initial conditions the trajectory will spiral out.

This means that for initial conditions inside the unit circle, the solution spirals out towards the periodic solution on the unit
circle, and for initial conditions outside the unit circle the solutions spiral off towards infinity. Therefore the unit circle is a
limit cycle, but not an asymptotically stable one. The Poincaré–Bendixson Theorem applies to the initial points inside the unit
circle, as those solutions stay bounded, but not to those outside, as those solutions go off to infinity.

A very similar analysis applies to the system

We still obtain a closed trajectory on the unit circle, and points outside the unit circle spiral out to infinity, but now points inside the
unit circle spiral towards the critical point at the origin. So this system does not have a limit cycle, even though it has a closed
trajectory.

Due to the Picard theorem (3.1.1) we find that no matter where we are in the plane we can always find a solution a little bit further
in time, as long as  and  have continuous derivatives. So if we find a closed trajectory in an autonomous system, then for every
initial point inside the closed trajectory, the solution will exist for all time and it will stay bounded (it will stay inside the closed
trajectory). So the moment we found the solution above going around the unit circle, we knew that for every initial point inside the
circle, the solution exists for all time and the Poincaré–Bendixson theorem applies.

Let us next look for conditions when limit cycles (or periodic orbits) do not exist. We assume the equation  is defined on a
simply connected region, that is, a region with no holes we can go around. For example the entire plane is a simply connected
region, and so is the inside of the unit disc. However, the entire plane minus a point is not a simply connected domain as it has a at
the origin.

t t
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Suppose  and  are defined in a simply connected region . If the expression

is either always positive or always negative on  (except perhaps a small set such as on isolated points or curves) then the
system  has no closed trajectory inside .

The theorem gives us a way of ruling out the existence of a closed trajectory, and hence a way of ruling out limit cycles. The
exception about points or lines really means that we can allow the expression to be zero at a few points, or perhaps on a curve, but
not on any larger set.

Let us look at ,  in the entire plane (see Example 8.2.2.) The entire plane is simply connected and so we
can apply the theorem. We compute . The function  is always positive except on the line .

Therefore, via the theorem, the system has no closed trajectories.

In some books (or the internet) the theorem is not stated carefully and it concludes there are no periodic solutions. That is not quite
right. The above example has two critical points and hence it has constant solutions, and constant functions are periodic. The
conclusion of the theorem should be that there exist no trajectories that form closed curves. Another way to state the conclusion of
the theorem would be to say that there exist no nonconstant periodic solutions that stay in .

Let us look at a somewhat more complicated example. Take the system ,  (see Example 8.2.1). We
compute . This expression takes on both signs, so if we are talking about the whole plane we cannot
simply apply the theorem. However, we could apply it on the set where . Via the theorem, there is no closed
trajectory in that set. Similarly, there is no closed trajectory in the set . We cannot conclude (yet) that there is no
closed trajectory in the entire plane. Perhaps half of it is in the set where  and the other half is in the set where 

.

The key is to look at the set , or . Let us make a substitution  and  (so that ). Both
equations become . So any solution of , gives us a solution , . In particular,
any solution that starts out on the line , stays on the line . In other words, there cannot be a closed
trajectory that starts on the set where  and goes through the set where , as it would have to pass through 

.

Consider , , and consider the region  given by . That is, 
 is the region outside a circle of radius  centered at the origin. Then there is a closed trajectory in , namely , 

. Furthermore,

which is always positive on . So what is going on? The Bendixson–Dulac theorem does not apply since the region  is not
simply connected—it has a hole, the circle we cut out!

10.4.1: Footnotes
[1] Named for the Dutch physicist Balthasar van der Pol (1889–1959).

[2] Ivar Otto Bendixson (1861–1935) was a Swedish mathematician.
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[3] Henri Dulac (1870–1955) was a French mathematician.

[4] Usually the expression in the Bendixson–Dulac Theorem is  for some continuously differentiable function . For
simplicity, let us just consider the case .
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10.5: Chaos
You have surely heard the story about the flap of a butterfly wing in the Amazon causing hurricanes in the North Atlantic. In a prior
section, we mentioned that a small change in initial conditions of the planets can lead to very different configuration of the planets
in the long term. These are examples of chaotic systems. Mathematical chaos is not really chaos, there is precise order behind the
scenes. Everything is still deterministic. However a chaotic system is extremely sensitive to initial conditions. This also means even
small errors induced via numerical approximation create large errors very quickly, so it is almost impossible to numerically
approximate for long times. This is large part of the trouble as chaotic systems cannot be in general solved analytically.

Take the weather for example. As a small change in the initial conditions (the temperature at every point of the atmosphere for
example) produces drastically different predictions in relatively short time, we cannot accurately predict weather. This is because
we do not actually know the exact initial conditions, we measure temperatures at a few points with some error and then we
somehow estimate what is in between. There is no way we can accurately measure the effects of every butterfly wing. Then we will
solve numerically introducing new errors. That is why you should not trust weather prediction more than a few days out.

The idea of chaotic behavior was first noticed by Edward Lorenz in the 1960s when trying to model thermally induced air
convection (movement). The equations Lorentz was looking at form the relatively simple looking system:

A small change in the initial conditions yield a very different solution after a reasonably short time.

Figure 

A very simple example the reader can experiment with, which displays chaotic behavior, is a double pendulum. The equations that
govern this system are somewhat complicated and their derivation is quite tedious, so we will not bother to write them down. The
idea is to put a pendulum on the end of another pendulum. If you look at the movement of the bottom mass, the movement will
appear chaotic. This type of system is a basis for a whole number of office novelty desk toys. It is very simple to build a version.
Take a piece of a string, and tie two heavy nuts at different points of the string; one at the end, and one a bit above. Now give the
bottom nut a little push, as long as the swings are not too big and the string stays tight, you have a double pendulum system.

10.5.1: Duffing Equation and Strange Attractors

Let us study the so-called Duffing equation:

Here , , , , and  are constants. You will recognize that except for the  term, this equation looks like a forced mass-spring
system. The  term comes up when the spring does not exactly obey Hooke's law (which no real-world spring actually does obey
exactly). When  is not zero, the equation does not have a nice closed form solution, so we have to resort to numerical solutions as
is usual for nonlinear systems. Not all choices of constants and initial conditions will exhibit chaotic behavior. Let us study

The equation is not autonomous, so we will not be able to draw the vector field in the phase plane. We can still draw the trajectories
however. In Figure  we plot trajectories for  going from  to , for two very close initial conditions  and , and
also the solutions in the  space. The two trajectories are close at first, but after a while diverge significantly. This sensitivity to
initial conditions is precisely what we mean by the system behaving chaotically.
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Figure : On left, two trajectories in phase space for , for the Duffing equation one with initial conditions 
and the other with . On right the two solutions in -space.

Let us see the long term behavior. In Figure , we plot the behavior of the system for initial conditions , but for much
longer period of time. Note that for this period of time it was necessary to use a ridiculously large number of steps  in the
numerical algorithm used to produce the graph, as even small errors quickly propagate. From the graph it is hard to see any
particular pattern in the shape of the solution except that it seems to oscillate, but each oscillation appears quite unique. The
oscillation is expected due to the forcing term.

Figure : The solution to the given Duffing equation for  from  to .

In general it is very difficult to analyze chaotic systems, or to find the order behind the madness, but let us try to do something that
we did for the standard mass-spring system. One way we analyzed what happens is that we figured out what was the long term
behavior (not dependent on initial conditions). From the figure above it is clear that we will not get a nice description of the long
term behavior, but perhaps we can figure out some order to what happens on each "oscillation" and what do these oscillations have
in common.

The concept we will explore is that of a Poincaré section . Instead of looking at  in a certain interval, we will look at where the
system is at a certain sequence of points in time. Imagine flashing a strobe at a certain fixed frequency and drawing the points
where the solution is during the flashes. The right strobing frequency depends on the system in question. The correct frequency to
use for the forced Duffing equation (and other similar systems) is the frequency of the forcing term. For the Duffing equation
above, find a solution , and look at the points

As we are really not interested in the transient part of the solution, that is, the part of the solution that depends on the initial
condition we skip some number of steps in the beginning. For example, we might skip the first 100 such steps and start plotting
points at , that is

The plot of these points is the Poincaré section. After plotting enough points, a curious pattern emerges in Figure  (the left
hand picture), a so-called strange attractor.
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Figure : Strange attractor. The left plot is with no phase shift, the right plot has phase shift .

If we have a sequence of points, then an attractor is a set towards which the points in the sequence eventually get closer and closer
to, that is, they are attracted. The Poincaré section above is not really the attractor itself, but as the points are very close to it, we
can see its shape. The strange attractor in the figure is a very complicated set, and it in fact has fractal structure, that is, if you
would zoom in as far as you want, you would keep seeing the same complicated structure.

The initial condition does not really make any difference. If we started with different initial condition, the points would eventually
gravitate towards the attractor, and so as long as we throw away the first few points, we always get the same picture.

An amazing thing is that a chaotic system such as the Duffing equation is not random at all. There is a very complicated order to it,
and the strange attractor says something about this order. We cannot quite say what state the system will be in eventually, but given
a fixed strobing frequency we can narrow it down to the points on the attractor.

If you would use a phase shift, for example , and look at the times

you would obtain a slightly different looking attractor. The picture is the right hand side of Figure . It is as if we had rotated,
distorted slightly, and then moved the original. Therefore for each phase shift you can find the set of points towards which the
system periodically keeps coming back to.

You should study the pictures and notice especially the scales---where are these attractors located in the phase plane. Notice the
regions where the strange attractor lives and compare it to the plot of the trajectories in Figure .

Let us compare the discussion in this section to the discussion in Section 2.6 about forced oscillations. Take the equation

This is like the Duffing equation, but with no  term. The steady periodic solution is of the form

Strobing using the frequency  we would obtain a single point in the phase space. So the attractor in this setting is a single point---
an expected result as the system is not chaotic. In fact it was the opposite of chaotic. Any difference induced by the initial
conditions dies away very quickly, and we settle into always the same steady periodic motion.

10.5.2: Lorenz System
In two dimensions to have the kind of chaotic behavior we are looking for, we have to study forced, or non-autonomous, systems
such as the Duffing equation. Due to the Poincaré-Bendoxson Theorem, if an autonomous two-dimensional system has a solution
that exists for all time in the future and does not go towards infinity, then we obtain a limit cycle or a closed trajectory. Hardly the
chaotic behavior we are looking for.

In three dimensions even autonomous systems can be chaotic. Let us very briefly return to the Lorenz system

The Lorenz system is an autonomous system in three dimensions exhibiting chaotic behavior. See the Figure  for a sample
trajectory, which is now a curve in three-dimensional space.
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Figure : A trajectory in the Lorenz system.

The solutions will tend to an attractor in space, the so-called Lorenz attractor. In this case no strobing is necessary. Again we
cannot quite see the attractor itself, but if we try to follow a solution for long enough, as in the figure, we will get a pretty good
picture of what the attractor looks like. The Lorenz attractor is also a strange attractor and has a complicated fractal structure. And,
just as for the Duffing equation, what we want to draw is not the whole trajectory, but start drawing the trajectory after a while,
once it is close to the attractor.

The path is not just a repeating figure-eight. The trajectory will spin some seemingly random number of times on the left, then spin
a number of times on the right, and so on. As this system arose in weather prediction, one can perhaps imagine a few days of warm
weather and then a few days of cold weather, where it is not easy to predict when the weather will change, just as it is not really
easy to predict far in advance when the solution will jump onto the other side. See Figure  for a plot of the  component of
the solution drawn above. A negative  corresponds to the left "loop" and a positive  corresponds to the right "loop".

Figure : Graph of the  component of the solution.

Most of the mathematics we studied in this book is quite classical and well understood. On the other hand, chaos, including the
Lorenz system, continues to be the subject of current research. Furthermore, chaos has found applications not just in the sciences,
but also in art.

10.5.3: Footnotes
[1] In fact for reference, 30,000 steps were used with the Runge–Kutta algorithm, see exercises in Section 1.7.

[2] Named for the French polymath Jules Henri Poincaré (1854-1912).
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10.E: Nonlinear Equations (Exercises)

10.E.1: 8.1: Linearization, critical points, and equilibria

Sketch the phase plane vector field for:

a. ,
b. ,
c. .

Match systems

1. , ,
2. , ,
3. , ,

to the vector fields below. Justify.

a. 

b. 

c. 

Find the critical points and linearizations of the following systems.

a. , ,
b. , ,
c. , .

For the following systems, verify they have critical point at , and find the linearization at .

a. , 
b. , 
c. , , where , , and all first partial derivatives of  and 

 are also zero at , that is, .

 Exercise 10.E. 8.1.1

= ,    =x′ x2 y′ y2

= (x−y ,    = −xx′ )2 y′

= ,    =x′ ey y′ ex

 Exercise 10.E. 8.1.2

=x′ x2 =y′ y2

= xyx′ = 1 +y′ y2

= sin(πy)x′ = xy′

 Exercise 10.E. 8.1.3

= −x′ x2 y2 = + −1y′ x2 y2

= −yx′ = 3x+yy′ x2

= +yx′ x2 = +xy′ y2

 Exercise 10.E. 8.1.4

(0, 0) (0, 0)

= x+2y+ −x′ x2 y2 = 2y−y′ x2

= −yx′ = x−y′ y3

= ax+by+f(x, y)x′ = cx+dy+g(x, y)y′ f(0, 0) = 0 g(0, 0) = 0 f

g (0, 0) (0, 0) = (0, 0) = (0, 0) = (0, 0) = 0
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Take , .

a. Find the set of critical points.
b. Sketch a phase diagram and describe the behavior near the critical point(s).
c. Find the linearization. Is it helpful in understanding the system?

Take , .

a. Find the set of critical points.
b. Sketch a phase diagram and describe the behavior near the critical point(s).
c. Find the linearization. Is it helpful in understanding the system?

Find the critical points and linearizations of the following systems.

a. , ,
b. , ,
c. , .

Answer

a. Critical points  and . At  using ,  the linearization is , . At 
 using ,  the linearization is  .

b. Critical point . Using ,  the linearization is , .
c. Critical point . Using ,  the linearization is , .

Match systems

a. , ,
b. , ,
c. , ,

to the vector fields below. Justify.

a. 

b. 

c. 

 Exercise 10.E. 8.1.5

= (x−yx′ )2 = (x+yy′ )2

 Exercise 10.E. 8.1.6

=x′ x2 =y′ x3

 Exercise 10.E. 8.1.7

= sin(πy) +(x−1x′ )2 = −yy′ y2

= x+y+x′ y2 = xy′

= (x−1 +yx′ )2 = +yy′ x2

(0, 0) (0, 1) (0, 0) u = x v= y = −2u−( )vu′ 1
π

= −vv′

(0, 1) u = x v= y−1 = −2u+( )vu′ 1
π = vv′

(0, 0) u = x v= y = u+vu′ = uv′

( , − )1
2

1
4

u = x− 1
2

v= y+ 1
4

= −u+vu′ = u+vv′

 Exercise 10.E. 8.1.8

=x′ y2 = −y′ x2

= yx′ = (x−1)(x+1)y′

= y+x′ x2 = −xy′
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Answer
a. is c),
b. is a),
c. is b)

The idea of critical points and linearization works in higher dimensions as well. You simply make the Jacobian matrix bigger
by adding more functions and more variables. For the following system of 3 equations find the critical points and their
linearizations:

Answer

Critical points are , and . The linearization at the origin using variables , ,  is 
, , . The linearization at the point  using variables , ,  is 

, , .

Any two-dimensional non-autonomous system ,  can be written as a three-dimensional
autonomous system (three equations). Write down this autonomous system using the variables , , .

Answer

, , .

10.E.2: 8.2: Stability and classification of isolated critical points

For the systems below, find and classify the critical points, also indicate if the equilibria are stable, asymptotically stable, or
unstable.

a. 
b. ,
c. ,

Find the implicit equations of the trajectories of the following conservative systems. Next find their critical points (if any) and
classify them.

a. 
b. 
c. 
d. 

Find and classify the critical point(s) of , .

 Exercise 10.E. 8.1.9

= x+ , = −y, = z+ .x′ z2 y′ z2 z′ x2

(0, 0, 0) (−1, 1, −1) u = x v= y w = z

= uu′ = −vv′ = wz′ (−1, 1, −1) u = x+1 v= y−1 w = z+1
= u−2u′ = −v−2wv′ = w−2uw′

 Exercise 10.E. 8.1.10

= f(x, y, t)x′ = g(x, y, t)y′

u v w

= f(u, v,w)u′ = g(u, v,w)v′ = 1w′

 Exercise 10.E. 8.2.1

= −x+3 , = −yx′ x2 y′

= + −1x′ x2 y2 = xy′

= yx′ ex = y−x+y′ y2

 Exercise 10.E. 8.2.2

+x+ = 0x′′ x3

+sinθ = 0θ′′

+(z−1)(z+1) = 0z′′

+ +1 = 0x′′ x2

 Exercise 10.E. 8.2.3

= −x′ x2 = −y′ y2
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Suppose , .

a. Show there are two spiral sinks at  and .
b. For any initial point of the form ,find what is the trajectory.
c. Can a trajectory starting at  where  spiral into the critical point at ? Why or why not?

In the example ,  show that for any trajectory, the distance from the origin is an increasing function.
Conclude that the origin behaves like is a spiral source. Hint: Consider  and show it has positive
derivative.

Suppose  is always positive. Find the trajectories of . Are there any critical points?

Suppose that , . Suppose that  for all  and . Are there any critical points? What can we
say about the trajectories at  goes to infinity?

For the systems below, find and classify the critical points.

a. ,
b. ,
c. ,

Answer
a. : saddle (unstable), : source (unstable),
b. : spiral sink (asymptotically stable), : saddle (unstable),
c. : saddle (unstable), : source (unstable)

Find the implicit equations of the trajectories of the following conservative systems. Next find their critical points (if any) and
classify them.

a. 
b. 
c. 

Answer
a. , critical points: , an unstable saddle, and , a stable center.
b. , no critical points.
c. , critical point at  is a stable center.

 Exercise 10.E. 8.2.4

= −xyx′ = −1 −yy′ x2

(−1, 0) (1, 0)
(0, )y0

( , )x0 y0 > 0x0 (−1, 0)

 Exercise 10.E. 8.2.5

= yx′ = −xy′ y3

f(t) = +(x(t))2 (y(t))2

 Exercise 10.E. 8.2.6

f +f( ) = 0x′′ x′

 Exercise 10.E. 8.2.7

= f(x, y)x′ = g(x, y)y′ g(x, y) > 1 x y

t

 Exercise 10.E. 8.2.8

= −x+x′ x2 = yy′

= y− −xx′ y2 = −xy′

= xyx′ = x+y−1y′

(0, 0) (1, 0)
(0, 0) (0, 1)
(1, 0) (0, 1)

 Exercise 10.E. 8.2.9

+ = 4x′′ x2

+ = 0x′′ ex

+(x+1) = 0x′′ ex

+ −4x = C1
2
y2 1

3
x3 (−2, 0) (2, 0)

+ = C1
2
y2 ex

+x = C1
2
y2 ex (−1, 0)
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The conservative system  is not almost linear. Classify its critical point(s) nonetheless.

