

where X = the number of times a patient rings the nurse during a 12-hour shift.

For this exercise, x = 0, 1, 2, 3, 4, 5.

- P(X = x) = the probability that X takes on value x.
- Find P(2 < X < 5).
- A.  $P(2 < X < 5) = \frac{9}{20}$ .
- B.  $P(2 < X < 5) = \frac{19}{50}$ .
- C.  $P(2 < X < 5) = \frac{11}{25}$ .
- D.  $P(2 < X < 5) = \frac{2}{5}$ .
- E.  $P(2 < X < 5) = \frac{21}{50}$ .
- F.  $P(2 < X < 5) = \frac{37}{100}$ .
- G.  $P(2 < X < 5) = \frac{7}{20}$ .
- H.  $P(2 < X < 5) = \frac{41}{100}$ .



where X = the number of times a patient rings the nurse during a 12-hour shift.

For this exercise, x = 0, 1, 2, 3, 4, 5.

P(X = x) = the probability that X takes on value x.

Fill in the missing value of the table below.

A. 
$$P(X = 0) = \frac{2}{25}$$
.  
B.  $P(X = 0) = \frac{1}{20}$ .  
C.  $P(X = 0) = \frac{9}{100}$ .  
D.  $P(X = 0) = \frac{1}{10}$ .  
E.  $P(X = 0) = \frac{3}{25}$ .  
F.  $P(X = 0) = \frac{11}{100}$ .  
G.  $P(X = 0) = \frac{7}{100}$ .  
H.  $P(X = 0) = \frac{3}{50}$ .

3. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let X = the number of years a new hire will stay with the company.

Let P(X = x) = the probability that a new hire will stay with the company x years.

Use the table below to answer the following question.

| x | P(X=x) |
|---|--------|
| 0 | 0.08   |
| 1 | 0.22   |
| 2 | 0.26   |
| 3 | 0.19   |
| 4 | 0.06   |
| 5 | 0.14   |
| 6 | 0.05   |

Find  $P(1 \le X \le 5)$ .

- A.  $P(1 \le X \le 5) = 0.82$ .
- B.  $P(1 \le X \le 5) = 0.89$ .
- C.  $P(1 \le X \le 5) = 0.92$ .
- D.  $P(1 \le X \le 5) = 0.87$ .
- E.  $P(1 \le X \le 5) = 0.88$ .
- F.  $P(1 \le X \le 5) = 0.9$ .
- G.  $P(1 \le X \le 5) = 0.86$ .
- H.  $P(1 \le X \le 5) = 0.85$ .



where X = the number of times a patient rings the nurse during a 12-hour shift.

For this exercise, x = 0, 1, 2, 3, 4, 5.

- P(X = x) = the probability that X takes on value x.
- Find P(X = 5).
- A.  $P(X = 5) = \frac{3}{100}$ . B.  $P(X = 5) = -\frac{1}{100}$ . C.  $P(X = 5) = \frac{3}{50}$ . D.  $P(X = 5) = \frac{2}{25}$ . E.  $P(X = 5) = \frac{1}{25}$ . F.  $P(X = 5) = \frac{7}{100}$ . G. P(X = 5) = 0. H.  $P(X = 5) = \frac{9}{100}$ .

5. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let X = the number of years a new hire will stay with the company.

Let P(X = x) = the probability that a new hire will stay with the company x years.

Fill in the missing value of the table below.

| x | P(X=x) |
|---|--------|
| 0 | 0.09   |
| 1 |        |
| 2 | 0.27   |
| 3 | 0.18   |
| 4 | 0.07   |
| 5 | 0.13   |
| 6 | 0.05   |

- A. P(X = 1) = 0.2.
- B. P(X = 1) = 0.17.
- C. P(X = 1) = 0.23.
- D. P(X = 1) = 0.16.
- E. P(X = 1) = 0.19.
- F. P(X = 1) = 0.25.
- G. P(X = 1) = 0.18.
- H. P(X = 1) = 0.21.

| x | P(X=x) |
|---|--------|
| 0 | 0.16   |
| 1 | 0.14   |
| 2 | 0.34   |
| 3 | 0.11   |
| 4 | 0.14   |
| 5 | 0.06   |
| 6 | 0.05   |

where X = the number of times a patient rings the nurse during a 12-hour shift.

For this exercise, x = 0, 1, 2, 3, 4, 5.

P(X = x) = the probability that X takes on value x.

Interpret the meaning of  $P(X \ge 4)$ .

A.  $P(X \ge 4)$  is the probability that a patient will ring more than 4 times.

B.  $P(X \ge 4)$  is the probability that a patient will ring 4 times or more.

C.  $P(X \ge 4)$  is the probability that a patient will ring less than 4 times.

D.  $P(X \ge 4)$  is the probability that a patient will ring 4 times.

E.  $P(X \ge 4)$  is the probability that a patient will ring 4 times or less.

7. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let X = the number of years a new hire will stay with the company.

Let P(X = x) = the probability that a new hire will stay with the company x years.

Use the table below to answer the following question.

| x | P(X=x) |
|---|--------|
| 0 | 0.16   |
| 1 | 0.14   |
| 2 | 0.34   |
| 3 | 0.11   |
| 4 | 0.14   |
| 5 | 0.06   |
| 6 | 0.05   |

Interpret the meaning of P(X < 2).

A. P(X < 2) is the probability an employee will stay with the company for less than 2 years.

B. P(X < 2) is the probability an employee will stay with the company for more than 2 years.

C. P(X < 2) is the probability an employee will stay with the company for at least 2 years.

D. P(X < 2) is the probability an employee will stay with the company for 2 years.

E. P(X < 2) is the probability an employee will stay with the company for at most 2 years.

| x | P(X=x) |
|---|--------|
| 0 | 0.14   |
| 1 | 0.16   |
| 2 | 0.32   |
| 3 | 0.13   |
| 4 | 0.12   |
| 5 | 0.08   |
| 6 | 0.05   |

where X = the number of times a patient rings the nurse during a 12-hour shift.

For this exercise, x = 0, 1, 2, 3, 4, 5.

P(X = x) = the probability that X takes on value x.

Interpret the meaning of P(X < 5).

A. P(X < 5) is the probability that a patient will ring 5 times or more.

B. P(X < 5) is the probability that a patient will ring 5 times.

C. P(X < 5) is the probability that a patient will ring 5 times or less.

D. P(X < 5) is the probability that a patient will ring less than 5 times.

E. P(X < 5) is the probability that a patient will ring more than 5 times.