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Introduction

This project concerns modeling both population and temperature data we were able to find at wikipedia.org
about the author’s hometown of XXXXXX, XX.

First, however, we shall tell the reader a little bit about XXXXXX. While it is not a large town, there
is a lot history there. It started out as a mining camp by migrants seeking their fortune. They named the
town XXXXXX since the area’s terrain reminded them of their homeland [3].

It is a thoroughfare for many adventure seekers as it is a gateway to many sought-after destinations in-
cluding XXXXXXXX National Park, XXXX Lake, and The XXXXXXX Wilderness to name a few. In the
20th century, timber took the place of mining as a principal economic driver of the region. However, since
the 1990s, timber has been on the decline. Today, tourism fuels a large part of the economy of the region.
Moreover, urban flight has caused the population to increase at historically unprecedented rates This was
especially true in the 1980s, and the population continues to grow.

The above image is a recent photograph of XXXXXX, XX [3].

Now that the reader is more familiar with the author’s hometown, we shall describe the main task of
this project. We were asked to estimate the following:

1. The size of the population of XXXXXX, XX in 2020.
2. The rate at which the population is growing (or shrinking) in 2020.
The rate at which the average high temperature changes in May.

The rate at which the average high temperature changes in October.
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The hottest time of the year as predicted by the temperature model.

Our first order of business was to log on to https://wikipedia.org and see what population and temper-
ature data we could find. Both temperature and population data were available, and we created models for
both which were able to answer all five of the above questions.

Population

We shall first analyze the population data we found in order to predict the size and rate of population growth
of XXXXXX, XX. We used demographic data provided by Wikipedia [3], which is given below.



Historical population

Census Pop. Yot
1860 1,960 —
1870 1,322 -32.6%
1880 1,492 12.9%
1890 1,441 —3.4%
1900 1,922 33.4%
1910 2,029 5.6%
1920 1,684 -17.0%
1930 2,278 35.3%
1940 2,257 —0.9%
1950 2,448 B8.5%
1960 2,725 11.3%
1970 3,100 13.8%
1980 3,247 4.7%
1990 4,153 27.9%
2000 4,423 6.5%
2010 4,903 10.9%

Est. 2016 4,823 —-1.6%

II.5. Decennial Census!10]

We note that this same data is also available at https://factfinder.census.gov.

To analyze the above data, we used the website http://holt.blue [2], to generate our plots and to calculate
the statistical models we will use to make our prediction for the population of XXXXXX, XX in 2020.
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In the above figure, P denotes the number of people and ¢ denotes number of years since 1860.

Since the data at first glance look like they could be linear, we first fitted a linear model,
P =21.1735 -t 4 998.4853,

which is plotted as the red line along with the population data.
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Noticing that the model consistently underpredicts at the ends, and overpredicts in the middle, we decided to
try an exponential model instead. Running a least-squares regression on the data we obtained the following
figure which contains both the data and the exponential curve of best fit in red.
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The equation for the exponential curve of best fit to four decimal places is
P =1318.3462 - (1.008)".

Comparing both models visually, the reader can see that the exponential model is a much better fit to the
data than the linear model.



We note that we also tried a quadratic fit, but the exponential fit was superior on all accounts. Namely,
exponential models are a natural choice for populations growing at a fixed percentage per time period [1].

At this point, we may now answer the questions about the overall rate of growth of XXXXXX,XX and
its predicted population for the year 2020:

Overall, XXXXXX, XX is growing at a rate of 0.8% per year.

In the year 2020, that is ¢ = 160 for our model, we predict that XXXXXX, XX will have 4718 residents.
We obtained this number by evaluating the model at ¢ = 160: P(160) = 1318.3462(1.008)160 ~ 4717.53 and
then rounding to the nearest whole number.

We now estimate the rate at which the population of XXXXXX, XX will be growing in 2020. To find
the rate of change of population with respect to time, we find the derivative of P with respect to t of our
exponential model:

dP d ¢

i E(1318.3462 . (1.008) )
d ¢

= 1318.3462 - E(l.OOS)

= 1318.3462 - In(1.008) - (1.008)*

= 10.5048 - (1.008)*.
The last is an approximation to four decimal places. Evaluating the derivative function P’(t) = 10.5048 -
(1.008)% at t = 160, we obtain P’(160) ~ 37.5901 people per year.