Answer

Critical point at . Trajectories are , for , these give closed curves around the origin, so

the critical point is a stable center.

Derive an analogous classification of critical points for equations in one dimension, such as  based on the derivative.
A point  is critical when  and almost linear if in addition . Figure out if the critical point is stable or
unstable depending on the sign of . Explain. Hint: see Section 1.6.

Answer

A critical point  is stable if  and unstable when .

10.E.3: 8.3: Applications of nonlinear systems

Take the damped nonlinear pendulum equation  for some  (that is, there is some friction).

a. Suppose  and  for simplicity, find and classify the critical points.
b. Do the same for any  and any  and , but such that the damping is small, in particular, .
c. Explain what your findings mean, and if it agrees with what you expect in reality.

Suppose the hares do not grow exponentially, but logistically. In particular consider

For the following two values of , find and classify all the critical points in the positive quadrant, that is, for  and .
Then sketch the phase diagram. Discuss the implication for the long term behavior of the population.

a. ,
b. .

a. Suppose  and  are positive variables. Show  attains a maximum at .

b. Suppose  are positive constants, and also suppose  and  are positive variables. Show  attains a maximum at 
.

Suppose that for the pendulum equation we take a trajectory giving the spinning-around motion, for example 

. This is the trajectory where the lowest angular velocity is . Find an integral expression for how
long it takes the pendulum to go all the way around.

 Exercise 10.E. 8.2.10

+ = 0x′′ x3

(0, 0) y = ± 2C −( )1
2

x4
− −−−−−−−−−

√ C > 0

 Exercise 10.E. 8.2.11

= f(x)x′

x0 f( ) = 0x0 ( ) ≠ 0f ′ x0

( )f ′ x0

x0 ( ) < 0f ′ x0 ( ) < 0f ′ x0

 Exercise 10.E. 8.3.1

+μ +( ) sinθ = 0θ′′ θ′ g

L
μ > 0

μ = 1 = 1
g

L

μ > 0 g L < 4( )μ2 g

L

 Exercise 10.E. 8.3.2

= (0.4 −0.01y)x−γ ,       = (0.003x−0.3)y.x′ x2 y′ (10.E.1)

γ x ≥ 0 y ≥ 0

γ = 0.001
γ = 0.01

 Exercise 10.E. 8.3.3

x y
yx

ex+y (1, 1)

a, b, c, d x y
yaxd

ecx+by

( , )d
c

a

b

 Exercise 10.E. 8.3.4

ω = cosθ+ +
2g

L

2g

L
ω2

0

− −−−−−−−−−−−−−
√ ω2

0
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Take the pendulum, suppose the initial position is .

a. Find the expression for  giving the trajectory with initial condition . Hint: Figure out what  should be in terms of 
.

b. Find the crucial angular velocity , such that for any higher initial angular velocity, the pendulum will keep going around
its axis, and for any lower initial angular velocity, the pendulum will simply swing back and forth. Hint: When the
pendulum doesn't go over the top the expression for  will be undefined for some s.

c. What do you think happens if the initial condition is , that is, the initial angle is 0, and the initial angular velocity is
exactly .

Take the damped nonlinear pendulum equation  for some  (that is, there is friction). Suppose
the friction is large, in particular .

a. Find and classify the critical points.
b. Explain what your findings mean, and if it agrees with what you expect in reality.

Answer
a. Critical points are ,  for any integer . When  is odd, we have a saddle point. When  is even we get a

sink.
b. The findings mean the pendulum will simply go to one of the sinks, for example  and it will not swing back and

forth. The friction is too high for it to oscillate, just like an overdamped mass-spring system.

Suppose we have the system predator-prey system where the foxes are also killed at a constant rate  (  foxes killed per unit
time):  .

a. Find the critical points and the Jacobin matrices of the system.
b. Put in the constants , , , , . Analyze the critical points. What do you think it says

about the forest?

Answer

a. Solving for the critical points we get  and . The Jacobian matrix at  is 

whose eigenvalues are  and . The eigenvalues are real of opposite signs and we get a saddle. (In the

application, however, we are only looking at the positive quadrant so this critical point is irrelevant.) At  we

get Jacobian matrix .

b. For the specific numbers given, the second critical point is  the matrix is , which has

eigenvalues . Therefore there is a spiral source; the solution spirals outwards. The solution eventually hits one
of the axes,  or , so something will die out in the forest.

 Exercise : (challenging)10.E. 8.3.5

θ = 0

ω (0, )ω0 C

ω0

ω1

ω θ

(0, )ω1

ω1

 Exercise 10.E. 8.3.6

+μ +( ) sinθ = 0θ′′ θ′ g

L
μ > 0

> 4( )μ2 g

L

ω = 0 θ = kπ k k k

(0, 0)

 Exercise 10.E. 8.3.7

h h

= (a−by)x,x′ = (cx−d)y−hy′

a = 0.4 b = 0.01 c = 0.003 d = 0.3 h = 10

(0, − )h

d
( , )bh+ad

ac

a

b
(0, − )h

d
[ ]
a+ bh

d

− cd

d

0

−d

a+ bh

d
−d

( , )bh+ad

ac
a

b

⎡

⎣

0
ac

b

−
b(bh+ad)

ac

−dbh+ad

a

⎤

⎦

( , 40)550
3

[ ]
0
3

25

− 11
6

1
4

5± i 327√

40

x = 0 y = 0
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Suppose the foxes never die. That is, we have the system  . Find the critical points and notice they
are not isolated. What will happen to the population in the forest if it starts at some positive numbers. Hint: Think of the
constant of motion.

Answer

The critical points are on the line . In the positive quadrant the  is always positive and so the fox population always
grows. The constant of motion is , for any  this curve must hit the -axis (why?), so the trajectory will
simply approach a point on the  axis somewhere and the number of hares will go to zero.

10.E.4: 8.4: Limit cycles

Show that the following systems have no closed trajectories.

a. ,
b. ,
c. .

Formulate a condition for a 2-by-2 linear system  to not be a center using the Bendixson-Dulac theorem. That is, the
theorem says something about certain elements of .

Explain why the Bendixson-Dulac Theorem does not apply for any conservative system .

A system such as  has solutions that exist for all time , yet there are no closed trajectories or other limit cycles.
Explain why the Poincare-Bendixson Theorem does not apply.

Differential equations can also be given in different coordinate systems. Suppose we have the system , 
given in polar coordinates. Find all the closed trajectories and check if they are limit cycles and if so, if they are asymptotically
stable or not.

Show that the following systems have no closed trajectories.

a. , ,
b. , ,
c. , .

Answer

Use Bendixson–Dulac Theorem.

a. , so no closed trajectories.
b.  for all  except the lines given by  (where we get zero), so no closed

trajectories.

 Exercise : (challenging)10.E. 8.3.8

= (a−by)x,x′ = cxyy′

x = 0 y′

C = yae−cx−by C y

y

 Exercise 10.E. 8.4.1

= +y, = +x′ x3 y′ y3 x2

= , =x′ ex−y y′ ex+y

= x+3 − , = +x′ y2 y3 y′ y3 x2

 Exercise 10.E. 8.4.2

= Ax⃗ ′ x⃗ 
A

 Exercise 10.E. 8.4.3

+h(x) = 0x′′

 Exercise 10.E. 8.4.4

= x, = yx′ y′ t

 Exercise 10.E. 8.4.5

= 1 −r′ r2 = 1θ′

 Exercise 10.E. 8.4.6

= x+x′ y2 = y+y′ x2

= −x (y)x′ sin2 =y′ ex

= xyx′ = x+y′ x2

+ = 1 +1 > 0fx gy
+ = − (y) +0 < 0fx gy sin2 x, y y = kπ
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c.  for all  except the line given by  (where we get zero), so no closed trajectories.

Suppose an autonomous system in the plane has a solution , . What can you say about the
system (in particular about limit cycles and periodic solutions)?

Answer

Using Poincaré–Bendixson Theorem, the system has a limit cycle, which is the unit circle centered at the origin, as 
,  gets closer and closer to the unit circle. Thus ,  is the periodic

solution.

Show that the limit cycle of the Van der Pol oscillator (for ) must not lie completely in the set where 

. Compare with Figure 8.4.1.

Answer

, . So . The Bendixson–Dulac Theorem says there is no
closed trajectory lying entirely in the set .

Suppose we have the system ,  given in polar coordinates. Find all the closed trajectories.

Answer

The closed trajectories are those where , therefore, all the circles centered at the origin with radius that is a
multiple of  are closed trajectories.

10.E.5: 8.5: Chaos

For the non-chaotic equation , suppose we strobe with frequency  as we mentioned above.
Use the known steady periodic solution to find precisely the point which is the attractor for the Poincar  section.

A simple fractal attractor can be drawn via the following chaos game. Draw three points of a triangle (just the vertices) and
number them, say ,  and . Start with some random point  (does not have to be one of the three points above) and draw
it. Roll a die, and use it to pick of the , , or  randomly (for example 1 and 4 mean , 2 and 5 mean , and 3 and 6
mean ). Suppose we picked , then let  be the point exactly halfway between  and . Draw this point and let  now
refer to this new point . Rinse, repeat. Try to be precise and draw as many iterations as possible. Your points should be
attracted to the so-called Sierpinski triangle. A computer was used to run the game for 10,000 iterations to obtain the picture in
Figure .

+ = y+0 > 0fx gy x, y y = 0

 Exercise 10.E. 8.4.7

x = cos(t) +e−t y = sin(t) +e−t

x = cos(t) +e−t y = sin(t) +e−t x = cos(t) y = sin(t)

 Exercise 10.E. 8.4.8

μ > 0

− < x <
1+μ

μ

− −−
√ 1+μ

μ

− −−
√

f(x, y) = y g(x, y) = μ(1 − )y−xx2 + = μ(1 − )fx gy x2

< 1x2

 Exercise 10.E. 8.4.9

= sin(r)r′ = 1θ′

sin(r) = 0
π

 Exercise 10.E. 8.5.1

+2p + x = cos(ωt)x′′ x′ ω2
0

F0

m
ω

è

 Exercise : (project)10.E. 8.5.2

p1 p2 p3 p

p1 p2 p3 p1 p2

p3 p2 pnew p p2 p

pnew

10.E. 1
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Figure :  iterations of the chaos game producing the Sierpinski triangle.

Construct the double pendulum described in the text with a string and two nuts (or heavy beads). Play around with the position
of the middle nut, and perhaps use different weight nuts. Describe what you find.

Use a computer software (such as Matlab, Octave, or perhaps even a spreadsheet), plot the solution of the given forced Duffing
equation with Euler's method. Plotting the solution for  from  to  with several different (small) step sizes. Discuss.

Find critical points of the Lorenz system and the associated linearizations.

Answer

Critical points: , , . Linearization at  using , ,  is 

, , . Linearization at  using , , 

 is , , . Linearization at 

 using , ,  is , , 

.

This page titled 10.E: Nonlinear Equations (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jiří
Lebl.

8.E: Nonlinear Equations (Exercises) has no license indicated.

10.E. 1 10, 000

 Exercise : (project)10.E. 8.5.3

 Exercise : (computer project)10.E. 8.5.4

t 0 100

 Exercise 10.E. 8.5.5

(0, 0, 0) (3 , 3 , 27)8
–

√ 8
–

√ (−3 , −3 , 27)8
–

√ 8
–

√ (0, 0, 0) u = x v= y w = z

= −10u+10vu′ = 28u−vv′ = −( )ww′ 8
3

(3 , 3 , 27)8
–

√ 8
–

√ u = x−3 8
–

√ v= y−3 8
–

√

w = z−27 = −10u+10vu′ = u−v−3 wv′ 8
–

√ = 3 u+3 v−( )ww′ 8
–

√ 8
–

√ 8
3

(−3 , −3 , 27)8
–

√ 8
–

√ u = x+3 8
–

√ v= y+3 8
–

√ w = z−27 = −10u+10vu′ = u−v+3 wv′ 8
–

√

= −3 u−3 v−( )ww′ 8
–

√ 8
–

√ 8
3
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11.1: A.1- Vectors, Mappings, and Matrices
In real life, there is most often more than one variable. We wish to organize dealing with multiple variables in a consistent manner,
and in particular organize dealing with linear equations and linear mappings, as those are both rather useful and rather easy to
handle. Mathematicians joke that And well, they (the engineers) are not wrong. Quite often, solving an engineering problem is
figuring out the right finite-dimensional linear problem to solve, which is then solved with some matrix manipulation. Most
importantly, linear problems are the ones that we know how to solve, and we have many tools to solve them. For engineers,
mathematicians, physicists, and anybody else in a technical field, it is absolutely vital to learn linear algebra.

As motivation, suppose we wish to solve

for  and . That is, we desire numbers  and  such that the two equations are satisfied. Let us perhaps start by adding the
equations together to find

In other words, . Once we have that, we plug  into the first equation to find , so . OK, that was easy.
What is all this fuss about linear equations. Well, try doing this if you have  unknowns . Also, we may have such equations
not just of numbers, but of functions and derivatives of functions in differential equations. Clearly we need a systematic way of
doing things. A nice consequence of making things systematic and simpler to write down is that it becomes easier to have
computers do the work for us. Computers are rather stupid, they do not think, but are very good at doing lots of repetitive tasks
precisely, as long as we figure out a systematic way for them to perform the tasks.

11.1.1: Vectors and operations on Vectors
Consider  real numbers as an -tuple:

The set of such -tuples is the so-called -dimensional space, often denoted by . Sometimes we call this the -dimensional
euclidean space . In two dimensions,  is called the cartesian plane . Each such -tuple represents a point in the -dimensional
space. For example, the point  in the plane  is one unit to the right and two units up from the origin.

When we do algebra with these -tuples of numbers we call them vectors . Mathematicians are keen on separating what is a vector
and what is a point of the space or in the plane, and it turns out to be an important distinction, however, for the purposes of linear
algebra we can think of everything being represented by a vector. A way to think of a vector, which is especially useful in calculus
and differential equations, is an arrow. It is an object that has a direction and a magnitude. For instance, the vector  is the
arrow from the origin to the point  in the plane. The magnitude is the length of the arrow. See Figure . If we think of
vectors as arrows, the arrow doesn’t always have to start at the origin. If we do move it around, however, it should always keep the
same direction and the same magnitude.

Figure : The vector  drawn as an arrow from the origin to the point .

As vectors are arrows, when we want to give a name to a vector, we draw a little arrow above it:

Another popular notation is , although we will use the little arrows. It may be easy to write a bold letter in a book, but it is not so
easy to write it by hand on paper or on the board. Mathematicians often don’t even write the arrows. A mathematician would write 

 and just remember that  is a vector and not a number. Just like you remember that Jose is your uncle, and you don’t have to keep
repeating and you can just say In this book, however, we will call Jose and write vectors with the little arrows.

x −y = 2,
2x +y = 4,

(11.1.1)

x y x y

x +2x −y +y = 2 +4, or 3x = 6.

x = 2 x = 2 2 −y = 2 y = 0
5000 1

n n

( , , … , ).x1 x2 xn

n n R
n n

2
R

2 3 n n

(1, 2) R
2

n 4

(1, 2)
(1, 2) 11.1.1

11.1.1 (1, 2) (1, 2)

x⃗ 

x

x x
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The magnitude can be computed using the Pythagorean theorem. The vector  drawn in the figure has magnitude 
. The magnitude is denoted by , and, in any number of dimensions, it can be computed in the same way:

For reasons that will become clear in the next section, we often write vectors as so-called column vectors:

Don’t worry. It is just a different way of writing the same thing, and it will be useful later. For example, the vector  can be
written as

The fact that we write arrows above vectors allows us to write several vectors , , etc., without confusing these with the
components of some other vector .

So where is the algebra from linear algebra? Well, arrows can be added, subtracted, and multiplied by numbers. First we consider
addition. If we have two arrows, we simply move along one, and then along the other. See Figure .

Figure : Adding the vectors , drawn dotted, and , drawn dashed. The result, , is drawn as a solid arrow.

It is rather easy to see what it does to the numbers that represent the vectors. Suppose we want to add  to  as in the
figure. We travel along  and then we travel along . What we did was travel one unit right, two units up, and then we
travelled two units right, and three units down (the negative three). That means that we ended up at .
And that’s how addition always works:

Subtracting is similar. What  means visually is that we first travel along , and then we travel backwards along . See Figure 
. It is like adding  where  is the arrow we obtain by erasing the arrow head from one side and drawing it on the

other side, that is, we reverse the direction. In terms of the numbers, we simply go backwards both horizontally and vertically, so
we negate both numbers. For instance, if  is , then  is .

Figure : Subtraction, the vector , drawn dotted, minus , drawn dashed. The result, , is drawn as a solid
arrow.

Another intuitive thing to do to a vector is to scale it. We represent this by multiplication of a number with a vector. Because of
this, when we wish to distinguish between vectors and numbers, we call the numbers scalars. For example, suppose we want to
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travel three times further. If the vector is , traveling 3 times further means going 3 units to the right and 6 units up, so we get
the vector . We just multiply each number in the vector by 3. If  is a number, then

Scaling (by a positive number) multiplies the magnitude and leaves direction untouched. The magnitude of  is . The
magnitude of 3 times , that is, , is .

When the scalar is negative, then when we multiply a vector by it, the vector is not only scaled, but it also switches direction.
Multiplying  by  means we should go 3 times further but in the opposite direction, so 3 units to the left and 6 units down,
or in other words, . As we mentioned above,  is a reverse of , and this is the same as .

In Figure , you can see a couple of examples of what scaling a vector means visually.

Figure : A vector , the vector  (same direction, double the magnitude), and the vector  (opposite direction, 
times the magnitude).

We put all of these operations together to work out more complicated expressions. Let us compute a small example:

As we said a vector is a direction and a magnitude. Magnitude is easy to represent, it is just a number. The direction is usually
given by a vector with magnitude one. We call such a vector a unit vector. That is,  is a unit vector when . For instance,
the vectors , , and  are all unit vectors.

To represent the direction of a vector , we need to find the unit vector in the same direction. To do so, we simply rescale  by the
reciprocal of the magnitude, that is , or more concisely .

As an example, the unit vector in the direction of  is the vector

11.1.2: Linear Mappings and Matrices

A vector-valued function  is a rule that takes a vector  and returns another vector . For example,  could be a scaling that
doubles the size of vectors:

Applied to say  we get

If  is a mapping that takes vectors in  to  (such as the above), we write

The words function and mapping are used rather interchangeably, although more often than not, mapping is used when talking
about a vector-valued function, and the word function is often used when the function is scalar-valued.

A beginning student of mathematics (and many a seasoned mathematician), that sees an expression such as
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yearns to write

After all, who hasn’t wanted to write  or something like that at some point in their mathematical lives.
Wouldn’t life be simple if we could do that? Of course we can’t always do that (for example, not with the square roots!) But there
are many other functions where we can do exactly the above. Such functions are called linear.

A mapping  is called linear if

for any vectors  and , and also

for any scalar . The  we defined above that doubles the size of all vectors is linear. Let us check:

and also

We also call a linear function a linear transformation. If you want to be really fancy and impress your friends, you can call it a
linear operator. When a mapping is linear we often do not write the parentheses. We write simply

instead of . We do this because linearity means that the mapping  behaves like multiplying  by That something is a matrix.

