1. A fair, six-sided die is rolled. The sample space S is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of S and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen.
Event $N=$ the outcome is 1 .
Event $A=$ the outcome is an even number.
Event $B=$ the outcome is less than 3 .
Identify the subset of S which corresponds to the event A^{\prime} and find $P\left(A^{\prime}\right)$.
A. $A^{\prime}=\{1,3,5\}$ and $P\left(A^{\prime}\right)=\frac{1}{6}$.
B. $A^{\prime}=\{1,3,5\}$ and $P\left(A^{\prime}\right)=\frac{1}{3}$.
C. $A^{\prime}=\{2,4,6\}$ and $P\left(A^{\prime}\right)=\frac{1}{6}$.
D. $A^{\prime}=\{2,4,6\}$ and $P\left(A^{\prime}\right)=\frac{1}{2}$.
E. $A^{\prime}=\{1,3,5\}$ and $P\left(A^{\prime}\right)=\frac{5}{6}$.
F. $A^{\prime}=\{2,4,6\}$ and $P\left(A^{\prime}\right)=\frac{5}{6}$.
G. $A^{\prime}=\{1,3,5\}$ and $P\left(A^{\prime}\right)=\frac{1}{2}$.
H. $A^{\prime}=\{2,4,6\}$ and $P\left(A^{\prime}\right)=\frac{1}{3}$.
2. A fair, six-sided die is rolled. The sample space S is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of S and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen. Event $N=$ the outcome is 3 .
Event $A=$ the outcome is an odd number.
Event $B=$ the outcome is less than 3 .
Identify the subset of S which corresponds to the event $A \cup B$ and find $P(A \cup B)$.
A. $A \cup B=\{1,2\}$ and $P(A \cup B)=\frac{5}{6}$.
B. $A \cup B=\{1,2,3,5\}$ and $P(A \cup B)=\frac{5}{6}$.
C. $A \cup B=\{1\}$ and $P(A \cup B)=\frac{2}{3}$.
D. $A \cup B=\{3,4,5,6\}$ and $P(A \cup B)=\frac{2}{3}$.
E. $A \cup B=\{3,4,5,6\}$ and $P(A \cup B)=\frac{5}{6}$.
F. $A \cup B=\{1\}$ and $P(A \cup B)=\frac{5}{6}$.
G. $A \cup B=\{1,2,3,5\}$ and $P(A \cup B)=\frac{2}{3}$.
H. $A \cup B=\{1,2\}$ and $P(A \cup B)=\frac{2}{3}$.
3. In a particular college class, there are male and female students. Some students have long hair and some students have short hair.
Let F be the event that a student is female.
Let M be the event that a student is male.
Let S be the event that a student has short hair.
Let L be the event that a student has long hair.
Write the symbols for the probability that a student has short hair, given that the student is female.
A. $P(F \cap L)$
B. $P(S \mid F)$
C. $P(F \mid S)$
D. $P(F \cup L)$
E. $P(L \mid M)$
F. $P(F \mid L)$
G. $P(M \cup S)$
H. $P(M \cap S)$
4. Let $S=\{\diamond, 4,7,1,2, \sharp, 8, b, \star, 9, \boldsymbol{\Delta}, 3,5,6, \nvdash\}$ be the sample space where every element has an equal chance of being chosen.

Consider the two events $A=\{\diamond, 1,2,8, b, 3,5,6\}$ and $B=\{7,8, \star, 9, \mathbf{\wedge}, 3,5,6, \measuredangle\}$.
Find the probability $P(A \cup B)$.
A. $P(A \cup B)=\frac{17}{15}$
B. $P(A \cup B)=\frac{14}{15}$
C. $P(A \cup B)=\frac{11}{13}$
D. $P(A \cup B)=\frac{16}{15}$
E. $P(A \cup B)=\frac{13}{15}$
F. $P(A \cup B)=\frac{18}{13}$
G. $P(A \cup B)=\frac{10}{13}$
H. $P(A \cup B)=\frac{9}{13}$
5. A fair, six-sided die is rolled. The sample space S is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of S and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen.
Event $N=$ the outcome is 6 .
Event $A=$ the outcome is an odd number.
Event $B=$ the outcome is less than 4.
Identify the subset of S which corresponds to the event $A \cap B$ and find $P(A \cap B)$.