We interpret the above to mean that in the year 2020, XXXXXX, XX will be growing at a rate of about 38
people per year.

Temperature

We now move on to the average-high temperature of XXXXXX, XX. The data we used was again obtained
from wikipedia.org [3], who in turn used data from The Weather Channel and The Desert Research
Institute [4]. The data are displayed below.

Month
Record high 113 113 110 108 100
°F (°C) (45) | (45) | (43) | (42) | (38)

Average 63.5 55.6
high °F (°C) | (12.5) (14.4) (16.9) (17.5) (13.1)

Average low 334 355 | 380 | 41.7 | 46.7 | 52.7 587 574 52.7 452 | 381
(1.0)

°F (°C) (0.8) | (1.9) | (3.3) | (5.4) | (8.2) |[(11.5) (14.8) (14.1) (11.5) (7.3) | (3.4)

Record low | 13 15 20 24 24 33 39 40 33 25 21
°F (°C) (-11) -9 7)) (-4 (-4 | 1) (4) (4) 1) =4 (-6)

LinETTE 510 2.77 127 | 033 | 0.04 | 0.08 | 0.39 | 1.62 | 3.46
‘I’;zl:;'::t{ir':':"; (130) (70)  (32) | (8.4) | (10} | (2.0) | (9.9) | (41) @ (88)
LITEOE TR 23 1.0 | 05 | 0.2 0 0 0 0 0 0 0
snowfall = Fgg) 25 (13) (051 (@ | (0 | (© | © | © | (0 | (0

inches {(cm)



We will be modeling the average high temperature displayed in the second row of the above table.

Again, we analyzed our data using software available at http://holt.blue [2].

above data is given below.
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We note that temperature (in degrees Fahrenheit) is denoted T and time (in months) is denoted ¢.

Due to the naturally periodic nature of the data, we decided to model this data set using periodic functions.
However, experimenting other models, we obtained a very good fit as well using a polynomial model. For

this project we shall present both since they both seem appropriate.

The Sinusoidal Temperature Model

Performing a sinusoidal regression on the above data, we obtain the following curve of best fit

T = 19.5379 - sin(0.5236¢ — 1.7337) + 72.9917

which is plotted below with the data.
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With our formula for average temperature as a function of time, we now determine the rate at which the
average high temperature of XXXXXX, XX changes during the beginning of the months of May and October.

We first compute the derivative:

ar  d
o = g (195379 -sin(0.5236t — 1.7337) + 72.9917)

d
= 19.5379 - (sin(0.5236t — 1.7337) + 72.9917))

= 19.5379 - cos(0.5236¢ — 1.7337) % (0.5236¢ — 1.7337)
= 19.5379 - cos(0.5236t — 1.7337) - 0.5236

= 10.23 - cos(0.5236¢ — 1.7337).

We now use the derivative function to compute the rate of change of the average high temperature. Since
our year starts at time ¢ = 0, we consider the beginning of May to coincide with ¢ = 4 months. Similarly,
the beginning of October is corresponds to ¢ = 9 months.

In terms of the above, we now evaluate and interpret 7/(4) and 77(9).

T'(4) ~ 9.57. We interpret this to mean that in XXXXXX,XX, the average high temperature is increas-
ing at a rate of 9.57 degrees Fahrenheit per month at the beginning of May.

T’(9) &~ —10.09. This means that the average high temperature is decreasing by about 10.09 degrees Fahren-
heit per month at the beginning of October.

We shall now find the time at which the simusoidal model predicts maximum average high temperature
by setting the derivative equal to zero. From the above computations we have

dT
i
dt

= 10.23 - co0s(0.5236t — 1.7337) =0

= c0s(0.5236t — 1.7337) = 0

= 0.5236t — 1.7337 = =F

nm/2 + 1.7337

where n is an odd number. Then ¢t = , where n is an odd number, represents the local

extrema of our function 7T’ Since we know that 0 < ¢ < 12, we consider only values of n for which the
previous inequality holds: n = —1, and n = 1. Then the extreme points are ¢ = 0.31 months, and ¢t = 6.31
months. We see that the former corresponds to the minimum value and the latter corresponds to the
maximum value of T on [0, 12). Thus, the maximum average high temperature of XXXXXX, XX happens at
about one third of the way into July. This is no surprise as most locations in the northern hemisphere exibit
similar weather patterns. The maximum average temperature at this is then approximately 7'(6.31) ~ 92.5
degrees Fahrenheit.