A matrix is an  array of numbers (  rows and  columns). A  matrix is

The numbers  are called elements or entries.

A column vector is simply an  matrix. Similarly to a column vector there is also a row vector, which is a  matrix. If we
have an  matrix, then we say that it is a square matrix.

Now how does a matrix  relate to a linear mapping? Well a matrix tells you where certain special vectors go. Let’s give a name to
those certain vectors. The standard basis of vectors of  are

In  these vectors are

You may recall from calculus of several variables that these are sometimes called , , .

The reason these are called a basis is that every other vector can be written as a linear combination of them. For example, in  the
vector  can be written as

f(3x +8y)

3f(x) +8f(y).

= +x +y− −−−−√ x−−√ y√
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So how does a matrix represent a linear mapping? Well, the columns of the matrix are the vectors where  as a linear mapping
takes , , etc. For instance, consider

As a linear mapping  takes  to  and  to . In other words,

More generally, if we have an  matrix , that is, we have  rows and  columns, then the mapping  takes 
to the  column of . For example,

represents a mapping from  to  that does

What about another vector , which isn’t in the standard basis? Where does it go? We use linearity. First, we write the vector as a
linear combination of the standard basis vectors:

Then

If we know where  takes all the basis vectors, we know where it takes all vectors.

Suppose  is the  matrix from above, then

Every linear mapping from  to  can be represented by an  matrix. You just figure out where it takes the standard basis
vectors. Conversely, every  matrix represents a linear mapping. Hence, we may think of matrices being linear mappings, and
linear mappings being matrices.

Or can we? In this book we study mostly linear differential operators, and linear differential operators are linear mappings,
although they are not acting on , but on an infinite-dimensional space of functions:

For a function  we get a function , and  is linear in the sense that

for any number (scalar)  and all functions  and .
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So the answer is not really. But if we consider vectors in finite-dimensional spaces  then yes, every linear mapping is a matrix.
We have mentioned at the beginning of this section, that we can That’s not strictly true, but it is true approximately. Those spaces
of functions can be approximated by a finite-dimensional space, and then linear operators are just matrices. So approximately, this
is true. And as far as actual computations that we can do on a computer, we can work only with finitely many dimensions anyway.
If you ask a computer or your calculator to plot a function, it samples the function at finitely many points and then connects the
dots . It does not actually give you infinitely many values. The way that you have been using the computer or your calculator so far
has already been a certain approximation of the space of functions by a finite-dimensional space.

To end the section, we notice how  can be written more succintly. Suppose

Then

For example,

That is, you take the entries in a row of the matrix, you multiply them by the entries in your vector, you add things up, and that’s
the corresponding entry in the resulting vector.

11.1.3: Footnotes
[1] One of the downsides of making everything look like a linear problem is that the number of variables tends to become huge.

[2] Named after the ancient Greek mathematician Euclid of Alexandria (around 300 BC), possibly the most famous of
mathematicians; even small towns often have Euclid Street or Euclid Avenue.

[3] Named after the French mathematician René Descartes (1596–1650). It is as his name in Latin is Renatus Cartesius.

[4] A common notation to distinguish vectors from points is to write  for the point and  for the vector. We write both as 
.

[5] If you have ever used Matlab, you may have noticed that to plot a function, we take a vector of inputs, ask Matlab to compute
the corresponding vector of values of the function, and then we ask it to plot the result.

11.1: A.1- Vectors, Mappings, and Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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11.2: A.2- Matrix Algebra

11.2.1: One-by-One Matrices

Let us motivate what we want to achieve with matrices. Real-valued linear mappings of the real line, linear functions that eat
numbers and spit out numbers, are just multiplications by a number. Consider a mapping defined by multiplying by a number. Let’s
call this number . The mapping then takes  to . We can add such mappings: If we have another mapping , then

We get a new mapping  that multiplies  by, well, . If  is a mapping that doubles its input, , and  is a
mapping that triples, , then  is a mapping that multiplies by , .

Similarly we can compose such mappings, that is, we could apply one and then the other. We take , we run it through the first
mapping  to get  times , then we run  through the second mapping . In other words,

We just multiply those two numbers. Using our doubling and tripling mappings, if we double and then triple, that is  then
we obtain . The composition  is the mapping that multiplies by . For larger matrices, composition also ends up
being a kind of multiplication.

11.2.2: Matrix Addition and Scalar Multiplication
The mappings that multiply numbers by numbers are just  matrices. The number  above could be written as a matrix .
Perhaps we would want to do to all matrices the same things that we did to those  matrices at the start of this section above.
First, let us add matrices. If we have a matrix  and a matrix  that are of the same size, say , then they are mappings from 

 to . The mapping  should also be a mapping from  to , and it should do the following to vectors:

It turns out you just add the matrices element-wise: If the  entry of  is , and the  entry of  is , then the  entry of 
 is . If

then

Let us illustrate on a more concrete example:

Let’s check that this does the right thing to a vector. Let’s use some of the vector algebra that we already know, and regroup things:
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If we replaced the numbers by letters that would constitute a proof! You’ll notice that we didn’t really have to even compute what
the result is to convince ourselves that the two expressions were equal.

If the sizes of the matrices do not match, then addition is not defined. If  is  and  is , then we cannot add these
matrices. We don’t know what that could possibly mean.

It is also useful to have a matrix that when added to any other matrix does nothing. This is the zero matrix, the matrix of all zeros:

We often denote the zero matrix by  without specifying size. We would then just write , where we just assume that  is the
zero matrix of the same size as .

There are really two things we can multiply matrices by. We can multiply matrices by scalars or we can multiply by other matrices.
Let us first consider multiplication by scalars. For a matrix  and a scalar , we want  to be the matrix that accomplishes

That is just scaling the result by . If you think about it, scaling every term in  by  achieves just that: If

For example,

Let us list some properties of matrix addition and scalar multiplication. Denote by  the zero matrix, by ,  scalars, and by , , 
 matrices. Then:

These rules should look very familiar.

11.2.3: Matrix Multiplication
As we mentioned above, composition of linear mappings is also a multiplication of matrices. Suppose  is an  matrix, that
is,  takes  to , and  is an  matrix, that is,  takes  to . The composition  should work as follows

[ ]+ [ ]
⎡

⎣
⎢

1

3

5

2

4

6

⎤

⎦
⎥

2

−1

⎡

⎣
⎢

7

9

11

8

10

−1

⎤

⎦
⎥

2

−1
= 2 − + 2 −

⎛

⎝
⎜

⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

⎡

⎣
⎢

2

4

6

⎤

⎦
⎥

⎞

⎠
⎟

⎛

⎝
⎜

⎡

⎣
⎢

7

9

11

⎤

⎦
⎥

⎡

⎣
⎢

8

10

−1

⎤

⎦
⎥

⎞

⎠
⎟

= 2 + − +
⎛

⎝
⎜

⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

⎡

⎣
⎢

7

9

11

⎤

⎦
⎥

⎞

⎠
⎟

⎛

⎝
⎜

⎡

⎣
⎢

2

4

6

⎤

⎦
⎥

⎡

⎣
⎢

8

10

−1

⎤

⎦
⎥

⎞

⎠
⎟

= 2 − = 2 −
⎡

⎣
⎢

1 +7

3 +9

5 +11

⎤

⎦
⎥

⎡

⎣
⎢

2 +8

4 +10

6 −1

⎤

⎦
⎥

⎡

⎣
⎢

8

12

16

⎤

⎦
⎥

⎡

⎣
⎢

10

14

5

⎤

⎦
⎥

= [ ] = = .
⎡

⎣
⎢

8

12

16

10

14

5

⎤

⎦
⎥

2

−1

⎛

⎝
⎜

⎡

⎣
⎢

2(8) −10

2(12) −14

2(16) −5

⎤

⎦
⎥

⎡

⎣
⎢

6

10

27

⎤

⎦
⎥

⎞

⎠
⎟

(11.2.1)

A 3 ×2 B 2 ×5

[ ]+[ ] = [ ] .
1

3

2

4

0

0

0

0

1

3

2

4

0 A+0 0

A

A α αA

(αA) = α(A ).x⃗  x⃗ 

α A α

A = [ ] , then αA = [ ] .
a11

a21

a12

a22

a13

a23

αa11

αa21

αa12

αa22

αa13

αa23

2 [ ] = [ ] .
1

4

2

5

3

6

2

8

4

10

6

12

0 α β A B

C

A+0

A+B

(A+B) +C

α(A+B)

(α+β)A

= A = 0 +A,

= B+A,

= A+(B+C),

= αA+αB,

= αA+βA.

(11.2.2)

A m×n

A R
n

R
m B n×p B R

p
R
n AB

AB = A(B ).x⃗  x⃗ 
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First, a vector  in  gets taken to the vector  in . Then the mapping  takes it to the vector  in . In other words,
the composition  should be an  matrix. In terms of sizes we should have

Notice how the middle size must match.

OK, now we know what sizes of matrices we should be able to multiply, and what the product should be. Let us see how to actually
compute matrix multiplication. We start with the so-called dot product (or inner product) of two vectors. Usually this is a row
vector multiplied with a column vector of the same size. Dot product multiplies each pair of entries from the first and the second
vector and sums these products. The result is a single number. For example,

And similarly for larger (or smaller) vectors. A dot product is really a product of two matrices: a  matrix and an  matrix
resulting in a  matrix, that is, a number.

Armed with the dot product we define the product of matrices. We denote by  the  row of  and by  the 
 column of . For an  matrix  and an  matrix  we can compute the product : The matrix  is an 

matrix whose  entry is the dot product

For example, given a  and a  matrix we should end up with a  matrix:

or with some numbers:

A useful consequence of the definition is that the evaluation  for a matrix  and a (column) vector  is also matrix
multiplication. That is really why we think of vectors as column vectors, or  matrices. For example,

If you look at the last section, that is precisely the last example we gave.

You should stare at the computation of multiplication of matrices  and the previous definition of  as a mapping for a
moment. What we are doing with matrix multiplication is applying the mapping  to the columns of . This is usually written as
follows. Suppose we write the  matrix , where  are the columns of . Then for an 
matrix ,

The columns of the  matrix  are the vectors . For example, in , the columns of

are

x⃗  R
p Bx⃗  R

n A A(B )x⃗  R
m

AB m×p

" [m×n] [n×p] = [m×p]. "

[ ] ⋅ = + + .a1 a2 a3

⎡

⎣
⎢
b1

b2

b3

⎤

⎦
⎥ a1b1 a2b2 a3b3

1 ×n n×1

1 ×1

(A)rowi ith A (A)columnj

jth A m×n A n×p B AB AB m×p

ijth

(A) ⋅ (B).rowi columnj

2 ×3 3 ×2 2 ×2

[ ] = [ ] ,
a11

a21

a12

a22

a13

a23

⎡

⎣
⎢

b11

b21

b31

b12

b22

b32

⎤

⎦
⎥

+ +a11b11 a12b21 a13b31

+ +a21b11 a22b21 a23b31

+ +a11b12 a12b22 a13b32

+ +a21b12 a22b22 a23b32

(11.2.3)

[ ] = [ ] = [ ] .
1

4

2

5

3

6

⎡

⎣
⎢

−1

−7

1

2

0

−1

⎤

⎦
⎥

1 ⋅ (−1) +2 ⋅ (−7) +3 ⋅ 1

4 ⋅ (−1) +5 ⋅ (−7) +6 ⋅ 1

1 ⋅ 2 +2 ⋅ 0 +3 ⋅ (−1)

4 ⋅ 2 +5 ⋅ 0 +6 ⋅ (−1)

−12

−33

−1

2

Ax⃗  A x⃗ 

n×1

[ ][ ] = [ ] = [ ] .
1

3

2

4

2

−1

1 ⋅ 2 +2 ⋅ (−1)

3 ⋅ 2 +4 ⋅ (−1)

0

2

AB Ay ⃗ 

A B

n×p B = [     ⋯   ]b ⃗ 
1 b ⃗ 

2 b ⃗ 
p , , … ,b ⃗ 

1 b ⃗ 
2 b ⃗ 

p B m×n

A

AB = A[     ⋯   ] = [A  A   ⋯  A ].b ⃗ 
1 b

⃗ 
2 b ⃗ 

p b ⃗ 
1 b ⃗ 

2 b ⃗ 
p

m×p AB A ,A , … ,Ab ⃗ 
1 b ⃗ 

2 b ⃗ 
p (11.2.3)

[ ]
a11

a21

a12

a22

a13

a23

⎡

⎣
⎢

b11

b21

b31

b12

b22

b32

⎤

⎦
⎥
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This is a very useful way to understand what matrix multiplication is. It should also make it easier to remember how to perform
matrix multiplication.

11.2.4: Rules of Matrix Algebra
For multiplication we want an analogue of a 1. That is, we desire a matrix that just leaves everything as it found it. This analogue is
the so-called identity matrix. The identity matrix is a square matrix with 1s on the main diagonal and zeros everywhere else. It is
usually denoted by . For each size we have a different identity matrix and so sometimes we may denote the size as a subscript. For
example,  is the  identity matrix

Let us see how the matrix works on a smaller example,

Multiplication by the identity from the left looks similar, and also does not touch anything.

We have the following rules for matrix multiplication. Suppose that , ,  are matrices of the correct sizes so that the following
make sense. Let  denote a scalar (number). Then

Let us demonstrate a couple of these rules. For example, the associative law:

and

Or how about multiplication by scalars:

and

[ ] and [ ] .
a11

a21

a12

a22

a13

a23

⎡

⎣
⎢

b11

b21

b31

⎤

⎦
⎥

a11

a21

a12

a22

a13

a23

⎡

⎣
⎢

b12

b22

b32

⎤

⎦
⎥

I

I3 3 ×3

I = = .I3

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

[ ][ ] = [ ] = [ ] .
a11

a21

a12

a22

1

0

0

1

⋅ 1 + ⋅ 0a11 a12

⋅ 1 + ⋅ 0a21 a22

⋅ 0 + ⋅ 1a11 a12

⋅ 0 + ⋅ 1a21 a22

a11

a21

a12

a22

A B C

α

A(BC)

A(B+C)

(B+C)A

α(AB)

IA

= (AB)C

= AB+AC

= BA+CA

= (αA)B = A(αB),

= A = AI

(associative law),

(distributive law),

(distributive law),

(identity).

(11.2.4)

 Example 11.2.1

( ) = = ,[ ]
−3

2

3

−2
  

A

[ ]
4

1

4

−3
  

B

[ ]
−1

5

4

2
  

C

[ ]
−3

2

3

−2
  

A

[ ]
16

−16

24

−2
  

BC

[ ]
−96

64

−78

52
  

A(BC)

( ) = = .[ ]
−3

2

3

−2
  

A

[ ]
4

1

4

−3
  

B

[ ]
−1

5

4

2
  

C

[ ]
−9

6

−21

14
  

AB

[ ]
−1

5

4

2
  

C

[ ]
−96

64

−78

52
  

(AB)C

10( )[ ]
−3

2

3

−2
  

A

[ ]
4

1

4

−3
  

B

(10 )[ ]
−3

2

3

−2
  

A

[ ]
4

1

4

−3
  

B

= 10 = ,[ ]
−9

6

−21

14
  

AB

[ ]
−90

60

−210

140
  

10(AB)

= = ,[ ]
−30

20

30

−20
  

10A

[ ]
4

1

4

−3
  

B

[ ]
−90

60

−210

140
  

(10A)B

(11.2.5)

(11.2.6)
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A multiplication rule, one you have used since primary school on numbers, is quite conspicuously missing for matrices. That is,
matrix multiplication is not commutative. Firstly, just because  makes sense, it may be that  is not even defined. For
example, if  is , and  is , the we can multiply  but not .

Even if  and  are both defined, does not mean that they are equal. For example, take  and :

11.2.5: Inverse

A couple of other algebra rules you know for numbers do not quite work on matrices:

i.  does not necessarily imply , even if  is not 0.
ii.  does not necessarily mean that  or .

For example:

To make these rules hold, we do not just need one of the matrices to not be zero, we would need to by a matrix. This is where the
matrix inverse comes in. Suppose that  and  are  matrices such that

Then we call  the inverse of  and we denote  by . Perhaps not surprisingly, , since if the inverse of  is ,
then the inverse of  is . If the inverse of  exists, then we say  is invertible. If  is not invertible, we say  is singular.

If  is a  matrix, then  is . That is where the notation comes from. The computation is not nearly as
simple when  is larger.

The proper formulation of the cancellation rule is:

If  is invertible, then  implies .

The computation is what you would do in regular algebra with numbers, but you have to be careful never to commute matrices:

And similarly for cancellation on the right:

If  is invertible, then  implies .

The rule says, among other things, that the inverse of a matrix is unique if it exists: If , then  is invertible and 
.

We will see later how to compute an inverse of a matrix in general. For now, let us note that there is a simple formula for the
inverse of a  matrix

For example:

(10 ) = = .[ ]
−3

2

3

−2
  

A

[ ]
4

1

4

−3
  

B

[ ]
−3

2

3

−2
  

A

[ ]
40

10

40

−30
  

10B

[ ]
−90

60

−210

140
  

A(10B)

AB BA

A 2 ×3 B 3 ×4 AB BA

AB BA A = [ ]1
1

1
1

B = [ ]1
0

0
2

AB = [ ][ ] = [ ] ≠ [ ] = [ ][ ] = BA.
1

1

1

1

1

0

0

2

1

1

2

2

1

2

1

2

1

0

0

2

1

1

1

1

AB = AC B = C A

AB = 0 A = 0 B = 0

[ ][ ] = [ ] = [ ][ ] .
0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

2

0

A B n×n

AB = I = BA.

B A B A−1 = A( )A−1 −1
A B

B A A A A A

A = [a] 1 ×1 A−1 =a−1 1
a

A

A AB = AC B = C

AB

ABA−1

IB

B

= AC,

= AC,A−1

= IC,

= C.

(11.2.7)

A BA = CA B = C

AB = I = AC A

B = C

2 ×2

= [ ] .[ ]
a

c

b

d

−1
1

ad−bc

d

−c

−b

a
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Let’s try it:

Just as we cannot divide by every number, not every matrix is invertible. In the case of matrices however we may have singular
matrices that are not zero. For example,

is a singular matrix. But didn’t we just give a formula for an inverse? Let us try it:

We get into a bit of trouble; we are trying to divide by zero.

So a  matrix  is invertible whenever

and otherwise it is singular. The expression  is called the determinant and we will look at it more carefully in a later
section. There is a similar expression for a square matrix of any size.

11.2.6: Diagonal Matrices

A simple (and surprisingly useful) type of a square matrix is a so-called diagonal matrix. It is a matrix whose entries are all zero
except those on the main diagonal from top left to bottom right. For example a  diagonal matrix is of the form

Such matrices have nice properties when we multiply by them. If we multiply them by a vector, they multiply the  entry by .
For example,

Similarly, when they multiply another matrix from the left, they multiply the  row by . For example,

On the other hand, multiplying on the right, they multiply the columns:

And it is really easy to multiply two diagonal matrices together—we multiply the entries:

= [ ] = [ ] .[ ]
1

2

1

4

−1
1

1 ⋅ 4 −1 ⋅ 2

4

−2

−1

1

2

−1

−1
2

1
2

[ ][ ] = [ ] and [ ] [ ] = [ ] .
1

2

1

4

2

−1

−1

2
1
2

1

0

0

1

2

−1

−1

2
1
2

1

2

1

4

1

0

0

1

[ ]
1

2

1

2

= [ ] =?[ ]
1

2

1

2

−1
1

1 ⋅ 2 −1 ⋅ 2

2

−2

−1

1

2 ×2 A

ad−bc ≠ 0

ad−bc

4 ×4

.