A. $A \cap B=\{1,2,3,5\}$ and $P(A \cap B)=\frac{1}{3}$.
B. $A \cap B=\{4,5,6\}$ and $P(A \cap B)=\frac{1}{2}$.
C. $A \cap B=\{4,5,6\}$ and $P(A \cap B)=\frac{1}{3}$.
D. $A \cap B=\{1,2,3,5\}$ and $P(A \cap B)=\frac{1}{2}$.
E. $A \cap B=\{1,3\}$ and $P(A \cap B)=\frac{1}{3}$.
F. $A \cap B=\{1,3\}$ and $P(A \cap B)=\frac{1}{2}$.
G. $A \cap B=\{1,2,3\}$ and $P(A \cap B)=\frac{1}{3}$.
H. $A \cap B=\{1,2,3\}$ and $P(A \cap B)=\frac{1}{2}$.
6. A fair, six-sided die is rolled. The sample space S is all possible outcomes in the set $\{1,2,3,4,5,6\}$. Identify the following events with a subset of S and compute its probability (an outcome is the number of dots that show up). Let be the sample space where every element has an equal chance of being chosen. Event $N=$ the outcome is 1 .
Event $A=$ the outcome is an odd number.
Event $B=$ the outcome is greater than 3 .
Identify the subset of S which corresponds to the event N^{\prime} and find $P\left(N^{\prime}\right)$.
A. $N^{\prime}=\{2,3,4,5,6\}$ and $P\left(N^{\prime}\right)=\frac{1}{3}$.
B. $N^{\prime}=\{2,3,4,5,6\}$ and $P\left(N^{\prime}\right)=\frac{1}{2}$.
C. $N^{\prime}=\{1\}$ and $P\left(N^{\prime}\right)=\frac{1}{2}$.
D. $N^{\prime}=\{1\}$ and $P\left(N^{\prime}\right)=\frac{1}{3}$.
E. $N^{\prime}=\{1\}$ and $P\left(N^{\prime}\right)=\frac{1}{6}$.
F. $N^{\prime}=\{2,3,4,5,6\}$ and $P\left(N^{\prime}\right)=\frac{5}{6}$.
G. $N^{\prime}=\{2,3,4,5,6\}$ and $P\left(N^{\prime}\right)=\frac{1}{6}$.
H. $N^{\prime}=\{1\}$ and $P\left(N^{\prime}\right)=\frac{5}{6}$.
7. Let $S=\{7, \star, \boldsymbol{\natural}, \natural, \sharp, \diamond, 0,5,6,2,4, b, \diamond, 9,1, \boldsymbol{\wedge}, \boldsymbol{\square}\}$ be the sample space where every element has an equal chance of being chosen.

Consider the two events $A=\{7, \diamond, 0,6,2,4,1, \boldsymbol{\Delta}, \boldsymbol{\uparrow}\}$ and $B=\{\boldsymbol{\phi}, 6,4, \diamond, 9,1, \boldsymbol{\square}, \boldsymbol{\oplus}\}$.
Find the probability $P(A \cap B)$.
A. $P(A \cap B)=\frac{2}{9}$
B. $P(A \cap B)=\frac{2}{15}$
C. $P(A \cap B)=\frac{1}{15}$
D. $P(A \cap B)=\frac{8}{15}$
E. $P(A \cap B)=\frac{1}{3}$
F. $P(A \cap B)=-\frac{1}{18}$
G. $P(A \cap B)=\frac{1}{2}$
H. $P(A \cap B)=\frac{1}{3}$
8. A pack of m\&ms contains 12 browns, 12 yellows, 14 greens, 10 reds, 14 oranges, and 11 blues. You draw one $\mathrm{m} \& \mathrm{~m}$ from the bag.
Let $B r=$ the event of drawing a brown $m \& m$.
Let $Y=$ the event of drawing a yellow $\mathrm{m} \& \mathrm{~m}$.
Let $G=$ the event of drawing a green m\&m.
Let $R=$ the event of drawing a red m\&m.
Let $O r=$ the event of drawing a orange $m \& m$.
Let $B l=$ the event of drawing a blue m\&m.
Find the probability $P(R)$.
A. $P(R)=\frac{10}{73}$
B. $P(R)=\frac{12}{73}$
C. $P(R)=\frac{5}{71}$
D. $P(R)=\frac{14}{73}$
E. $P(R)=\frac{8}{71}$
F. $P(R)=\frac{7}{71}$
G. $P(R)=\frac{11}{71}$
H. $P(R)=\frac{15}{73}$

