1. Sleazy P. Martini has a crooked, six-sided die.

Let $X=$ the number on the face of the die
Let $P(X=x)=$ the probability of rolling x.
Use the table below to answer the following question.

x	$P(X=x)$
1	0.1867
2	0.1367
3	0.2267
4	0.1067
5	0.1967
6	0.1467

What is the long-term average of the rolled face value of Sleazy P.'s die? Round your answer to four decimal places.
A. $\mu=3.43$.
B. $\mu=3.45$.
C. $\mu=3.38$.
D. $\mu=3.44$.
E. $\mu=3.46$.
F. $\mu=3.4$.
G. $\mu=3.41$.
H. $\mu=3.39$.
2. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	$\frac{3}{25}$
1	$\frac{3}{25}$
2	$\frac{9}{25}$
3	$\frac{6}{25}$
4	$\frac{7}{50}$
5	$\frac{1}{50}$

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.
Use the above PDF table to find the expected value μ of this distribution. Round your answer to two decimal places.
A. $\mu=2.27$.
B. $\mu=2.26$.
C. $\mu=2.25$.
D. $\mu=2.17$.
E. $\mu=2.18$.
F. $\mu=2.22$.
G. $\mu=2.23$.
H. $\mu=2.21$.
3. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	$\frac{3}{25}$
1	$\frac{3}{25}$
2	$\frac{9}{25}$
3	$\frac{6}{25}$
4	$\frac{7}{50}$
5	$\frac{1}{50}$

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.

What is the long-term average of the number of calls a patient makes on a 12 -hour shift? Round your answer to two decimal places.
A. During a 12 -hour shift, a patient rings 2.17 times on average.
B. During a 12 -hour shift, a patient rings 2.25 times on average.
C. During a 12 -hour shift, a patient rings 2.27 times on average.
D. During a 12 -hour shift, a patient rings 2.19 times on average.
E. During a 12 -hour shift, a patient rings 2.23 times on average.
F. During a 12 -hour shift, a patient rings 2.18 times on average.
G. During a 12-hour shift, a patient rings 2.22 times on average.
H. During a 12 -hour shift, a patient rings 2.21 times on average.
4. Linda Lou offers Billy Bob to play a game which involves selecting a card from a regular 52-card deck and tossing a coin. The coin is a fair coin and is equally likely to land on heads or tails.

If the card is a face card, and the coin lands on Heads, Billy Bob wins $\$ 7$
If the card is a face card, and the coin lands on Tails, Billy Bob wins $\$ 3$
If the card is not a face card, Billy Bob loses $\$ 3$, no matter what the coin shows.
If Billy Bob were to play this game repeatedly, what is the long-term average of Billy Bob's winnings? Round your answer to the nearest cent.
A. The long term average of Billy Bob's winnings is $-\$ 1.25$.
B. The long term average of Billy Bob's winnings is $-\$ 1.55$.
C. The long term average of Billy Bob's winnings is $-\$ 1.15$.
D. The long term average of Billy Bob's winnings is $-\$ 0.75$.
E. The long term average of Billy Bob's winnings is $-\$ 1.65$.
F. The long term average of Billy Bob's winnings is $-\$ 0.95$.
G. The long term average of Billy Bob's winnings is $-\$ 0.85$.
H. The long term average of Billy Bob's winnings is $-\$ 1.45$.
5. Sleazy P. Martini has a crooked, six-sided die.

Let $X=$ the number on the face of the die
Let $P(X=x)=$ the probability of rolling x.

x	$P(X=x)$
1	0.1767
2	0.2167
3	0.2567
4	0.0767
5	0.1167
6	0.1567

The expected value of the PDF described by the above table is $\mu=3.21$. Use the table to find the standard deviation σ of of Sleazy P.'s die. Round your answer to four decimal places.
A. $\sigma=1.6932$.
B. $\sigma=1.6332$.
C. $\sigma=1.6732$.
D. $\sigma=1.7332$.
E. $\sigma=1.6432$.
F. $\sigma=1.7132$.
G. $\sigma=1.6532$.
H. $\sigma=1.6832$.
6. A random variable X has a PDF described by the following table.

x	$P(X=x)$
0	0.11
3	0.44
6	0.36
9	0.09

Find the expected value μ of this distribution. Round your answer to two decimal places.
A. $\mu=4.28$.
B. $\mu=4.32$.
C. $\mu=4.31$.
D. $\mu=4.34$.
E. $\mu=4.25$.
F. $\mu=4.29$.
G. $\mu=4.26$.
H. $\mu=4.24$.
7. Suppose Sleazy P. Martini has an unfair coin with P (Heads) $=0.58$ and $P($ Tails $)=0.42$ and offers you to play the following game:

If the coin comes up heads, you pay Sleazy P. $\$ 6$.
If it comes up tails, Sleazy P. pays you $\$ 10$.
On the average, is this a game you want to play?
A. Yes. You want to play this game.
B. No. You don't want to play this game.
8. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let $X=$ the number of years a new hire will stay with the company.
Let $P(X=x)=$ the probability that a new hire will stay with the company x years.

Use the table below to answer the following question.

x	$P(X=x)$
0	0.24
1	0.18
2	0.01
3	0.05
4	0.27
5	0.21
6	0.04

The expected value of the PDF described by the above table is $\mu=2.72$. Use this table to find the standard deviation σ of this distribution. Round your answer to two decimal places.
A. $\sigma=2.07$.
B. $\sigma=2.11$.
C. $\sigma=2.09$.
D. $\sigma=2.08$.
E. $\sigma=2.06$.
F. $\sigma=2.03$.
G. $\sigma=2.02$.
H. $\sigma=2.04$.