⎡

⎣

⎢⎢⎢

d1

0

0

0

0

d2

0

0

0

0

d3

0

0

0

0

d4

⎤

⎦

⎥⎥⎥

kth dk

= = .
⎡

⎣
⎢

1

0

0

0

2

0

0

0

3

⎤

⎦
⎥

⎡

⎣
⎢

4

5

6

⎤

⎦
⎥

⎡

⎣
⎢

1 ⋅ 4

2 ⋅ 5

3 ⋅ 6

⎤

⎦
⎥

⎡

⎣
⎢

4

10

18

⎤

⎦
⎥

kth dk

= .
⎡

⎣
⎢

2

0

0

0

3

0

0

0

−1

⎤

⎦
⎥

⎡

⎣
⎢

1

1

1

1

1

1

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

2

3

−1

2

3

−1

2

3

−1

⎤

⎦
⎥

= .
⎡

⎣
⎢

1

1

1

1

1

1

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

2

0

0

0

3

0

0

0

−1

⎤

⎦
⎥

⎡

⎣
⎢

2

2

2

3

3

3

−1

−1

−1

⎤

⎦
⎥
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For this last reason, they are easy to invert, you simply invert each diagonal element:

Let us check an example

It is no wonder that the way we solve many problems in linear algebra (and in differential equations) is to try to reduce the problem
to the case of diagonal matrices.

11.2.7: Transpose
Vectors do not always have to be column vectors, that is just a convention. Swapping rows and columns is from time to time
needed. The operation that swaps rows and columns is the so-called transpose. The transpose of  is denoted by . Example:

Transpose takes an  matrix to an  matrix.

A key feature of the transpose is that if the product  makes sense, then  also makes sense, at least from the point of view
of sizes. In fact, we get precisely the transpose of . That is:

For example,

It is left to the reader to verify that computing the matrix product on the left and then transposing is the same as computing the
matrix product on the right.

If we have a column vector  to which we apply a matrix  and we transpose the result, then the row vector  applies to  from
the left:

Another place where transpose is useful is when we wish to apply the dot product  to two column vectors:

That is the way that one often writes the dot product in software.

We say a matrix  is symmetric if . For example,

= = .
⎡

⎣
⎢

1

0

0

0

2

0

0

0

3

⎤

⎦
⎥

⎡

⎣
⎢

2

0

0

0

3

0

0

0

−1

⎤

⎦
⎥

⎡

⎣
⎢

1 ⋅ 2

0

0

0

2 ⋅ 3

0

0

0

3 ⋅ (−1)

⎤

⎦
⎥

⎡

⎣
⎢

2

0

0

0

6

0

0

0

−3

⎤

⎦
⎥

= .
⎡

⎣
⎢
d1

0

0

0

d2

0

0

0

d3

⎤

⎦
⎥

−1
⎡

⎣

⎢⎢

d−1
1

0

0

0

d−1
2

0

0

0

d−1
3

⎤

⎦

⎥⎥

= = .
⎡

⎣
⎢

2

0

0

0

3

0

0

0

4

⎤

⎦
⎥

−1

  
A−1

⎡

⎣
⎢

2

0

0

0

3

0

0

0

4

⎤

⎦
⎥

  
A

⎡

⎣

⎢⎢

1
2

0

0

0

1
3

0

0

0

1
4

⎤

⎦

⎥⎥

  
A−1

⎡

⎣
⎢

2

0

0

0

3

0

0

0

4

⎤

⎦
⎥

  
A

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

  
I

A AT

= .[ ]
1

4

2

5

3

6

T ⎡

⎣
⎢

1

2

3

4

5

6

⎤

⎦
⎥

m×n n×m

AB BTAT

AB

= .(AB)
T

BTAT

= [ ] .[ ]
⎛

⎝
⎜

1

4

2

5

3

6

⎡

⎣
⎢

0

1

2

1

0

−2

⎤

⎦
⎥

⎞

⎠
⎟

T

0

1

1

0

2

−2

⎡

⎣
⎢

1

2

3

4

5

6

⎤

⎦
⎥

x⃗  A x⃗ T AT

= .(A )x⃗  T x⃗ TAT

1

⋅ = .x⃗  y ⃗  y ⃗ T x⃗ 

A A = AT
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is a symmetric matrix. Notice that a symmetric matrix is always square, that is, . Symmetric matrices have many nice
properties , and come up quite often in applications.

11.2.8: Footnotes

[1] As a side note, mathematicians write  and physicists write . Shhh…don’t tell anyone, but the physicists are probably
right on this.

[2] Although so far we have not learned enough about matrices to really appreciate them.
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11.3: A.3- Elimination

11.3.1: Linear Systems of Equations

One application of matrices is to solve systems of linear equations . Consider the following system of linear equations

There is a systematic procedure called elimination to solve such a system. In this procedure, we attempt to eliminate each variable
from all but one equation. We want to end up with equations such as , where we can just read off the answer.

We write a system of linear equations as a matrix equation:

The system  is written as

If we knew the inverse of , then we would be done; we would simply solve the equation:

Well, but that is part of the problem, we do not know how to compute the inverse for matrices bigger than . We will see later
that to compute the inverse we are really solving  for several different . In other words, we will need to do elimination to
find . In addition, we may wish to solve  if  is not invertible, or perhaps not even square.

Let us return to the equations themselves and see how we can manipulate them. There are a few operations we can perform on the
equations that do not change the solution. First, perhaps an operation that may seem stupid, we can swap two equations in :

Clearly these new equations have the same solutions . A second operation is that we can multiply an equation by a
nonzero number. For example, we multiply the third equation in  by 3:

Finally, we can add a multiple of one equation to another equation. For instance, we add 3 times the third equation in  to
the second equation:

The same  should still be solutions to the new equations. These were just examples; we did not get any closer to the
solution. We must to do these three operations in some more logical manner, but it turns out these three operations suffice to solve
every linear equation.

The first thing is to write the equations in a more compact manner. Given
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we write down the so-called augmented matrix

where the vertical line is just a marker for us to know where the of the equation starts. For the system  the augmented
matrix is

The entire process of elimination, which we will describe, is often applied to any sort of matrix, not just an augmented matrix.
Simply think of the matrix as the  matrix

11.3.2: Echelon Form and Elementary Operations
We apply the three operations above to the matrix. We call these the elementary operations or elementary row operations.
Translating the operations to the matrix setting, the operations become:

i. Swap two rows.
ii. Multiply a row by a nonzero number.

iii. Add a multiple of one row to another row.

We run these operations until we get into a state where it is easy to read off the answer, or until we get into a contradiction
indicating no solution.

More specifically, we run the operations until we obtain the so-called row echelon form. Let us call the first (from the left) nonzero
entry in each row the leading entry. A matrix is in row echelon form if the following conditions are satisfied:

i. The leading entry in any row is strictly to the right of the leading entry of the row above.
ii. Any zero rows are below all the nonzero rows.

iii. All leading entries are .

A matrix is in reduced row echelon form if furthermore the following condition is satisfied.

iv. All the entries above a leading entry are zero.

Note that the definition applies to matrices of any size.

The following matrices are in row echelon form. The leading entries are marked:

None of the matrices above are in reduced row echelon form. For example, in the first matrix none of the entries above the
second and third leading entries are zero; they are 9, 3, and 5. The following matrices are in reduced row echelon form. The
leading entries are marked:

[A | ],b ⃗ 

(11.3.1)
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The procedure we will describe to find a reduced row echelon form of a matrix is called Gauss-Jordan elimination. The first part of
it, which obtains a row echelon form, is called Gaussian elimination or row reduction. For some problems, a row echelon form is
sufficient, and it is a bit less work to only do this first part.

To attain the row echelon form we work systematically. We go column by column, starting at the first column. We find topmost
entry in the first column that is not zero, and we call it the pivot. If there is no nonzero entry we move to the next column. We swap
rows to put the row with the pivot as the first row. We divide the first row by the pivot to make the pivot entry be a 1. Now look at
all the rows below and subtract the correct multiple of the pivot row so that all the entries below the pivot become zero.

After this procedure we forget that we had a first row (it is now fixed), and we forget about the column with the pivot and all the
preceding zero columns. Below the pivot row, all the entries in these columns are just zero. Then we focus on the smaller matrix
and we repeat the steps above.

It is best shown by example, so let us go back to the example from the beginning of the section. We keep the vertical line in the
matrix, even though the procedure works on any matrix, not just an augmented matrix. We start with the first column and we locate
the pivot, in this case the first entry of the first column.

We multiply the first row by .

We subtract the first row from the second and third row (two elementary operations).

We are done with the first column and the first row for now. We almost pretend the matrix doesn’t have the first column and the
first row.

OK, look at the second column, and notice that now the pivot is in the third row.

We swap rows.

And we divide the pivot row by 3.
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We do not need to subtract anything as everything below the pivot is already zero. We move on, we again start ignoring the second
row and second column and focus on

We find the pivot, then divide that row by 2:

The matrix is now in row echelon form.

The equation corresponding to the last row is . We know  and we could substitute it into the first two equations to get
equations for  and . Then we could do the same thing with , until we solve for all 3 variables. This procedure is called
backsubstitution and we can achieve it via elementary operations. We start from the lowest pivot (leading entry in the row echelon
form) and subtract the right multiple from the row above to make all the entries above this pivot zero. Then we move to the next
pivot and so on. After we are done, we will have a matrix in reduced row echelon form.

We continue our example. Subtract the last row from the first to get

The entry above the pivot in the second row is already zero. So we move onto the next pivot, the one in the second row. We
subtract this row from the top row to get

The matrix is in reduced row echelon form.

If we now write down the equations for , we find

In other words, we have solved the system.

11.3.3: Non-Unique Solutions and Inconsistent Systems
It is possible that the solution of a linear system of equations is not unique, or that no solution exists. Suppose for a moment that the
row echelon form we found was

Then we have an equation  coming from the last row. That is impossible and the equations are what we call inconsistent.
There is no solution to .

On the other hand, if we find a row echelon form
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then there is no issue with finding solutions. In fact, we will find way too many. Let us continue with backsubstitution (subtracting
3 times the third row from the first) to find the reduced row echelon form and let’s mark the pivots.

The last row is all zeros; it just says  and we ignore it. The two remaining equations are

Let us solve for the variables that corresponded to the pivots, that is  and  as there was a pivot in the first column and in the
third column:

The variable  can be anything you wish and we still get a solution. The  is called a free variable. There are infinitely many
solutions, one for every choice of . If we pick , then , and  give a solution. But we also get a solution by
picking say , in which case  and , or by picking  in which case  and .

The general idea is that if any row has all zeros in the columns corresponding to the variables, but a nonzero entry in the column
corresponding to the right-hand side , then the system is inconsistent and has no solutions. In other words, the system is
inconsistent if you find a pivot on the right side of the vertical line drawn in the augmented matrix. Otherwise, the system is
consistent, and at least one solution exists.

Suppose the system is consistent (at least one solution exists):

i. If every column corresponding to a variable has a pivot element, then the solution is unique.
ii. If there are columns corresponding to variables with no pivot, then those are free variables that can be chosen arbitrarily, and

there are infinitely many solutions.

When , we have a so-called homogeneous matrix equation

There is no need to write an augmented matrix in this case. As the elementary operations do not do anything to a zero column, it
always stays a zero column. Moreover,  always has at least one solution, namely . Such a system is always
consistent. It may have other solutions: If you find any free variables, then you get infinitely many solutions.

The set of solutions of  comes up quite often so people give it a name. It is called the nullspace or the kernel of . One
place where the kernel comes up is invertibility of a square matrix . If the kernel of  contains a nonzero vector, then it contains
infinitely many vectors (there was a free variable). But then it is impossible to invert , since infinitely many vectors go to , so
there is no unique vector that  takes to . So if the kernel is nontrivial, that is, if there are any nonzero vectors in the kernel, in
other words, if there are any free variables, or in yet other words, if the row echelon form of  has columns without pivots, then 
is not invertible. We will return to this idea later.

11.3.4: Linear Independence and Rank

If rows of a matrix correspond to equations, it may be good to find out how many equations we really need to find the same set of
solutions. Similarly, if we find a number of solutions to a linear equation , we may ask if we found enough so that all other
solutions can be formed out of the given set. The concept we want is that of linear independence. That same concept is useful for
differential equations, for example in Chapter 2.

Given row or column vectors , a linear combination is an expression of the form

where  are all scalars. For example,  is a linear combination of , , and .

We have seen linear combinations before. The expression
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is a linear combination of the columns of , while

is a linear combination of the rows of .

The way linear combinations come up in our study of differential equations is similar to the following computation. Suppose that 
, , …,  are solutions to , , …, . Then the linear combination

is a solution to :

So if you have found enough solutions, you have them all. The question is, when did we find enough of them?

We say the vectors , , …,  are linearly independent if the only solution to

is . Otherwise, we say the vectors are linearly dependent.

For example, the vectors  and  are linearly independent. Let’s try:

So , and then it is clear that  as well. In other words, the two vectors are linearly independent.

If a set of vectors is linearly dependent, that is, some of the s are nonzero, then we can solve for one vector in terms of the others.
Suppose . Since , then

For example,

and so

You may have noticed that solving for those s is just solving linear equations, and so you may not be surprised that to check if a
set of vectors is linearly independent we use row reduction.

Given a set of vectors, we may not be interested in just finding if they are linearly independent or not, we may be interested in
finding a linearly independent subset. Or perhaps we may want to find some other vectors that give the same linear combinations
and are linearly independent. The way to figure this out is to form a matrix out of our vectors. If we have row vectors we consider
them as rows of a matrix. If we have column vectors we consider them columns of a matrix. The set of all linear combinations of a
set of vectors is called their span.

Given a matrix , the maximal number of linearly independent rows is called the rank of , and we write for the rank. For
example,

Ax⃗ 

A

A = (x⃗ T AT x⃗ )T

A

x⃗ 1 x⃗ 2 x⃗ n A =x⃗ 1 0⃗  A =x⃗ 2 0⃗  A =x⃗ n 0⃗ 
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The second and third row are multiples of the first one. We cannot choose more than one row and still have a linearly independent
set. But what is

That seems to be a tougher question to answer. The first two rows are linearly independent (neither is a multiple of the other), so
the rank is at least two. If we would set up the equations for the , , and , we would find a system with infinitely many
solutions. One solution is

So the set of all three rows is linearly dependent, the rank cannot be 3. Therefore the rank is 2.

But how can we do this in a more systematic way? We find the row echelon form!

The elementary row operations do not change the set of linear combinations of the rows (that was one of the main reasons for
defining them as they were). In other words, the span of the rows of the  is the same as the span of the rows of the row echelon
form of . In particular, the number of linearly independent rows is the same. And in the row echelon form, all nonzero rows are
linearly independent. This is not hard to see. Consider the two nonzero rows in the example above. Suppose we tried to solve for
the  and  in

Since the first column of the row echelon matrix has zeros except in the first row means that . For the same reason,  is
zero. We only have two nonzero rows, and they are linearly independent, so the rank of the matrix is 2.

The span of the rows is called the row space. The row space of  and the row echelon form of  are the same. In the example,

Similarly to row space, the span of columns is called the column space.

So it may also be good to find the number of linearly independent columns of . One way to do that is to find the number of
linearly independent rows of . It is a tremendously useful fact that the number of linearly independent columns is always the
same as the number of linearly independent rows:

In particular, to find a set of linearly independent columns we need to look at where the pivots were. If you recall above, when
solving  the key was finding the pivots, any non-pivot columns corresponded to free variables. That means we can solve
for the non-pivot columns in terms of the pivot columns. Let’s see an example. First we reduce some random matrix:

rank = 1.
⎡

⎣
⎢

1

2

−1

1

2

−1

1

2

−1

⎤

⎦
⎥

rank = ?
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

α1 α2 α3

[ ] −2 [ ] +[ ] = [ ] .1 2 3 4 5 6 7 8 9 0 0 0

Row echelon form of is .
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

2

1

0

3

2

0

⎤

⎦
⎥

A

A

α1 α2

[ ] + [ ] = [ ] .α1 1 2 3 α2 0 1 2 0 0 0

= 0α1 α2

A A

row space of 
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥ = span{[ ] , [ ] , [ ]}1 2 3 4 5 6 7 8 9

= span{[ ] , [ ]}.1 2 3 0 1 2

(11.3.8)

column space of  = span , , .
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

4

7

⎤

⎦
⎥
⎡

⎣
⎢

2

5

8

⎤

⎦
⎥
⎡

⎣
⎢

3

6

9

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

A

AT

 Theorem 11.3.1

rank A = rank AT

A =x⃗  0⃗ 
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We find a pivot and reduce the rows below:

We find the next pivot, make it one, and rinse and repeat:

The final matrix is the row echelon form of the matrix. Consider the pivots that we marked. The pivot columns are the first and the
third column. All other columns correspond to free variables when solving , so all other columns can be solved in terms of
the first and the third column. In other words

We could perhaps use another pair of columns to get the same span, but the first and the third are guaranteed to work because they
are pivot columns.

The discussion above could be expanded into a proof of the theorem if we wanted. As each nonzero row in the row echelon form
contains a pivot, then the rank is the number of pivots, which is the same as the maximal number of linearly independent columns.

The idea also works in reverse. Suppose we have a bunch of column vectors and we just need to find a linearly independent set. For
example, suppose we started with the vectors

These vectors are not linearly independent as we saw above. In particular, the span of  and  is the same as the span of all four
of the vectors. So  and  can both be written as linear combinations of  and . A common thing that comes up in practice is
that one gets a set of vectors whose span is the set of solutions of some problem. But perhaps we get way too many vectors, we
want to simplify. For example above, all vectors in the span of  can be written  for some
numbers . But it is also true that every such vector can be written as  for two numbers  and . And one
has to admit, that looks much simpler. Moreover, these numbers  and  are unique. More on that in the next section.

To find this linearly independent set we simply take our vectors and form the matrix , that is, the matrix

We crank up the row-reduction machine, feed this matrix into it, find the pivot columns, and pick those. In this case,  and .

11.3.5: Computing the Inverse

If the matrix  is square and there exists a unique solution  to  for any  (there are no free variables), then  is invertible.
This is equivalent to the  matrix  being of rank .