The Polynomial Temperature Model

We now do a similar analysis using our polynomial model. Performing a polynomial regression on our data,
we obtained the following fifth-degree best-fit polynomial

T = 0.0078t% — 0.1843t* + 1.2416¢% — 2.202t% + 4.4965¢t + 54.5822

which is graphed below in red along with the data.
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Performing similar computations as above, we see that

ar d
o %(0.007&5 — 0.1843t" + 1.2416t> — 2.2020t> 4 4.4965¢t + 54.5822)

= 0.0078 - 5t* — 0.1843 - 4¢3 + 1.2416 - 3t> — 2.2020 - 2t + 4.4965

= 0.039t* — 0.7372¢3 + 3.7248¢% — 4.404t + 4.4965.

Now, T7(4) =~ 9.28. Thus, our polynomial model tells us that the average high temperature of XXXXXX
increases by 9.28 degrees per month at the beginning of May. We note that this is a similar estimate to

Also, T'(9) ~ —14.97. Thus, our polynomial model estimates that the average high temperature is de-
creasing by 14.97 degrees per month at the beginning of October. We note that this is a much steeper
decline than the sinusoidal model predicts. However, since the polynomial curve seems to be a better fit, we
take more stock in the polynomial estimate.

Finally, we determine the maximum value of our polynomial model on [0,12). Again, we set the deriva-

tive equal to zero:
ar

E—O

= 0.039t* — 0.7372¢3 + 3.7248t2 — 4.404¢ + 4.4965 = 0

We are not going to solve this last equation by algebraic methods, so we will use Newton’s method to find
the root near ¢ = 6 (as seen from our plots).



To find where the local extrema of our polynomial model T'(t) are located, we will iterate the recursive
rule given by Newton’s Method [1] to two decimal places

T'(tn)

T//(tn)

tn+1 — tn

_ 0.039t% — 0.7372t2 + 3.7248t2 — 4.404t,, + 4.4965
0.156¢3 — 2.2116¢2 + 7.4496t,, — 4.404

- 'n

with typ = 6 as our initial guess. The above quickly gives us our two decimal places of accuracy: t =~ 6.56
is our maximum value on [0,12). In terms of the problem situation, this means that the maximum aver-
age high temperature occurs a little over half way through July with a maximum temperature of 93.3 degrees.

Comparing t = 6.56 to our other estimate, ¢ = 6.31, we see that it occurs a little bit later. As for which
estimate is better, it is difficult to say since the rather large data value at ¢ = 6 months complicates the
analysis. But since both models give a reasonable approximation, we would suggest keeping both in mind as
reasonable estimates. We also not that the maximum average high temperature predicted by both models
are slight under-predictions.

Summary and Conclusions

We have modeled both the population and average high temperature of XXXXXX, XX. We explored mul-
tiple models for each in order to find the model which best represents the data. We concluded that an
exponential model was the best and most natural model for describing population growth. We saw that
by 2020, XXXXXX, XX will have approximately 4718 residents and will be growing at a rate of about 38
people per year.

As for temperature, we constructed two models: a sinusoidal model and a polynomial model. The rea-
son for the two model is that both made sense in their own way: the sinusoidal model seems the most
natural for cyclic, periodic data like temperature. However, a fifth-degree polynomial, although more ad hoc
and less natural, modeled the data much more closely.

For the beginning of May, the sinusoidal model predicts a rate of increase in average high temperature
of 9.57 degrees Fahrenheit per month; the polynomial model predicts 9.28 degrees per month. So both
models agree on this point.

On the other hand, for the beginning of October, the sinusoidal model predicts a rate of decrease in average
high temperature of 10.09 degrees Fahrenheit per month, whereas the polynomial model predicts a rate of
decrease of 14.97 degrees per month. The disagreement between the two models is close to 5 degrees, which
is fairly substantial. However, since the polynomial fit is much better fit to the data, we trust the polynomial
estimate more.

The sinusoidal model predicted the hottest time of year to be at ¢ = 6.31 months, and the polynomial
model predicted ¢t = 6.56 months. We take both to be reasonable estimates (somewhere in mid-July).
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