1. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	$\frac{2}{25}$
1	$\frac{4}{25}$
2	$\frac{8}{25}$
3	$\frac{7}{25}$
4	$\frac{3}{25}$
5	$\frac{1}{25}$

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.

Find $P(2<X<5)$.
A. $P(2<X<5)=\frac{9}{20}$.
B. $P(2<X<5)=\frac{19}{50}$.
C. $P(2<X<5)=\frac{11}{25}$.
D. $P(2<X<5)=\frac{2}{5}$.
E. $P(2<X<5)=\frac{21}{50}$.
F. $P(2<X<5)=\frac{37}{100}$.
G. $P(2<X<5)=\frac{7}{20}$.
H. $P(2<X<5)=\frac{41}{100}$.
2. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	
1	$\frac{4}{25}$
2	$\frac{8}{25}$
3	$\frac{7}{25}$
4	$\frac{3}{25}$
5	$\frac{1}{25}$

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.
Fill in the missing value of the table below.
A. $P(X=0)=\frac{2}{25}$.
B. $P(X=0)=\frac{1}{20}$.
C. $P(X=0)=\frac{9}{100}$.
D. $P(X=0)=\frac{1}{10}$.
E. $P(X=0)=\frac{3}{25}$.
F. $P(X=0)=\frac{11}{100}$.
G. $P(X=0)=\frac{7}{100}$.
H. $P(X=0)=\frac{3}{50}$.
3. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let $X=$ the number of years a new hire will stay with the company.
Let $P(X=x)=$ the probability that a new hire will stay with the company x years.

Use the table below to answer the following question.

x	$P(X=x)$
0	0.08
1	0.22
2	0.26
3	0.19
4	0.06
5	0.14
6	0.05

Find $P(1 \leq X \leq 5)$.
A. $P(1 \leq X \leq 5)=0.82$.
B. $P(1 \leq X \leq 5)=0.89$.
C. $P(1 \leq X \leq 5)=0.92$.
D. $P(1 \leq X \leq 5)=0.87$.
E. $P(1 \leq X \leq 5)=0.88$.
F. $P(1 \leq X \leq 5)=0.9$.
G. $P(1 \leq X \leq 5)=0.86$.
H. $P(1 \leq X \leq 5)=0.85$.
4. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12-hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	$\frac{2}{25}$
1	$\frac{4}{25}$
2	$\frac{8}{25}$
3	$\frac{7}{25}$
4	$\frac{3}{25}$
5	$\frac{1}{25}$

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.

Find $P(X=5)$.
A. $P(X=5)=\frac{3}{100}$.
B. $P(X=5)=-\frac{1}{100}$.
C. $P(X=5)=\frac{3}{50}$.
D. $P(X=5)=\frac{2}{25}$.
E. $P(X=5)=\frac{1}{25}$.
F. $P(X=5)=\frac{7}{100}$.
G. $P(X=5)=0$.
H. $P(X=5)=\frac{9}{100}$.
5. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let $X=$ the number of years a new hire will stay with the company.
Let $P(X=x)=$ the probability that a new hire will stay with the company x years.
Fill in the missing value of the table below.

x	$P(X=x)$
0	0.09
1	
2	0.27
3	0.18
4	0.07
5	0.13
6	0.05

A. $P(X=1)=0.2$.
B. $P(X=1)=0.17$.
C. $P(X=1)=0.23$.
D. $P(X=1)=0.16$.
E. $P(X=1)=0.19$.
F. $P(X=1)=0.25$.
G. $P(X=1)=0.18$.
H. $P(X=1)=0.21$.
6. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	0.16
1	0.14
2	0.34
3	0.11
4	0.14
5	0.06
6	0.05

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.
Interpret the meaning of $P(X \geq 4)$.
A. $P(X \geq 4)$ is the probability that a patient will ring more than 4 times.
B. $P(X \geq 4)$ is the probability that a patient will ring 4 times or more.
C. $P(X \geq 4)$ is the probability that a patient will ring less than 4 times.
D. $P(X \geq 4)$ is the probability that a patient will ring 4 times.
E. $P(X \geq 4)$ is the probability that a patient will ring 4 times or less.
7. A company wants to evaluate its attrition rate, in other words, how long new hires stay with the company. Over the years, they have established the following probability distribution.

Let $X=$ the number of years a new hire will stay with the company.
Let $P(X=x)=$ the probability that a new hire will stay with the company x years.
Use the table below to answer the following question.

x	$P(X=x)$
0	0.16
1	0.14
2	0.34
3	0.11
4	0.14
5	0.06
6	0.05

Interpret the meaning of $P(X<2)$.
A. $P(X<2)$ is the probability an employee will stay with the company for less than 2 years.
B. $P(X<2)$ is the probability an employee will stay with the company for more than 2 years.
C. $P(X<2)$ is the probability an employee will stay with the company for at least 2 years.
D. $P(X<2)$ is the probability an employee will stay with the company for 2 years.
E. $P(X<2)$ is the probability an employee will stay with the company for at most 2 years.
8. A hospital researcher is interested in the number of times the average post-op patient will ring the nurse during a 12 -hour shift. For a random sample of 50 patients, the following information was obtained.

x	$P(X=x)$
0	0.14
1	0.16
2	0.32
3	0.13
4	0.12
5	0.08
6	0.05

where $X=$ the number of times a patient rings the nurse during a 12 -hour shift.
For this exercise, $x=0,1,2,3,4,5$.
$P(X=x)=$ the probability that X takes on value x.
Interpret the meaning of $P(X<5)$.
A. $P(X<5)$ is the probability that a patient will ring 5 times or more.
B. $P(X<5)$ is the probability that a patient will ring 5 times.
C. $P(X<5)$ is the probability that a patient will ring 5 times or less.
D. $P(X<5)$ is the probability that a patient will ring less than 5 times.
E. $P(X<5)$ is the probability that a patient will ring more than 5 times.