In particular, if  then . Now we just need to compute what  is. We can surely do elimination every time we
want to find , but that would be ridiculous. The mapping  is linear and hence given by a matrix, and we have seen that to

.
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥

→ → .
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥

⎡

⎣
⎢

1

0

3

2

0

6

3

−1

7

4

−2

8

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

2

0

0

3

−1

−2

4

−2

−4

⎤

⎦
⎥

→ → .
⎡

⎣
⎢⎢

1

0

0

2

0

0

3

-1

−2

4

−2

−4

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

2

0

0

3

1

−2

4

2

−4

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

2

0

0

3

1

0

4

2

0

⎤

⎦
⎥⎥

A =x⃗  0⃗ 

column space of  = span , , , = span , .
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

2

4

6

⎤

⎦
⎥
⎡

⎣
⎢

3

5

7

⎤

⎦
⎥
⎡

⎣
⎢

4

6

8

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

3

5

7

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

= , = , = , = .v ⃗ 1
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥ v ⃗ 2

⎡

⎣
⎢

2

4

6

⎤

⎦
⎥ v ⃗ 3

⎡

⎣
⎢

3

5

7

⎤

⎦
⎥ v ⃗ 4

⎡

⎣
⎢

4

6

8

⎤

⎦
⎥

v ⃗ 1 v ⃗ 3
v ⃗ 2 v ⃗ 4 v ⃗ 1 v ⃗ 3

, , ,v ⃗ 1 v ⃗ 2 v ⃗ 3 v ⃗ 4 + + +α1v ⃗ 1 α2v ⃗ 2 α3v ⃗ 3 α4v ⃗ 4
, , ,α1 α2 α3 α4 a +bv ⃗ 1 v ⃗ 3 a b

a b

[       ]v ⃗ 1 v ⃗ 2 v ⃗ 3 v ⃗ 4

.
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥

v ⃗ 1 v ⃗ 3

A x⃗  A =x⃗  b ⃗  b ⃗  A

n ×n A n

A =x⃗  b ⃗  =x⃗  A−1b ⃗  A−1

A−1b ⃗  A−1
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figure out the matrix we just need to find where  takes the standard basis vectors , , …, .

That is, to find the first column of , we solve , because then . To find the second column of , we solve
. And so on. It is really just  eliminations that we need to do. But it gets even easier. If you think about it, the elimination

is the same for everything on the left side of the augmented matrix. Doing  eliminations separately we would redo most of the
computations. Best is to do all at once.

Therefore, to find the inverse of , we write an  augmented matrix , where  is the identity matrix, whose columns
are precisely the standard basis vectors. We then perform row reduction until we arrive at the reduced row echelon form. If  is
invertible, then pivots can be found in every column of , and so the reduced row echelon form of  looks like .
We then just read off the inverse . If you do not find a pivot in every one of the first  columns of the augmented matrix, then 

 is not invertible.

This is best seen by example. Suppose we wish to invert the matrix

We write the augmented matrix and we start reducing:

So

Not too terrible, no? Perhaps harder than inverting a  matrix for which we had a simple formula, but not too bad. Really in
practice this is done efficiently by a computer.

11.3.6: Footnotes
[1] Although perhaps we have this backwards, quite often we solve a linear system of equations to find out something about
matrices, rather than vice versa.

11.3: A.3- Elimination is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

A−1 e ⃗ 1 e ⃗ 2 e ⃗ n

A−1 A =x⃗  e ⃗ 1 =A−1e ⃗ 1 x⃗  A−1

A =x⃗  e ⃗ 2 n

n

A n ×2n [ A | I ] I

A

A [ A | I ] [ I |  ]A−1

A−1 n

A

.
⎡

⎣
⎢

1

2

3

2

0

1

3

1

0

⎤

⎦
⎥

→

→

→

→

⎡

⎣

⎢⎢

1

2

3

2

0

1

3

1

0

1

0

0

0

1

0

0

0

1

⎤

⎦

⎥⎥

→

⎡

⎣

⎢⎢⎢

1

0

0

2

1

−5

3
5
4

−9

1
1
2

−3

0
1
4

0

0

0

1

⎤

⎦

⎥⎥⎥

→

⎡

⎣

⎢⎢⎢

1

0

0

2

1

0

3
5
4

1

1
1
2

2
11

0
1
4

5
11

0

0
−4

11

⎤

⎦

⎥⎥⎥

.

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

0

0

1

−1
11

3
11

2
11

3
11
−9

11

5
11

2
11

5
11

−4
11

⎤

⎦

⎥⎥⎥

→

⎡

⎣

⎢⎢

1

0

0

2

−4

−5

3

−5

−9

1

−2

−3

0

1

0

0

0

1

⎤

⎦

⎥⎥

→

⎡

⎣

⎢⎢⎢

1

0

0

2

1

0

3
5
4

−11
4

1
1
2

−1
2

0
1
4

−5
4

0

0

1

⎤

⎦

⎥⎥⎥

→

⎡

⎣

⎢
⎢⎢

1

0

0

2

1

0

0

0

1

5
11

3
11

2
11

−5

11
−9
11

5
11

12
11

5
11

−4

11

⎤

⎦

⎥
⎥⎥

(11.3.9)

= .
⎡

⎣
⎢

1

2

3

2

0

1

3

1

0

⎤

⎦
⎥

−1 ⎡

⎣

⎢⎢⎢

−1
11

3
11

2
11

3
11

−9
11

5
11

2
11

5
11

−4
11

⎤

⎦

⎥⎥⎥

2 ×2
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11.4: A.4- Subspaces, Dimension, and The Kernel

11.4.1: Subspaces, Basis, and Dimension

We often find ourselves looking at the set of solutions of a linear equation  for some matrix , that is, we are interested in
the kernel of . The set of all such solutions has a nice structure: It looks and acts a lot like some euclidean space .

We say that a set  of vectors in  is a subspace if whenever  and  are members of  and  is a scalar, then

are also members of . That is, we can add and multiply by scalars and we still land in . So every linear combination of vectors
of  is still in . That is really what a subspace is. It is a subset where we can take linear combinations and still end up being in the
subset. Consequently the span of a number of vectors is automatically a subspace.

If we let , then this  is a subspace of . Adding any two vectors in  gets a vector in , and so does multiplying
by scalars.

The set , that is, the set of the zero vector by itself, is also a subspace of . There is only one vector in this
subspace, so we only need to verify the definition for that one vector, and everything checks out:  and .

The set  of all the vectors of the form  for any real number , such as , , or  is a subspace of 
. Adding two such vectors, say  again gets a vector of the same form, and so does multiplying by a

scalar, say .

If  is a subspace and we can find  linearly independent vectors in 

such that every other vector in  is a linear combination of , then the set  is called a basis of . In
other words,  is the span of . We say that  has dimension , and we write

If  is a subspace and  is not the trivial subspace , then there exists a unique positive integer  (the dimension) and
a (not unique) basis , such that every  in  can be uniquely represented by

for some scalars , , …, .

Just as a vector in  is represented by a -tuple of numbers, so is a vector in a -dimensional subspace of  represented by a -
tuple of numbers. At least once we have fixed a basis. A different basis would give a different -tuple of numbers for the same
vector.

We should reiterate that while  is unique (a subspace cannot have two different dimensions), the set of basis vectors is not at all
unique. There are lots of different bases for any given subspace. Finding just the right basis for a subspace is a large part of what
one does in linear algebra. In fact, that is what we spend a lot of time on in linear differential equations, although at first glance it
may not seem like that is what we are doing.

The standard basis

L =x⃗  0⃗  L

L R
k

S R
n x⃗  y ⃗  S α

+ , and αx⃗  y ⃗  x⃗ 

S S

S S

 Example 11.4.1

S = R
n S R

n
R

n
R

n

= { }S ′ 0⃗  R
n

+ =0⃗  0⃗  0⃗  α =0⃗  0⃗ 

S ′′ (a, a) a (1, 1) (3, 3) (−0.5, −0.5)

R
2 (1, 1) +(3, 3) = (4, 4)

8(1, 1) = (8, 8)

S k S

, , … , ,v ⃗ 1 v ⃗ 2 v ⃗ k

S , , … ,v ⃗ 1 v ⃗ 2 v ⃗ k { , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k S

S { , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k S k

dim S = k.

 Theorem 11.4.1

S ⊂ R
n S { }0⃗  k

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k w⃗  S

= + +⋯ + ,w⃗  α1v ⃗ 1 α2v ⃗ 2 αkv ⃗ k

α1 α2 αk

R
k k k R

n k

k

k

 Example 11.4.2

, , … , ,e ⃗ 1 e ⃗ 2 e ⃗ n
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is a basis of , (hence the name). So as expected

On the other hand the subspace  is of dimension .

The subspace  from Example , that is, the set of vectors , is of dimension 1. One possible basis is simply 
, the single vector : every vector in  can be represented by . Similarly another possible basis

would be . Then the vector  would be represented as .

Row and column spaces of a matrix are also examples of subspaces, as they are given as the span of vectors. We can use what we
know about rank, row spaces, and column spaces from the previous section to find a basis.

In the last section, we considered the matrix

Using row reduction to find the pivot columns, we found

What we did was we found the basis of the column space. The basis has two elements, and so the column space of  is two
dimensional. Notice that the rank of  is two.

We would have followed the same procedure if we wanted to find the basis of the subspace  spanned by

We would have simply formed the matrix  with these vectors as columns and repeated the computation above. The subspace  is
then the column space of .

Consider the matrix

Conveniently, the matrix is in reduced row echelon form. The matrix is of rank 3. The column space is the span of the pivot
columns. It is the 3-dimensional space

The row space is the 3-dimensional space

As these vectors have 5 components, we think of the row space of  as a subspace of .

R
n

dim = n.R
n

{ }0⃗  0

S ′′ 11.4.1 (a, a)

{(1, 1)} (1, 1) S ′′ a(1, 1) = (a, a)

{(−1, −1)} (a, a) (−a)(1, 1)

 Example 11.4.3

A = .
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥

column space of A = span , .
⎛

⎝
⎜
⎡

⎣
⎢

1

2

3

2

4

6

3

5

7

4

6

8

⎤

⎦
⎥
⎞

⎠
⎟

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

3

5

7

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

A

A

X

, , , .
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

2

4

6

⎤

⎦
⎥
⎡

⎣
⎢

3

5

7

⎤

⎦
⎥
⎡

⎣
⎢

4

6

8

⎤

⎦
⎥

A X

A

 Example 11.4.4

L = .
⎡

⎣
⎢

1

0

0

2

0

0

0

1

0

0

0

1

3

4

5

⎤

⎦
⎥

column space of L = span , , = .

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥
⎡

⎣
⎢

0

0

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
R

3

row space of L = span{[ ] , [ ] , [ ]}.1 2 0 0 3 0 0 1 0 4 0 0 0 1 5

L R
5
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The way the dimensions worked out in the examples is not an accident. Since the number of vectors that we needed to take was
always the same as the number of pivots, and the number of pivots is the rank, we get the following result.

Rank

The dimension of the column space and the dimension of the row space of a matrix  are both equal to the rank of .

11.4.2: Kernel

The set of solutions of a linear equation , the kernel of , is a subspace: If  and  are solutions, then

So  and  are solutions. The dimension of the kernel is called the nullity of the matrix.

The same sort of idea governs the solutions of linear differential equations. We try to describe the kernel of a linear differential
operator, and as it is a subspace, we look for a basis of this kernel. Much of this book is dedicated to finding such bases.

The kernel of a matrix is the same as the kernel of its reduced row echelon form. For a matrix in reduced row echelon form, the
kernel is rather easy to find. If a vector  is applied to a matrix , then each entry in  corresponds to a column of , the column
that the entry multiplies. To find the kernel, pick a non-pivot column make a vector that has a  in the entry corresponding to this
non-pivot column and zeros at all the other entries corresponding to the other non-pivot columns. Then for all the entries
corresponding to pivot columns make it precisely the value in the corresponding row of the non-pivot column to make the vector be
a solution to . This procedure is best understood by example.

Consider

This matrix is in reduced row echelon form, the pivots are marked. There are two non-pivot columns, so the kernel has
dimension 2, that is, it is the span of 2 vectors. Let us find the first vector. We look at the first non-pivot column, the 
column, and we put a  in the  entry of our vector. We put a  in the  entry as the  column is also a non-pivot
column:

Let us fill the rest. When this vector hits the first row, we get a  and  times whatever the first question mark is. So make the
first question mark . For the second and third rows, it is sufficient to make it the question marks zero. We are really filling in
the non-pivot column into the remaining entries. Let us check while marking which numbers went where:

Yay! How about the second vector. We start with

 Theorem 11.4.2

A A

L =x⃗  0⃗  L x⃗  y ⃗ 

L( + ) = L +L = + = , and L(α ) = αL = α = .x⃗  y ⃗  x⃗  y ⃗  0⃗  0⃗  0⃗  x⃗  x⃗  0⃗  0⃗ 

+x⃗  y ⃗  αx⃗ 

x⃗  L x⃗  L

−1

L =x⃗  0⃗ 

 Example 11.4.5

L = .

⎡

⎣

⎢⎢

1

0

0

2

0

0

0

1

0

0

0

1

3
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5

⎤
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0

0

0

⎤
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⎥⎥⎥⎥⎥
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⎣
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0

0
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We set the first question mark to 3, the second to 4, and the third to 5. Let us check, marking things as previously,

There are two non-pivot columns, so we only need two vectors. We have found the basis of the kernel. So,

What we did in finding a basis of the kernel is we expressed all solutions of  as a linear combination of some given vectors.

The procedure to find the basis of the kernel of a matrix :

i. Find the reduced row echelon form of .
ii. Write down the basis of the kernel as above, one vector for each non-pivot column.

The rank of a matrix is the dimension of the column space, and that is the span on the pivot columns, while the kernel is the span of
vectors one for each non-pivot column. So the two numbers must add to the number of columns.

Rank-Nullity

If a matrix  has  columns, rank , and nullity  (dimension of the kernel), then

The theorem is immensely useful in applications. It allows one to compute the rank  if one knows the nullity  and vice versa,
without doing any extra work.

Let us consider an example application, a simple version of the so-called Fredholm alternative. A similar result is true for
differential equations. Consider

where  is a square  matrix. There are then two mutually exclusive possibilities:

i. A nonzero solution  to  exists.
ii. The equation  has a unique solution  for every .

How does the Rank–Nullity theorem come into the picture? Well, if  has a nonzero solution  to , then the nullity  is
positive. But then the rank  must be less than . It means that the column space of  is of dimension less than , so it is
a subspace that does not include everything in . So  has to contain some vector  not in the column space of . In fact, most
vectors in  are not in the column space of .

⎡

⎣

⎢⎢⎢⎢⎢⎢

?

0

?

?

−1.

⎤

⎦

⎥⎥⎥⎥⎥⎥
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⎤
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⎥⎥⎥⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

kernel of L = span ,

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢⎢⎢

2

−1

0

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

3

0

4

5

−1

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎫

⎭

⎬
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⎪⎪⎪⎪⎪⎪

L =x⃗  0⃗ 

L

L

 Theorem 11.4.3

A n r k

n = r +k.

r k

A = ,x⃗  b ⃗ 

A n ×n

x⃗  A =x⃗  0⃗ 

A =x⃗  b ⃗  x⃗  b ⃗ 

A x⃗  A =x⃗  0⃗  k

r = n −k n A n

R
n

R
n b ⃗  A

R
n A
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11.5: A.5- Inner Product and Projections

11.5.1: Inner Product and Orthogonality

To do basic geometry, we need length, and we need angles. We have already seen the euclidean length, so let us figure out how to
compute angles. Mostly, we are worried about the right angle .

Given two (column) vectors in , we define the (standard) inner product as the dot product:

Why do we seemingly give a new notation for the dot product? Because there are other possible inner products, which are not the
dot product, although we will not worry about others here. An inner product can even be defined on spaces of functions as we do in
Chapter 4:

But we digress.

The inner product satisfies the following rules:

i. , and  if and only if ,
ii. ,

iii. ,
iv.  and .

Anything that satisfies the properties above can be called an inner product, although in this section we are concerned with the
standard inner product in .

The standard inner product gives the euclidean length:

How does it give angles?

You may recall from multivariable calculus, that in two or three dimensions, the standard inner product (the dot product) gives you
the angle between the vectors:

That is,  is the angle that  and  make when they are based at the same point.

In  (any dimension), we are simply going to say that  from the formula is what the angle is. This makes sense as any two
vectors based at the origin lie in a 2-dimensional plane (subspace), and the formula works in 2 dimensions. In fact, one could even
talk about angles between functions this way, and we do in Chapter 4, where we talk about orthogonal functions (functions at right
angle to each other).

To compute the angle we compute

Our angles are always in radians. We are computing the cosine of the angle, which is really the best we can do. Given two vectors
at an angle , we can give the angle as , , etc., see Figure . Fortunately, . If we
solve for  using the inverse cosine , we can just decree that .

1

R
n

⟨ , ⟩ = ⋅ = = + +⋯ + = .x⃗  y ⃗  x⃗  y ⃗  y ⃗ T x⃗  x1y1 x2y2 xnyn ∑
i=1

n

xiyi

⟨f(t), g(t)⟩ = f(t)g(t)dt.∫
b

a

⟨ , ⟩ ≥ 0x⃗  x⃗  ⟨ , ⟩ = 0x⃗  x⃗  = 0x⃗ 
⟨ , ⟩ = ⟨ , ⟩x⃗  y ⃗  y ⃗  x⃗ 
⟨a , ⟩ = ⟨ , a ⟩ = a⟨ , ⟩x⃗  y ⃗  x⃗  y ⃗  x⃗  y ⃗ 
⟨ + , ⟩ = ⟨ , ⟩+ ⟨ , ⟩x⃗  y ⃗  z ⃗  x⃗  z ⃗  y ⃗  z ⃗  ⟨ , + ⟩ = ⟨ , ⟩+ ⟨ , ⟩x⃗  y ⃗  z ⃗  x⃗  y ⃗  x⃗  z ⃗ 

R
n

∥ ∥ = = .x⃗  ⟨ , ⟩x⃗  x⃗ 
− −−−−

√ + +⋯ +x2
1 x2

2 x2
n

− −−−−−−−−−−−−−−
√

⟨ , ⟩ = ∥ ∥∥ ∥ cosθ.x⃗  y ⃗  x⃗  y ⃗ 

θ x⃗  y ⃗ 

R
n θ

cosθ = .
⟨ , ⟩x⃗  y ⃗ 

∥ ∥∥ ∥x⃗  y ⃗ 

θ −θ 2π−θ 11.5.1 cosθ = cos(−θ) = cos(2π−θ)
θ cos−1 0 ≤ θ ≤ π
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Figure : Angle between vectors.

Let us compute the angle between the vectors  and  in the plane. Compute

Therefore .

As we said, the most important angle is the right angle. A right angle is  radians, and , so the formula is particularly
easy in this case. We say vectors  and  are orthogonal if they are at right angles, that is if

The vectors  and  are orthogonal. So are  and . However,  and  are not orthogonal as
their inner product is  and not .

11.5.2: Orthogonal Projection
A typical application of linear algebra is to take a difficult problem, write everything in the right basis, and in this new basis the
problem becomes simple. A particularly useful basis is an orthogonal basis, that is a basis where all the basis vectors are
orthogonal. When we draw a coordinate system in two or three dimensions, we almost always draw our axes as orthogonal to each
other.

Generalizing this concept to functions, it is particularly useful in Chapter 4 to express a function using a particular orthogonal basis,
the Fourier series.

