Estimation of an Individual's Mean Resting Heart Rate

Benjamin Holt
STAT $243 Z$
Winter 2024

Introduction

The purpose of this project is to estimate the author's mean resting heart rate (RHR) just before bedtime.

According to Edward R. Laskowski, M.D., a normal RHR should fall somewhere between 60 and 100 beats per minute (Laskowski). To understand if our RHR generally falls within this normal range, we decided to collect heart-rate data.

Data Collection

Over the course of 74 evenings, an OMRON heart rate monitor was used to measure the author's heart rate to the nearest beat per minute. Laskowski notes that heart rate can be sensitive to various factors including air temperature, emotions, and body position (Laskowski). Thus, to ensure similar conditions, each measurement was taken sitting in a upright position just before bedtime in a calm and relaxed state. Also, as heart rate can be somewhat variable from minute to minute, three measurements were taken each evening with a two-minute interval between each measurement.

The Data

The complete data set of 222 entries can be found in the appendix.
The the summary statistics for the data are given below.

Number of Data Points: $n=222$	
Mean:	$\bar{x}=66.7523$
Standard Deviation:	$s=4.5011$
Minimum:	Min $=57$
1st Quartile:	$Q_{1}=63$
Median:	$M=67$
3rd Quartile:	$Q_{3}=70$
Maximum:	Max $=82$

A histogram and box plot of these data is also given below

The histogram and the boxplot suggest the possibility of high outliers. According to the 1.5 IQR rule, the lower bound for low outliers is

$$
\mathrm{Q}_{1}-1.5 \cdot \mathrm{IQR}=63-1.5 \cdot(70-63)=52.5
$$

and the upper bound for high outliers is

$$
\mathrm{Q}_{3}+1.5 \cdot \mathrm{IQR}=70+1.5 \cdot(70-63)=80.5
$$

From the above, we see that the data point of 82 BPM (beats per minute) is a high outlier. In our analysis we shall take this into consideration by running the analysis with the outlier and without.

We note that in the absence of the outlier, the distribution of heart rates appears to be roughly symmetric.

Results and Analysis

Since the standard deviation of the author's heart rate is unknown, we used a one-sample t confidence interval to estimate the mean heart rate. We also decided on a confidence level of 99%.

With the outlier, the 99\% one-sample t confidence interval is
(65.9673, 67.5372)

That is, we are 99% confident that the true mean heart rate is between 65.9673 BPM and 67.5372 BPM.

Without the outlier, the 99% one-sample t confidence interval is
(65.9156, 67.4509)

Thus, if excluding the outlier is justified, we are 99% confident that the true mean heart rate is between 65.9156 BPM and 67.4509 BPM.

Since we cannot justifiably exclude the outlier, we will take the first interval as our best estimate. We note that that both intervals are quite similar and the outlier makes little difference.

The margin of error of the first interval is 0.78495 , which means that we are 99% sure that our parameter estimate of 66.7523 BPM is within 0.78495 BPM of the true mean heart rate.

Conclusions

For every observation, the author's heart rate fell within the range of values considered to be a normal, healthy resting heart rate: 60 BPM to 100 BPM (Laskowski). Moreover, we are very confident that the average heart rate falls in the lower end of the normal spectrum at 67 BPM within plus or minus 1 BPM. From this, we conclude that the author presently exhibits a healthy resting heart rate.

Acknowledgments

We note that the graphs, figures, confidence intervals, and other computations were calculated using a free statistical software package (Holt) at the following URL:
https://holt.blue/MTH 243/Resources/stats suite.html ("The Holt.Blue Statistical Software Suite").

References

Illowski, B., Dean, S., et. al. "Introductory Statistics." OpenStax, 2017, https://openstax.org/details/books/introductory-statistics

Holt, Benjamin V., "The Holt.Blue Statistical Software Suite." Accessed 7 Aug. 2022, https://holt.blue/ MTH 243/Resources/stats suite.html

Laskowski, Edward R., "What's a normal resting heart rate?" Mayo Clinic, 2022, https://www.mayoclinic.org/healthy-lifestyle/fitness/expert-answers/heart-rate/faq-20057979.

Appendix

The complete heart-rate data set is on the following page.

Measuremen	$2^{\text {nd }}$ Measurement	位
73	73	69
61	62	-60
65		61
66		
65	-66	66
70	72	- 71
63	60	60
60	62	63
61	60	58
69	67	66
74	68	73
68	71	67
72	75	77
67	66	66
70	67	64
59	62	62
71	70	70
69	68	70
64	4 65	66
66	68	64
65	63	63
72	71	68
66	66	64
70	72	68
70	71	74
63	63	62
60	61	61
70	64	68
71	68	76
74	72	69
72	73	71
61	62	-63
68	66	66
69	69	66
70	66	66
65	65	67
72	70	72
63	64	71
63	61	62
65	65	65
66	66	66
73	72	73
67	70	69
61	62	61
65	66	63
69	68	66
62	62	65
64	59	62
64	64	62
60	63	61
60	58	60
68	67	67
69	69	70
60	61	61
63	62	62
66	67	67
59	57	57
68	67	70
72	68	71
72	71	71
64	67	69
67	67	67
69	68	68
69	67	64
72	69	70
66	65	65
82	76	79
61	63	63
68	69	66
65		65
74	75	74
71	67	68
72	-71	72
75	74	78