To express one vector in terms of an orthogonal basis, we need to first project one vector onto another. Given a nonzero vector ,
we define the orthogonal projection of  onto  as

For the geometric idea, see Figure . That is, we find the "shadow of " on the line spanned by  if the direction of the sun’s
rays were exactly perpendicular to the line. Another way of thinking about it is that the tip of the arrow of  is the closest
point on the line spanned by  to the tip of the arrow of . In terms of euclidean distance,  minimizes the distance 

 among all vectors  that are multiples of . Because of this, this projection comes up often in applied mathematics in all
sorts of contexts we cannot solve a problem exactly: We can’t always solve "Find  as a multiple of " but  is the best
"solution."

Figure : Orthogonal projection.

The formula follows from basic trigonometry. The length of  should be  times the length of , that is .
We take the unit vector in the direction of , that is,  and we multiply it by the length of the projection. In other words,

11.5.1

 Example 11.5.1

(3, 0) (1, 1)

cosθ = = = .
⟨(3, 0), (1, 1)⟩

∥(3, 0)∥∥(1, 1)∥
3 +0

3 2
–√

1

2
–√

θ = π

4

π

2 cos( ) = 0π

2
x⃗  y ⃗ 

⟨ , ⟩ = 0.x⃗  y ⃗ 

(1, 0, 0, 1) (1, 2, 3, −1) (1, 1) (1, −1) (1, 1) (1, 2)
3 0

v ⃗ 
w⃗  v ⃗ 

( ) =( ) .projv ⃗  w⃗ 
⟨ , ⟩w⃗  v ⃗ 

⟨ , ⟩v ⃗  v ⃗ 
v ⃗ 

11.5.2 w⃗  v ⃗ 
( )projv ⃗  w⃗ 

v ⃗  w⃗  = ( )u⃗  projv ⃗  w⃗ 
∥ − ∥w⃗  u⃗  u⃗  v ⃗ 

w⃗  v ⃗  ( )projv ⃗  w⃗ 

11.5.2

( )projv ⃗  w⃗  cosθ w⃗  (cosθ)∥ ∥w⃗ 

v ⃗  v ⃗ 

∥ ∥v ⃗ 

( ) = (cosθ)∥ ∥ = = .projv ⃗  w⃗  w⃗ 
v ⃗ 

∥ ∥v ⃗ 
(cosθ)∥ ∥∥ ∥w⃗  v ⃗ 

∥ ∥v ⃗  2 v ⃗ 
⟨ , ⟩w⃗  v ⃗ 

⟨ , ⟩v ⃗  v ⃗ 
v ⃗ 
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Suppose we wish to project the vector  onto the vector . Compute

Let us double check that the projection is orthogonal. That is  ought to be orthogonal to , see the right angle in
Figure . That is,

ought to be orthogonal to . We compute the inner product and we had better get zero:

11.5.3: Orthogonal Basis
As we said, a basis  is an orthogonal basis if all vectors in the basis are orthogonal to each other, that is, if

for all choices of  and  where  (a nonzero vector cannot be orthogonal to itself). A basis is furthermore called an
orthonormal basis if all the vectors in a basis are also unit vectors, that is, if all the vectors have magnitude 1. For example, the
standard basis  is an orthonormal basis of : Any pair is orthogonal, and each vector is of unit
magnitude.

The reason why we are interested in orthogonal (or orthonormal) bases is that they make it really simple to represent a vector (or a
projection onto a subspace) in the basis. The simple formula for the orthogonal projection onto a vector gives us the coefficients. In
Chapter 4, we use the same idea by finding the correct orthogonal basis for the set of solutions of a differential equation. We are
then able to find any particular solution by simply applying the orthogonal projection formula, which is just a couple of a inner
products.

Let us come back to linear algebra. Suppose that we have a subspace and an orthogonal basis . We wish to express 
in terms of the basis. If  is not in the span of the basis (when it is not in the given subspace), then of course it is not possible, but
the following formula gives us at least the orthogonal projection onto the subspace, or in other words, the best approximation in the
subspace.

First suppose that  is in the span. Then it is the sum of the orthogonal projections:

In other words, if we want to write , then

Another way to derive this formula is to work in reverse. Suppose that . Take an inner product with
, and use the properties of the inner product:

As the basis is orthogonal, then  whenever . That means that only one of the terms, the  one, on the right hand
side is nonzero and we get

 Example 11.5.2

(3, 2, 1) (1, 2, 3)

((3, 2, 1)) = (1, 2, 3)proj(1,2,3)
⟨(3, 2, 1), (1, 2, 3)⟩
⟨(1, 2, 3), (1, 2, 3)⟩

= (1, 2, 3)
3 ⋅ 1 +2 ⋅ 2 +1 ⋅ 3
1 ⋅ 1 +2 ⋅ 2 +3 ⋅ 3

= (1, 2, 3) =( , , ) .
10
14

5
7

10
7

15
7

(11.5.1)

− ( )w⃗  projv ⃗  w⃗  v ⃗ 
11.5.2

(3, 2, 1) − ((3, 2, 1)) =(3 − , 2 − , 1 − ) =( , , )proj(1,2,3)
5
7

10
7

15
7

16
7

4
7

−8
7

(1, 2, 3)

⟨( , , ) , (1, 2, 3)⟩ = ⋅ 1 + ⋅ 2 − ⋅ 3 = 0.
16
7

4
7

−8
7

16
7

4
7

8
7

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ n

⟨ , ⟩ = 0v ⃗ j v ⃗ k

j k j≠ k

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} R
3

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ n x⃗ 
x⃗ 

x⃗ 

= ( ) + ( ) +⋯ + ( ) = + +⋯ + .x⃗  projv ⃗ 1 x⃗  projv ⃗ 2 x⃗  projv ⃗ n x⃗ 
⟨ , ⟩x⃗  v ⃗ 1
⟨ , ⟩v ⃗ 1 v ⃗ 1

v ⃗ 1
⟨ , ⟩x⃗  v ⃗ 2
⟨ , ⟩v ⃗ 2 v ⃗ 2

v ⃗ 2
⟨ , ⟩x⃗  v ⃗ n
⟨ , ⟩v ⃗ n v ⃗ n

v ⃗ n

= + +⋯ +x⃗  a1v ⃗ 1 a2v ⃗ 2 anv ⃗ n

= , = , … , = .a1
⟨ , ⟩x⃗  v ⃗ 1
⟨ , ⟩v ⃗ 1 v ⃗ 1

a2
⟨ , ⟩x⃗  v ⃗ 2
⟨ , ⟩v ⃗ 2 v ⃗ 2

an
⟨ , ⟩x⃗  v ⃗ n
⟨ , ⟩v ⃗ n v ⃗ n

= + +⋯ +x⃗  a1v ⃗ 1 a2v ⃗ 2 anv ⃗ n
v ⃗ j

⟨ , ⟩x⃗  v ⃗ j = ⟨ + +⋯ + , ⟩a1v ⃗ 1 a2v ⃗ 2 anv ⃗ n v ⃗ j
= ⟨ , ⟩+ ⟨ , ⟩+⋯ + ⟨ , ⟩.a1 v ⃗ 1 v ⃗ j a2 v ⃗ 2 v ⃗ j an v ⃗ n v ⃗ j

(11.5.2)

⟨ , ⟩ = 0v ⃗ k v ⃗ j k ≠ j jth
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Solving for  we find  as before.

The vectors  and  form an orthogonal basis of . Suppose we wish to represent  in terms of this basis, that
is, we wish to find  and  such that

We compute:

So

If the basis is orthonormal rather than orthogonal, then all the denominators are one. It is easy to make a basis orthonormal—divide
all the vectors by their size. If you want to decompose many vectors, it may be better to find an orthonormal basis. In the example
above, the orthonormal basis we would thus create is

Then the computation would have been

Maybe the example is not so awe inspiring, but given vectors in  rather than , then surely one would much rather do 20 inner
products (or 40 if we did not have an orthonormal basis) rather than solving a system of twenty equations in twenty unknowns
using row reduction of a  matrix.

As we said above, the formula still works even if  is not in the subspace, although then it does not get us the vector  but its
projection. More concretely, suppose that  is a subspace that is the span of  and  is any vector. Let  be the
vector in  that is the closest to . Then

Of course, if  is in , then , as the closest vector in  to  is  itself. But true utility is obtained when  is not in .
In much of applied mathematics, we cannot find an exact solution to a problem, but we try to find the best solution out of a small
subset (subspace). The partial sums of Fourier series from Chapter 4 are one example. Another example is least square
approximation to fit a curve to data. Yet another example is given by the most commonly used numerical methods to solve partial
differential equations, the finite element methods.

The vectors  and  are orthogonal, and so they are an orthogonal basis of a subspace :

Let us find the vector in  that is closest to . That is, let us find .

⟨ , ⟩ = ⟨ , ⟩.x⃗  v ⃗ j aj v ⃗ j v ⃗ j

aj =aj
⟨ , ⟩x ⃗ v ⃗ j
⟨ , ⟩v ⃗ j v ⃗ j

 Example 11.5.3

(1, 1) (1, −1) R
2 (3, 4)

a1 a2

(3, 4) = (1, 1) + (1, −1).a1 a2

= = , = = .a1
⟨(3, 4), (1, 1)⟩
⟨(1, 1), (1, 1)⟩

7
2

a2
⟨(3, 4), (1, −1)⟩

⟨(1, −1), (1, −1)⟩
−1
2

(3, 4) = (1, 1) + (1, −1).
7
2

−1
2

( , ) , ( , ) .
1

2
–√

1

2
–√

1

2
–√

−1

2
–√

(3, 4) =⟨(3, 4),( , )⟩( , )+⟨(3, 4),( , )⟩( , )
1

2–√

1

2–√

1

2–√

1

2–√

1

2–√

−1

2–√

1

2–√

−1

2–√

= ( , )+ ( , ) .
7

2
–√

1

2
–√

1

2
–√

−1

2
–√

1

2
–√

−1

2
–√

(11.5.3)

R
20

R
2

20 ×21

x⃗  x⃗ 
S , , … ,v ⃗ 1 v ⃗ 2 v ⃗ n x⃗  ( )projS x⃗ 

S x⃗ 

( ) = + +⋯ + .projS x⃗ 
⟨ , ⟩x⃗  v ⃗ 1
⟨ , ⟩v ⃗ 1 v ⃗ 1

v ⃗ 1
⟨ , ⟩x⃗  v ⃗ 2
⟨ , ⟩v ⃗ 2 v ⃗ 2

v ⃗ 2
⟨ , ⟩x⃗  v ⃗ n
⟨ , ⟩v ⃗ n v ⃗ n

v ⃗ n

x⃗  S ( ) =projS x⃗  x⃗  S x⃗  x⃗  x⃗  S

 Example 11.5.4

(1, 2, 3) (3, 0, −1) S

S = span{(1, 2, 3), (3, 0, −1)}.

S (2, 1, 0) ((2, 1, 0))projS
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11.5.4: Gram–Schmidt Process

Before leaving orthogonal bases, let us note a procedure for manufacturing them out of any old basis. It may not be difficult to
come up with an orthogonal basis for a 2-dimensional subspace, but for a 20-dimensional subspace, it seems a daunting task.
Fortunately, the orthogonal projection can be used to "project away" the bits of the vectors that are making them not orthogonal. It
is called the Gram-Schmidt process.

We start with a basis of vectors . We construct an orthogonal basis  as follows.

What we do is at the  step, we take  and we subtract the projection of  to the subspace spanned by .

Consider the vectors , and  and call  the span of the two vectors. Let us find an orthogonal basis of :

So  and  span  and are orthogonal. Let us check: .

Suppose we wish to find an orthonormal basis, not just an orthogonal one. Well, we simply make the vectors into unit vectors
by dividing them by their magnitude. The two vectors making up the orthonormal basis of  are:

11.5.5: Footnotes
[1] When Euclid defined angles in his Elements, the only angle he ever really defined was the right angle.
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((2, 1, 0))projS = (1, 2, 3) + (3, 0, −1)
⟨(2, 1, 0), (1, 2, 3)⟩
⟨(1, 2, 3), (1, 2, 3)⟩

⟨(2, 1, 0), (3, 0, −1)⟩
⟨(3, 0, −1), (3, 0, −1)⟩

= (1, 2, 3) + (3, 0, −1)
2
7

3
5

=( , , ) .
73
35

4
7

9
35

(11.5.4)

, , … ,v ⃗ 1 v ⃗ 2 v ⃗ n , , … ,w⃗ 1 w⃗ 2 w⃗ n

w⃗ 1
w⃗ 2
w⃗ 3
w⃗ 4

w⃗ n

= ,v ⃗ 1
= − ( ),v ⃗ 2 projw ⃗ 1 v ⃗ 2
= − ( ) − ( ),v ⃗ 3 projw ⃗ 1 v ⃗ 3 projw ⃗ 2 v ⃗ 3
= − ( ) − ( ) − ( ),v ⃗ 4 projw ⃗ 1 v ⃗ 4 projw ⃗ 2 v ⃗ 4 projw ⃗ 3 v ⃗ 4

⋮
= − ( ) − ( ) −⋯ − ( ).v ⃗ n projw ⃗ 1 v ⃗ n projw ⃗ 2 v ⃗ n projw ⃗ n−1

v ⃗ n

(11.5.5)

kth v ⃗ k v ⃗ k , , … ,w⃗ 1 w⃗ 2 w⃗ k−1

 Example 11.5.5

(1, 2, −1) (0, 5, −2) S S

w⃗ 1
w⃗ 2

= (1, 2, −1),
= (0, 5, −2) − ((0, 2, −2))proj(1,2,−1)

= (0, 1, −1) − (1, 2, −1) = (0, 5, −2) −2(1, 2, −1) = (−2, 1, 0).
⟨(0, 5, −2), (1, 2, −1)⟩
⟨(1, 2, −1), (1, 2, −1)⟩

(11.5.6)

(1, 2, −1) (−2, 1, 0) S ⟨(1, 2, −1), (−2, 1, 0)⟩ = 0

S

(1, 2, −1) =( , , ) , (−2, 1, 0) =( , , 0) .
1

6
–√

1

6
–√

2

6
–√

−1

6
–√

1

5
–√

−2

5
–√

1

5
–√
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11.6: A.6- Determinant
For square matrices we define a useful quantity called the determinant. Define the determinant of a  matrix as the value of its
only entry

For a  matrix, define

Before defining the determinant for larger matrices, we note the meaning of the determinant. An  matrix gives a mapping of
the -dimensional euclidean space  to itself. So a  matrix  is a mapping of the plane to itself. The determinant of  is the
factor by which the area of objects changes. If we take the unit square (square of side 1) in the plane, then  takes the square to a
parallelogram of area . The sign of  denotes a change of orientation (negative if the axes get flipped). For example,
let

Then . Let us see where  sends the unit square—the square with vertices , , , and .
The point  gets sent to .

The image of the square is another square with vertices , , , and . The image square has a side of length 
, and it is therefore of area . See Figure .

Figure : Image of the unit square via the mapping .

In general, the image of a square is going to be a parallelogram. In high school geometry, you may have seen a formula for
computing the area of a with vertices , ,  and . The area is

The vertical lines above mean absolute value. The matrix  carries the unit square to the given parallelogram.

There are a number of ways to define the determinant for an  matrix. Let us use the so-called cofactor expansion. We define 
 as the matrix  with the  row and the  column deleted. For example, if

We now define the determinant recursively

or in other words

1 ×1

det ([ ]) a.a =
def

2 ×2

det([ ]) ad−bc.
a

c

b

d
=
def

n×n

n R
n 2 ×2 A A

A

|det(A)| det(A)

A = [ ] .
1

−1

1

1

det(A) = 1 +1 = 2 A (0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 0)

[ ][ ] = [ ] , [ ][ ] = [ ] , [ ][ ] = [ ] .
1

−1

1

1

1

0

1

−1

1

−1

1

1

0

1

1

1

1

−1

1

1

1

1

2

0

(0, 0) (1, −1) (1, 1) (2, 0)
2
–

√ 2 11.6.1

11.6.1 A

(0, 0) (a, c) (b, d) (a+b, c+d)

det([ ]) = |ad−bc|.
∣

∣
∣

a

c

b

d

∣

∣
∣

[ ]a
c
b
d

n×n

Aij A ith jth

If A = , then = [ ] and = [ ] .
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥ A12

4

7

6

9
A23

1

7

2

8

det(A) det( ),=
def ∑

j=1

n

(−1)1+ja1j A1j
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For a  matrix, we get . For example,

It turns out that we did not have to necessarily use the first row. That is for any ,

It is sometimes useful to use a row other than the first. In the following example it is more convenient to expand along the second
row. Notice that for the second row we are starting with a negative sign.

Let us check if it is really the same as expanding along the first row,

In computing the determinant, we alternately add and subtract the determinants of the submatrices  multiplied by  for a fixed 
 and all . The numbers  are called cofactors of the matrix. And that is why this method of computing the

determinant is called the cofactor expansion.

Similarly we do not need to expand along a row, we can expand along a column. For any ,

A related fact is that

A matrix is upper triangular if all elements below the main diagonal are . For example,

is upper triangular. Similarly a lower triangular matrix is one where everything above the diagonal is zero. For example,

The determinant for triangular matrices is very simple to compute. Consider the lower triangular matrix. If we expand along the
first row, we find that the determinant is 1 times the determinant of the lower triangular matrix . So the deteriminant is just
the product of the diagonal entries:

det(A) = det( ) − det( ) + det( ) −⋯{a11 A11 a12 A12 a13 A13
+ det( )a1n A1n

− det( )a1n A1n

if n is odd,
if n even.

3 ×3 det(A) = det( ) − det( ) + det( )a11 A11 a12 A12 a13 A13

det
⎛

⎝
⎜
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥
⎞

⎠
⎟ = 1 ⋅ det([ ])−2 ⋅ det([ ])+3 ⋅ det([ ])

5

8

6

9

4

7

6

9

4

7

5

8

= 1(5 ⋅ 9 −6 ⋅ 8) −2(4 ⋅ 9 −6 ⋅ 7) +3(4 ⋅ 8 −5 ⋅ 7) = 0.

(11.6.1)

i

det(A) = det( ).∑
j=1

n

(−1)
i+j

aij Aij

det
⎛

⎝
⎜
⎡

⎣
⎢

1

0

7

2

5

8

3

0

9

⎤

⎦
⎥
⎞

⎠
⎟ = −0 ⋅ det([ ])+5 ⋅ det([ ])−0 ⋅ det([ ])

2

8

3

9

1

7

3

9

1

7

2

8

= 0 +5(1 ⋅ 9 −3 ⋅ 7) +0 = −60.

(11.6.2)

det
⎛

⎝
⎜
⎡

⎣
⎢

1

0

7

2

5

8

3

0

9

⎤

⎦
⎥
⎞

⎠
⎟ = 1 ⋅ det([ ])−2 ⋅ det([ ])+3 ⋅ det([ ])

5

8

0

9

0

7

0

9

0

7

5

8

= 1(5 ⋅ 9 −0 ⋅ 8) −2(0 ⋅ 9 −0 ⋅ 7) +3(0 ⋅ 8 −5 ⋅ 7) = −60.

(11.6.3)

Aij aij

i j det( )(−1)i+j Aij

j

det(A) = det( ).∑
i=1

n

(−1)i+jaij Aij

det(A) = det( ).AT

0

⎡

⎣
⎢

1

0

0

2

5

0

3

6

9

⎤

⎦
⎥

.
⎡

⎣
⎢

1

4

7

0

5

8

0

0

9

⎤

⎦
⎥

[ ]5
8

0
9
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Similarly for upper triangular matrices

In general, if  is triangular, then

If  is diagonal, then it is also triangular (upper and lower), so same formula applies. For example,

In particular, the identity matrix  is diagonal, and the diagonal entries are all 1. Thus,

The determinant is telling you how geometric objects scale. If  doubles the sizes of geometric objects and  triples them, then 
 (which applies  to an object and then it applies ) should make size go up by a factor of . This is true in general:

This property is one of the most useful, and it is employed often to actually compute determinants. A particularly interesting
consequence is to note what it means for the existence of inverses. Take  and  to be inverses, that is . Then

Neither  nor  can be zero. This fact is an extremely useful property of the determinant, and one which is used often
in this book:

An  matrix  is invertible if and only if .

In fact,  says that

So we know what the determinant of  is without computing .

Let us return to the formula for the inverse of a  matrix:

Notice the determinant of the matrix  in the denominator of the fraction. The formula only works if the determinant is
nonzero, otherwise we are dividing by zero.

A common notation for the determinant is a pair of vertical lines:

det = 1 ⋅ 5 ⋅ 9 = 45.
⎛

⎝
⎜
⎡

⎣
⎢

1

4

7

0

5

8

0

0

9

⎤

⎦
⎥
⎞

⎠
⎟

det = 1 ⋅ 5 ⋅ 9 = 45.
⎛

⎝
⎜
⎡

⎣
⎢

1

0

0

2

5

0

3

6

9

⎤

⎦
⎥
⎞

⎠
⎟

A

det(A) = ⋯ .a11a22 ann

A

det = 2 ⋅ 3 ⋅ 5 = 30.
⎛

⎝
⎜
⎡

⎣
⎢

2

0

0

0

3

0

0

0

5

⎤

⎦
⎥
⎞

⎠
⎟

I

det(I) = 1.

B A

AB B A 6

 Theorem 11.6.1

det(AB) = det(A) det(B).

A B AB = I

det(A) det(B) = det(AB) = det(I) = 1.

det(A) det(B)

 Theorem 11.6.2

n×n A det(A) ≠ 0

det( ) det(A) = 1A−1

det( ) = .A−1 1

det(A)

A−1 A−1

2 ×2

= [ ] .[ ]
a

c

b

d

−1
1

ad−bc

d

−c

−b

a

[ ]a
c
b
d
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Personally, I find this notation confusing as vertical lines usually mean a positive quantity, while determinants can be negative.
Also think about how to write the absolute value of a determinant. This notation is not used in this book.

11.6: A.6- Determinant is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

= det([ ]) .
∣

∣
∣
a

c

b

d

∣

∣
∣

a

c

b

d
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11.7: A.E- Linear Algebra (Exercises)

11.7.1: A.1: Vectors, Mappings, and Matrices

On a piece of graph paper draw the vectors:

a. 

b. 

c. 

On a piece of graph paper draw the vector  starting at (based at) the given point:

a. based at 
b. based at 
c. based at 

On a piece of graph paper draw the following operations. Draw and label the vectors involved in the operations as well as the
result:

a. 

b. 

c. 

Compute the magnitude of

a. 

b. 

c. 

Compute

a. 

b. 

c. 

 Exercise 11.7.A.1.1

[ ]
2

5

[ ]
−2

−4
(3,−4)

 Exercise 11.7.A.1.2

(1, 2)

(0, 0)
(1, 2)
(0, −1)

 Exercise 11.7.A.1.3

[ ]+[ ]
1

−4

2

3

[ ]−[ ]
−3

2

1

3

3 [ ]
2

1

 Exercise 11.7.A.1.4

[ ]
7

2

⎡

⎣
⎢

−2

3

1

⎤

⎦
⎥

(1, 3, −4)

 Exercise 11.7.A.1.5

[ ]+[ ]
2

3

7

−8

[ ]−[ ]
−2

3

6

−4

−[ ]
−3

2
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d. 

e. 

f. 

Find the unit vector in the direction of the given vector

a. 

b. 

c. 

If  and  are added together, we find . What is ?

Write  as a linear combination of the standard basis vectors , , and .

If the magnitude of  is 4, what is the magnitude of

a. 
b. 
c. 
d. 
e. 
f. 

Suppose a linear mapping  takes  to  and it takes  to . Where does it take

a. 
b. 
c. 

Suppose a linear mapping  takes  to , it takes  to , and it takes  to . Write
down the matrix representing the mapping .

Suppose that a mapping  takes  to ,  to , and  to . Explain why  is not linear.

4 [ ]
−1

5

5 [ ]+9 [ ]
1

0

0

1

3 [ ]−2 [ ]
1

−8

3

−1

 Exercise 11.7.A.1.6

[ ]
1

−3

⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥

(3, 1, −2)

 Exercise 11.7.A.1.7

= (1, 2)x⃗  y ⃗  + = (0, 2)x⃗  y ⃗  y ⃗ 

 Exercise 11.7.A.1.8

(1, 2, 3) e ⃗ 1 e ⃗ 2 e ⃗ 3

 Exercise 11.7.A.1.9

x⃗ 

0x⃗ 

3x⃗ 

−x⃗ 

−4x⃗ 

+x⃗  x⃗ 

−x⃗  x⃗ 

 Exercise 11.7.A.1.10

F : →R
2

R
2 (1, 0) (2, −1) (0, 1) (3, 3)

(1, 1)
(2, 0)
(2, −1)

 Exercise 11.7.A.1.11

F : →R
3

R
2 (1, 0, 0) (2, 1) (0, 1, 0) (3, 4) (0, 0, 1) (5, 6)

F

 Exercise 11.7.A.1.12

F : →R
2

R
2 (1, 0) (1, 2) (0, 1) (3, 4) (1, 1) (0, −1) F
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Let  represent the space of quadratic polynomials in : a point  in  represents the polynomial 
. Consider the derivative  as a mapping of  to , and note that  is linear. Write down  as a 

matrix.

Compute the magnitude of

a. 

b. 

c. 

Answer
a. 
b. 
c. 

Find the unit vector in the direction of the given vector

a. 

b. 

c. 

Answer

a. 

b. 

c. 

Compute

a. 

b. 

c. 

 Exercise : (challenging)11.7.A.1.13

R
3 t ( , , )a0 a1 a2 R

3

+ t+a0 a1 a2t
2 d

dt
R

3
R

3 d

dt

d

dt
3×3

 Exercise 11.7.A.1.14

[ ]
1

3

⎡

⎣
⎢

2

3

−1

⎤

⎦
⎥

(−2, 1, −2)

10−−√
14−−√

3

 Exercise 11.7.A.1.15

[ ]
−1

1

⎡

⎣
⎢

1

−1

2

⎤

⎦
⎥

(2, −5, 2)

⎡

⎣

−1

2√

1

2√

⎤

⎦

⎡

⎣

⎢⎢⎢⎢

1
6√

−1

6√

2
6√

⎤

⎦

⎥⎥⎥⎥

( , , )2

33√

−5

33√

2

33√

 Exercise 11.7.A.1.16

[ ]+[ ]
3

1

6

−3

[ ]−[ ]
−1

2

2

−1

−[ ]
−5

3
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d. 

e. 

f. 

Answer

a. 

b. 

c. 

d. 

e. 

f. 

If the magnitude of  is 5, what is the magnitude of

a. 
b. 
c. 

Answer
a. 
b. 
c. 

Suppose a linear mapping  takes  to  and it takes  to . Where does it take

a. 
b. 
c. 

Answer
a. 
b. 
c. 

11.7.2: A.2: Matrix Algebra

Add the following matrices

2 [ ]
−2

4

3 [ ]+7 [ ]
1

0

0

1

2 [ ]−6 [ ]
2

−3

2

−1

[ ]
9

−2

[ ]
−3

3

[ ]
5

−3

[ ]
−4

8

[ ]
3

7

[ ]
−8

3

 Exercise 11.7.A.1.17

x⃗ 

4x⃗ 

−2x⃗ 

−4x⃗ 

20
10
20

 Exercise 11.7.A.1.18

F : →R
2

R
2 (1, 0) (1, −1) (0, 1) (2, 0)

(1, 1)
(0, 2)
(1, −1)

(3, −1)
(4, 0)
(−1,−1)

 Exercise 11.7.A.2.1
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a. 

b. 

Compute

a. 

b. 

Multiply the following matrices

a. 

b. 

c. 

d. 

Compute the inverse of the given matrices

a. 

b. 

c. 

d. 

Compute the inverse of the given matrices

a. 

b. 

[ ]+[ ]
−1

5

2

8

2

−1

3

8

2

3

3

5

+
⎡

⎣
⎢
1

2

0

2

3

5

4

1

1

⎤

⎦
⎥

⎡

⎣
⎢
2

3

6

−8

1

−4

−3

0

1

⎤

⎦
⎥

 Exercise 11.7.A.2.2

3 [ ]+6 [ ]
0

−2

3

2

1

−1

5

5

2 [ ]−3 [ ]
−3

2

1

2

2

3

−1

2

 Exercise 11.7.A.2.3

[ ]
⎡

⎣
⎢

−1

3

5

2

1

8

⎤

⎦
⎥

3

8

−1

3

3

2

1

−3

⎡

⎣
⎢

1

3

1

2

1

0

3

1

3

⎤

⎦
⎥
⎡

⎣
⎢

2

1

1

3

2

−1

1

3

3

7

−1

0

⎤

⎦
⎥

⎡

⎣
⎢
4

5

4

1

6

6

6

5

6

3

0

0

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

2

1

3

5

5

2

5

6

⎤

⎦

⎥⎥
⎥

[ ]
1

0

1

5

4

1

⎡

⎣
⎢

2

1

6

2

0

4

⎤

⎦
⎥

 Exercise 11.7.A.2.4

[ ]−3

[ ]
0

1

−1

0

[ ]
1

1

4

3

[ ]
2

1

2

4

 Exercise 11.7.A.2.5

[ ]
−2

0

0

1

⎡

⎣
⎢
3

0

0

0

−2

0

0

0

1

⎤

⎦
⎥
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c. 

Add the following matrices

a. 

b. 

Answer

Add texts here. Do not delete this text first.

Compute

a. 

b. 

Answer

Add texts here. Do not delete this text first.

Multiply the following matrices

a. 

b. 

c. 

d. 

Answer

Add texts here. Do not delete this text first.

⎡

⎣

⎢⎢
⎢

1

0

0

0

0

−1

0

0

0

0

0.01

0

0

0

0

−5

⎤

⎦

⎥⎥
⎥

 Exercise 11.7.A.2.6

[ ]+[ ]
2

1

1

1

0

−1

5

1

3

2

4

5

+
⎡

⎣
⎢

6

7

8

−2

3

−1

3

3

2

⎤

⎦
⎥

⎡

⎣
⎢

−1

6

−9

−1

7

4

−3

3

−1

⎤

⎦
⎥

 Exercise 11.7.A.2.7

2 [ ]+3 [ ]
1

3

2

4

−1

1

3

2

3 [ ]−2 [ ]
2

1

−1

3

2

−1

1

2

 Exercise 11.7.A.2.8

[ ]
2

3

1

4

4

4

⎡

⎣
⎢
2

6

3

4

3

5

⎤

⎦
⎥

⎡

⎣
⎢
0

2

3

3

−2

5

3

1

−2

⎤

⎦
⎥
⎡

⎣
⎢
6

4

2

6

6

0

2

0

4

⎤

⎦
⎥

⎡

⎣
⎢
3

2

4

4

−1

−1

1

0

5

⎤

⎦
⎥
⎡

⎣
⎢
0

2

3

2

0

6

5

5

1

0

2

6

⎤

⎦
⎥

[ ]
⎡

⎣
⎢
−2

5

2

−2

3

1

⎤

⎦
⎥

0

1

3

3
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Compute the inverse of the given matrices

a. 

b. 

c. 

d. 

Answer

Add texts here. Do not delete this text first.

Compute the inverse of the given matrices

a. 

b. 

c. 

Answer

Add texts here. Do not delete this text first.

11.7.3: A.3: Elimination

Compute the reduced row echelon form for the following matrices:

a. 

b. 

c. 

d. 

e. 

f. 

 Exercise 11.7.A.2.9

[ ]2

[ ]
0

1

1

0

[ ]
1

3

2

5

[ ]
4

4

2

4

 Exercise 11.7.A.2.10

[ ]
2

0

0

3

⎡

⎣
⎢
4

0

0

0

5

0

0

0

−1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

−1

0

0

0

0

2

0

0

0

0

3

0

0

0

0

0.1

⎤

⎦

⎥
⎥⎥

 Exercise 11.7.A.3.1

[ ]
1

0

3

1

1

1

[ ]
3

6

3

−3

[ ]
3

−2

6

−3

[ ]
6

1

6

1

7

0

7

1

⎡

⎣
⎢

9

8

7

3

6

9

0

3

7

2

6

9

⎤

⎦
⎥

⎡

⎣
⎢

2

6

−2

1

0

4

3

0

4

−3

−1

3

⎤

⎦
⎥
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g. 

h. 

Compute the inverse of the given matrices

a. 

b. 

c. 

Solve (find all solutions), or show no solution exists

a. 

b. 

c. 

d. 

By computing the inverse, solve the following systems for .

a. 

b. 

Compute the rank of the given matrices

a. 

⎡

⎣
⎢

6

0

6

6

−2

5

5

2

6

⎤

⎦
⎥

⎡

⎣
⎢

0

6

6

2

6

2

0

−3

−3

−1

3

5

⎤

⎦
⎥

 Exercise 11.7.A.3.2

⎡

⎣
⎢

1

0

0

0

0

1

0

1

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

1

2

0

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

2

0

2

3

1

1

⎤

⎦
⎥

 Exercise 11.7.A.3.3

4 +3x1 x2

− +x1 x2

=−2

= 4
+5 +3x1 x2 x3

8 +7 +8x1 x2 x3

4 +8 +6x1 x2 x3

= 7

= 8
= 4

4 +8 +2x1 x2 x3

− −2 +3x1 x2 x3

4 +8x1 x2

= 3
= 1
= 2

x+2y+3z

2x− y+3z
3x+ y+6z

= 4

= 1
= 6

 Exercise 11.7.A.3.4

x⃗ 

[ ] = [ ]
4

−1

1

3
x⃗ 

13

26

[ ] = [ ]
3

3

3

4
x⃗ 

2

−1

 Exercise 11.7.A.3.5

⎡

⎣
⎢

6

1

7

3

4

7

5

1

6

⎤

⎦
⎥

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98110?pdf


11.7.9 https://math.libretexts.org/@go/page/98110

b. 

c. 

For the matrices in Exercise , find a linearly independent set of row vectors that span the row space (they don’t need
to be rows of the matrix).

For the matrices in Exercise , find a linearly independent set of columns that span the column space. That is, find
the pivot columns of the matrices.

Find a linearly independent subset of the following vectors that has the same span.

Compute the reduced row echelon form for the following matrices:

a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

Answer

a. 

b. 

⎡

⎣
⎢

5

3

2

−2

0

4

−1

6

5

⎤

⎦
⎥

⎡

⎣
⎢

1

−1

2

2

−2

4

3

−3

6

⎤

⎦
⎥

 Exercise 11.7.A.3.6

11.7.A.3.5

 Exercise 11.7.A.3.7

11.7.A.3.5

 Exercise 11.7.A.3.8

, , ,
⎡

⎣
⎢

−1

1

2

⎤

⎦
⎥

⎡

⎣
⎢

2

−2

−4

⎤

⎦
⎥

⎡

⎣
⎢

−2

4

1

⎤

⎦
⎥

⎡

⎣
⎢

−1

3

−2

⎤

⎦
⎥

 Exercise 11.7.A.3.9

[ ]
1

0

0

1

1

0

[ ]
1

3

2

4

[ ]
1

−2

1

−2

⎡

⎣
⎢

1

4

−2

−3

6

6

1

−2

−2

⎤

⎦
⎥

⎡

⎣
⎢
2

1

0

2

−2

3

5

4

1

2

−1

−2

⎤

⎦
⎥

⎡

⎣
⎢
−2

6

4

6

0

2

4

−3

−1

3

0

1

⎤

⎦
⎥

[ ]
0

0

0

0

0

0

0

0

[ ]
1

1

2

2

3

3

3

5

[ ]
1

0

0

1

1

0

[ ]
1

0

0

1
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c. 

d. 

e. 

f. 

g. 

h. 

Compute the inverse of the given matrices

a. 

b. 

c. 

Answer

a. 

b. 

c. 

Solve (find all solutions), or show no solution exists

a. 

b. 

[ ]
1

0

1

0

⎡

⎣
⎢

1

0

0

0

1

0

0

− 1
3

0

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

0

0

1

77
15

− 2
15

− 8
5

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

1

0

0

0

1

0

− 1
2

1
2

0

0
1
2

0

⎤

⎦

⎥⎥

[ ]
0

0

0

0

0

0

0

0

[ ]
1

0

2

0

3

0

0

1

 Exercise 11.7.A.3.10

⎡

⎣
⎢

0

−1

0

1

0

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢
1

1

1

1

1

0

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢
2

2

2

4

2

4

0

3

1

⎤

⎦
⎥

⎡

⎣
⎢
0

1

0

−1

0

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

0

0

1

0

1

−1

1

−1

0

⎤

⎦
⎥

⎡

⎣

⎢⎢

5
2

−1

−1

1

− 1
2

0

−3
3
2

1

⎤

⎦

⎥⎥

 Exercise 11.7.A.3.11

4 +3x1 x2

5 +6x1 x2

=−1
= 4

5x+6y+5z
6x+8y+6z

5x+2y+5z

= 7
=−1

= 2
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c. 

d. 

Answer

a. 
b. no solution
c. 
d.  is free, , 

By computing the inverse, solve the following systems for .

a. 

b. 

Answer

a. 

b. 

Compute the rank of the given matrices

a. 

b. 

c. 

Answer
a. 
b. 
c. 

For the matrices in Exercise , find a linearly independent set of row vectors that span the row space (they don’t
need to be rows of the matrix).

Answer

a+ b+ c

a+5b+6c
−2a+5b+6c

=−1

=−1
= 8

−2 +2 +8x1 x2 x3

+x2 x3

+4 +x1 x2 x3

= 6
= 2
= 7

=−2, =x1 x2
7
3

a=−3, b = 10, c =−8
x3 =−1+3x1 x3 = 2−x2 x3

 Exercise 11.7.A.3.12

x⃗ 

[ ] = [ ]
−1

3

1

3
x⃗ 

4

6

[ ] = [ ]
2

1

7

6
x⃗ 

1

3

[ ]
−1

3

[ ]
−3

1

 Exercise 11.7.A.3.13

⎡

⎣
⎢

7

7

7

−1

7

6

6

7

2

⎤

⎦
⎥

⎡

⎣
⎢

1

1

2

1

1

2

1

1

2

⎤

⎦
⎥

⎡

⎣
⎢

0

6

4

3

3

7

−1

1

−1

⎤

⎦
⎥

3
1
2

 Exercise 11.7.A.3.14

11.7.A.3.13
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a. , , 
b. 
c. , 

For the matrices in Exercise , find a linearly independent set of columns that span the column space. That is, find
the pivot columns of the matrices.

Answer

a. , , 

b. 

c. , 

Find a linearly independent subset of the following vectors that has the same span.

Answer

, 

11.7.4: A.4: Subspaces, Dimension, and The Kernel

For the following sets of vectors, find a basis for the subspace spanned by the vectors, and find the dimension of the subspace.

a. 

b. 

c. 

d. 

[ ]1 0 0 [ ]0 1 0 [ ]0 0 1
[ ]1 1 1
[ ]1 0 1

3 [ ]0 1 − 1
3

 Exercise 11.7.A.3.15

11.7.A.3.13

⎡

⎣
⎢

7

7

7

⎤

⎦
⎥
⎡

⎣
⎢

−1

7

6

⎤

⎦
⎥
⎡

⎣
⎢

7

6

2

⎤

⎦
⎥

⎡

⎣
⎢

1

1

2

⎤

⎦
⎥

⎡

⎣
⎢
0

6

4

⎤

⎦
⎥
⎡

⎣
⎢
3

3

7

⎤

⎦
⎥

 Exercise 11.7.A.3.16

, , ,
⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

⎡

⎣
⎢

3

1

−5

⎤

⎦
⎥

⎡

⎣
⎢

0

3

−1

⎤

⎦
⎥

⎡

⎣
⎢

−3

2

4

⎤

⎦
⎥

⎡

⎣
⎢

3

1

−5

⎤

⎦
⎥
⎡

⎣
⎢

0

3

−1

⎤

⎦
⎥

 Exercise 11.7.A.4.1

,
⎡

⎣
⎢
1

1

1

⎤

⎦
⎥

⎡

⎣
⎢
−1

−1

−1

⎤

⎦
⎥

, ,
⎡

⎣
⎢
1

0

5

⎤

⎦
⎥

⎡

⎣
⎢
0

1

0

⎤

⎦
⎥

⎡

⎣
⎢

0

−1

0

⎤

⎦
⎥

, ,
⎡

⎣
⎢
−4

−3

5

⎤

⎦
⎥

⎡

⎣
⎢
2

3

3

⎤

⎦
⎥

⎡

⎣
⎢
2

0

2

⎤

⎦
⎥

, ,
⎡

⎣
⎢
1

3

0

⎤

⎦
⎥

⎡

⎣
⎢
0

2

2

⎤

⎦
⎥

⎡

⎣
⎢
−1

−1

2

⎤

⎦
⎥
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e. 

f. 

For the following matrices, find a basis for the kernel (nullspace).

a. 

b. 

c. 

d. 

Suppose a  matrix  has rank 3. What is the nullity?

Suppose that  is the set of all the vectors of  whose third component is zero. Is  a subspace? And if so, find a basis and
the dimension.

Consider a square matrix , and suppose that  is a nonzero vector such that . What does the Fredholm alternative say
about invertibility of .

Consider

If the nullity of this matrix is 2, fill in the question marks. Hint: What is the rank?

For the following sets of vectors, find a basis for the subspace spanned by the vectors, and find the dimension of the subspace.

a. 

[ ] , [ ] , [ ]
1

3

0

2

−1

−1

, ,
⎡

⎣
⎢
3

1

3

⎤

⎦
⎥

⎡

⎣
⎢

2

4

−4

⎤

⎦
⎥

⎡

⎣
⎢
−5

−5

−2

⎤

⎦
⎥

 Exercise 11.7.A.4.2

⎡

⎣
⎢

1

1

1

1

1

1

1

5

−4

⎤

⎦
⎥

⎡

⎣
⎢

2

4

−1

−1

0

1

−3

−4

2

⎤

⎦
⎥

⎡

⎣
⎢

−4

−1

−5

4

1

5

4

1

5

⎤

⎦
⎥

⎡

⎣
⎢

−2

−4

1

1

2

0

1

2

4

1

2

3

⎤

⎦
⎥

 Exercise 11.7.A.4.3

5×5 A

 Exercise 11.7.A.4.4

X R
3 X

 Exercise 11.7.A.4.5

A x⃗  A =x⃗  0⃗ 

A

 Exercise 11.7.A.4.6

M = .
⎡

⎣
⎢

1

2

−1

2

?

?

3

?

?

⎤

⎦
⎥

 Exercise 11.7.A.4.7

[ ] , [ ]
1

2

1

1
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b. 

c. 

d. 

e. 

f. 

Answer

a. ,  dimension ,

b. ,  dimension ,

c. , ,  dimension ,

d. ,  dimension ,

e.  dimension ,

f. ,  dimension 

For the following matrices, find a basis for the kernel (nullspace).

a. 

b. 

c. 

d. 

Answer

, ,
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

2

2

2

⎤

⎦
⎥

⎡

⎣
⎢

1

1

2

⎤

⎦
⎥

, ,
⎡

⎣
⎢

5

3

1

⎤

⎦
⎥

⎡

⎣
⎢

5

−1

5

⎤

⎦
⎥

⎡

⎣
⎢

−1

3

−4

⎤

⎦
⎥

, ,
⎡

⎣
⎢

2

2

4

⎤

⎦
⎥

⎡

⎣
⎢

2

2

3

⎤

⎦
⎥

⎡

⎣
⎢

4

4

−3

⎤

⎦
⎥

[ ] , [ ] , [ ]
1

0

2

0

3

0

, ,
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

2

0

0

⎤

⎦
⎥

⎡

⎣
⎢

0

1

2

⎤

⎦
⎥

[ ]
1

2
[ ]
1

1
2

⎡

⎣
⎢

1

1

1

⎤

⎦
⎥
⎡

⎣
⎢

1

1

2

⎤

⎦
⎥ 2

⎡

⎣
⎢
5

3

1

⎤

⎦
⎥
⎡

⎣
⎢

5

−1

5

⎤

⎦
⎥
⎡

⎣
⎢
−1

3

−4

⎤

⎦
⎥ 3

⎡

⎣
⎢

2

2

4

⎤

⎦
⎥
⎡

⎣
⎢

2

2

3

⎤

⎦
⎥ 2

[ ]
1

1
1

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥
⎡

⎣
⎢

0

1

2

⎤

⎦
⎥ 2

 Exercise 11.7.A.4.8

⎡

⎣
⎢

2

1

3

6

3

9

1

2

0

9

9

9

⎤

⎦
⎥

⎡

⎣
⎢

2

−1

−5

−2

1

5

−5

5

−3

⎤

⎦
⎥

⎡

⎣
⎢

1

2

−3

−5

3

5

−4

5

2

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

4

1

5

4

1

5

⎤

⎦
⎥
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a. , 

b. 

c. 

d. , 

Suppose the column space of a  matrix  of dimension 3. Find

a. Rank of .
b. Nullity of .
c. Dimension of the row space of .
d. Dimension of the nullspace of .
e. Size of the maximum subset of linearly independent rows of .

Answer
a. 
b. 
c. 
d. 
e. 

11.7.5: A.5: Inner Product and Projections

Find the  that makes the following vectors orthogonal: , .

Find the angle  between , .

Given that  and  compute

a. 
b. 
c. 

Suppose . Find

a. 

⎡

⎣

⎢
⎢⎢

3

−1

0

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

3

0

3

−1

⎤

⎦

⎥
⎥⎥

⎡

⎣
⎢
−1

−1

0

⎤

⎦
⎥

⎡

⎣
⎢

1

1

−1

⎤

⎦
⎥

⎡

⎣
⎢

−1

0

0

⎤

⎦
⎥
⎡

⎣
⎢

0

1

−1

⎤

⎦
⎥

 Exercise 11.7.A.4.9

9×5 A

A

A

A

A

A

3
2
3
2
3

 Exercise 11.7.A.5.1

s (1, 2, 3) (1, 1, s)

 Exercise 11.7.A.5.2

θ (1, 3, 1) (2, 1, −1)

 Exercise 11.7.A.5.3

⟨ , ⟩ = 3v ⃗  w⃗  ⟨ , ⟩ =−1v ⃗  u⃗ 

⟨ , 2 ⟩u⃗  v ⃗ 
⟨ , 2 +3 ⟩v ⃗  w⃗  u⃗ 
⟨ +3 , ⟩w⃗  u⃗  v ⃗ 

 Exercise 11.7.A.5.4

= (1, 1, −1)v ⃗ 

((1, 0, 0))projv ⃗ 
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b. 
c. 

Consider the vectors , , .

a. Check that the vectors are linearly independent and so form a basis.
b. Check that the vectors are mutually orthogonal, and are therefore an orthogonal basis.
c. Represent  as a linear combination of this basis.
d. Make the basis orthonormal.

Let  be the subspace spanned by , . Find an orthogonal basis of  by the Gram-Schmidt process.

Starting with , , , follow the Gram-Schmidt process to find an orthogonal basis of .

Find an orthogonal basis of  such that  is one of the vectors. Hint: First find two extra vectors to make a linearly
independent set.

Using cosines and sines of , find a unit vector  in  that makes angle  with . What is ?

Find the  that makes the following vectors orthogonal: , .

Answer

Find the angle  between , .

Answer

Given that  and  and  and

a. 
b. 
c. 

Answer
a. 
b. 

((1, 2, 3))projv ⃗ 
((1, −1, 0))projv ⃗ 

 Exercise 11.7.A.5.5

(1, 2, 3) (−3, 0, 1) (1, −5, 3)

(1, 1, 1)

 Exercise 11.7.A.5.6

S (1, 3, −1) (1, 1, 1) S

 Exercise 11.7.A.5.7

(1, 2, 3) (1, 1, 1) (2, 2, 0) R
3

 Exercise 11.7.A.5.8

R
3 (3, 1, −2)

 Exercise 11.7.A.5.9

θ u⃗  R
2 θ = (1, 0)ı ⃗  ⟨ , ⟩ı ⃗  u⃗ 

 Exercise 11.7.A.5.10

s (1, 1, 1) (1, s, 1)

s=−2

 Exercise 11.7.A.5.11

θ (1, 2, 3) (1, 1, 1)

θ≈ 0.3876

 Exercise 11.7.A.5.12

⟨ , ⟩ = 1v ⃗  w⃗  ⟨ , ⟩ =−1v ⃗  u⃗  ∥ ∥ = 3v ⃗ 

⟨3 , 5 ⟩u⃗  v ⃗ 

⟨ , 2 +3 ⟩v ⃗  w⃗  u⃗ 

⟨ +3 , ⟩w⃗  v ⃗  v ⃗ 

−15
−1
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c. 

Suppose . Find

a. 
b. 
c. 

Answer

a. 
b. 
c. 

The vectors , ,  form an orthogonal basis. Represent the following vectors in terms of this basis:

a. 
b. 
c. 

Answer
a. 
b. 
c. 

Let  be the subspace spanned by , . Find an orthogonal basis of  by the Gram-Schmidt process.

Answer

, 

Starting with , , , follow the Gram-Schmidt process to find an orthogonal basis of .

Answer

, , 

11.7.6: A.6: Determinant

Compute the determinant of the following matrices:

a. 

b. 

c. 

28

 Exercise 11.7.A.5.13

= (1, 0, −1)v ⃗ 

((0, 2, 1))projv ⃗ 
((1, 0, 1))projv ⃗ 
((4, −1, 0))projv ⃗ 

(− , 0, )1
2

1
2

(0, 0, 0)
(2, 0, −2)

 Exercise 11.7.A.5.14

(1, 1, −1) (2, −1, 1) (1, −5, 3)

(1, −8, 4)
(5, −7, 5)
(0, −6, 2)

(1, 1, −1)−(2,−1, 1)+2(1,−5, 3)
2(2, −1, 1)+(1,−5, 3)
2(1, 1, −1)−2(2,−1, 1)+2(1,−5, 3)

 Exercise 11.7.A.5.15

S (2, −1, 1) (2, 2, 2) S

(2, −1, 1) ( , , )2
3

8
3

4
3

 Exercise 11.7.A.5.16

(1, 1, −1) (2, 3, −1) (1, −1, 1) R
3

(1, 1, −1) (0, 1, 1) ( , − , )4
3

2
3

2
3

 Exercise 11.7.A.6.1

[ ]3

[ ]
1

2

3

1

[ ]
2

4

1

2
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d. 

e. 

f. 

g. 

h. 

For which  are the following matrices singular (not invertible).

a. 

b. 

c. 

d. 

Compute

without computing the inverse.

Suppose

Let . Compute  in a simple way, without computing what is . Hint: First read off  and .

⎡

⎣
⎢

1

0

0

2

4

0

3

5

6

⎤

⎦
⎥

⎡

⎣
⎢

2

−2

0

1

7

2

0

−3

0

⎤

⎦
⎥

⎡

⎣
⎢

2

8

7

1

6

9

3

3

7

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

0

0

3

0

2

0

4

0

5

2

5

2

7

−3

7

4

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢⎢

0

1

1

2

1

1

1

−1

2

−1

2

−2

0

2

1

3

⎤

⎦

⎥⎥⎥

 Exercise 11.7.A.6.2

x

[ ]
2

2

3

x

[ ]
2

1

x

2

[ ]
x

4

1

x

⎡

⎣
⎢

x

1

1

0

4

6

1

2

2

⎤

⎦
⎥

 Exercise 11.7.A.6.3

det

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢

2

0

0

0

1

8

0

0

2

6

3

0

3

5

9

1

⎤

⎦

⎥⎥⎥

−1
⎞

⎠

⎟⎟⎟⎟

 Exercise 11.7.A.6.4

L= and U = .

⎡

⎣

⎢⎢⎢⎢

1

2

7

28

0

1

π

5

0

0

1

−99

0

0

0

1

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢
⎢⎢

5

0

0

0

9

1

0

0

1

88

1

0

−sin(1)

−1

3

1

⎤

⎦

⎥
⎥⎥

A=LU det(A) A det(L) det(U)
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Consider the linear mapping from  to  given by the matrix  for some number . You wish to make  such that
it doubles the area of every geometric figure. What are the possibilities for  (there are two answers).

Suppose  and  are  matrices, and  is invertible. Suppose that . Compute  and 
. Justify your answer using the theorems in this section.

Let  be an  matrix such that . Compute  given a number . Hint: First try computing ,
then note that .

Compute the determinant of the following matrices:

a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

Answer
a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 

 Exercise 11.7.A.6.5

R
2

R
2 A= [ ]1

2
x
1 x A

x

 Exercise 11.7.A.6.6

A S n×n S det(A) = 3 det( AS)S−1

det(SA )S−1

 Exercise 11.7.A.6.7

A n×n det(A) = 1 det(xA) x det(xI)
xA= (xI)A

 Exercise 11.7.A.6.8

[ ]−2

[ ]
2

1

−2

3

[ ]
2

2

2

2

⎡

⎣
⎢

2

0

0

9

−1

0

−11

5

3

⎤

⎦
⎥

⎡

⎣
⎢

2

−2

1

1

7

1

0

3

0

⎤

⎦
⎥

⎡

⎣
⎢
5

4

4

1

1

5

3

1

1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

3

0

0

2

2

0

4

1

5

2

5

2

7

0

0

4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢⎢
⎢

0

1

5

1

2

2

6

2

1

−3

−7

3

0

4

8

−2

⎤

⎦

⎥⎥
⎥

−2
8
0
−6
−3
28
16
−24

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/98110?pdf


11.7.20 https://math.libretexts.org/@go/page/98110

For which  are the following matrices singular (not invertible).

a. 

b. 

c. 

d. 

Answer
a. 
b. 
c. 
d. 

Compute

without computing the inverse.

Answer

Find all the  that make the matrix inverse

have only integer entries (no fractions). Note that there are two answers.

Answer

 and 

11.7: A.E- Linear Algebra (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 11.7.A.6.9

x

[ ]
1

1

3

x

[ ]
3

1

x

3

[ ]
x

3

3

x

⎡

⎣
⎢

x

1

1

1

4

6

0

0

2

⎤

⎦
⎥

3
9
3
1
4

 Exercise 11.7.A.6.10

det

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢
⎢

3

0

0

0

4

−1

0

0

7

9

−2

0

12

−8

4

2

⎤

⎦

⎥⎥
⎥

−1
⎞

⎠

⎟⎟⎟⎟

12

 Exercise : (challenging)11.7.A.6.11

x

[ ]
1

1

2

x

−1

1 3
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12: Appendix B- Table of Laplace Transforms
The function  is the Heaviside function,  is the Dirac delta function, and

Table 

12: Appendix B- Table of Laplace Transforms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

u δ

Γ(t) = dτ , erf(t) = dτ , erfc(t) = 1 −erf(t).∫
∞

0
e−τ τ t−1 2

π−−√
∫

t

0
e−τ 2

(12.1)

12.1

f(t) F(s) = L{f(t)} = f(t)dt∫ ∞
0 e−st

C
C
s

t
1
s2

t2 2
s3

tn
n!
sn+1

(p > 0)tp
Γ(p+1)

sp+1

e−at 1
s+a

sin(ωt)
ω

+s2 ω2

cos(ωt)
s

+s2 ω2

sinh(ωt)
ω

−s2 ω2

cosh(ωt)
s

−s2 ω2

u(t− a) e−as

s

δ(t) 1

δ(t− a) e−as

erf( )t
2a erfc(as)1

s
e(as)2

exp( ) (a ≥ 0)1
πt√

−a2

4t
e−as

s√

− a erfc(a ) (a > 0)1
πt√

e ta2
t√ 1

+as√

af(t) + bg(t) aF(s) + bG(s)

f(at) (a > 0) F ( )1
a

s
a

f(t− a)u(t− a) F(s)e−as

f(t)e−at F(s+ a)

(t)g′ sG(s) − g(0)

(t)g′′ G(s) − sg(0) − (0)s2 g′

(t)g′′′ G(s) − g(0) − s (0) − (0)s3 s2 g′ g′′

(t)g(n) G(s) − g(0) − ⋯ − (0)sn sn−1 g(n−1)

(f ∗ g)(t) = f(τ)g(t− τ)dτ∫ t

0 F(s)G(s)

tf(t) − (s)F ′

f(t)tn (−1 (s))nF (n)

f(τ)dτ∫ t

0
F(s)1

s

f(t)

t
F(σ)dσ∫ ∞

s
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10.4: Limit cycles 
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10.5: Chaos 

B
Bessel functions
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chaos
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E
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K
kernel
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L
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limit cycles

10.4: Limit cycles 

M
Mechanics
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method of Frobenius
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method of undetermined coefficients

4.2: The Method of Undetermined Coefficients I 
4.3: The Method of Undetermined Coefficients II 

N
natural frequency

4.10: Forced Oscillations and Resonance 
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3.2: Cooling and Mixing 

nullspace
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O
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9: Power series methods 
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Overdamping
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R
ratio test
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regular singular point
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10.4: Limit cycles 
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S
shifting property

8.1: The Laplace Transform 
singular point
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slope fields

2.2: Slope fields 
strange attractors

10.5: Chaos 
subspace

11.4: A.4- Subspaces, Dimension, and The Kernel 
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4.5: Higher order linear ODEs 

T
temperature decay constant

3.2: Cooling and Mixing 
terminal velocity

3.3: Elementary Mechanics 

V
van der Pol oscillator

10.4: Limit cycles 
Variation of Parameters

4.7: Variation of Parameters 
Volterra integral equation

8.3: Convolution 
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